Table 1.
Name | Sampling distribution | Mean | Variance | Categories | Degree of zero-inflation | Skewness† | Kurtosis† | Arguments in TrustGauss§ |
---|---|---|---|---|---|---|---|---|
D0 | Gaussian | 0 | 1 | - | 0 | 1.9 × 10-5 | 3.00 | DistributionY=“Gaussian”, MeanY.gauss=0, SDY.gauss=1 |
D1 | Binomial | 0.5 | 0.25 | - | 0 | 6.5 × 10-6 | 1.00 | DistributionY=“Binomial”, zeroLevelY.zero=0.5 |
D2 | Gaussian with categories and zero-inflation# | 0 | 1 | 5 | 0.5 | 0.64 | 2.02 | DistributionY=“GaussianZeroCategorical”, MeanY.gauss=3, SDY.gauss=1, nCategoriesY.cat=5 |
D3 | Gaussian with zero-inflation# | 0 | 1 | - | 0.5 | 0.45 | 1.69 | DistributionY=“GaussianZero”, MeanY.gauss=3, SDY.gauss=1, zeroLevelY.zero=0.5 |
D4 | Absolute Gaussian# | 0 | 1 | - | 0 | 1.00 | 3.87 | DistributionY=“AbsoluteGaussian”, MeanY.gauss=0, SDY.gauss=1 |
D5 | Student's t | 0 | 2 | - | 0 | 0.01 | 20.71 | DistributionY=“StudentsT”, DFY.student=4 |
D6 | Gamma with categories# | 10 | 100 | 3 | 0 | 3.45 | 15.09 | DistributionY=“GammaCategorical”, nCategoriesY.cat=3, ShapeY.gamma=1, ScaleY.gamma=10 |
D7 | Negative Binomial | 10 | 110 | - | 0 | 2.00 | 9.02 | DistributionY=“NegativeBinomial”, ShapeY.gamma=1, ScaleY.gamma=10 |
D8 | Binomial | 0.9 | 0.09 | - | 0 | -2.67 | 8.12 | DistributionY=“Binomial”, zeroLevelY.zero=0.90 |
D9 | Gamma | 10 | 1000 | - | 0 | 6.32 | 62.84 | DistributionY=“Gamma”, ShapeY.gamma=0.1, ScaleY.gamma=100 |
#Mean and Variance refer to the distributions prior to adding categories, zero-inflation or taking the absolute values.
†Skewness and kurtosis were estimated from the simulated distributions with 50 million data points using the moments R package (v0.14, Komsta & Novomestky, 2015).
§Here we specified the arguments for the dependent variable Y only. However, the specified values are identical for the independent variable X.