Skip to main content
. 2021 May 7;53(6):2576–2590. doi: 10.3758/s13428-021-01587-5

Table 1.

Description of the ten simulated distributions of the independent variable Y and the predictor X

Name Sampling distribution Mean Variance Categories Degree of zero-inflation Skewness Kurtosis Arguments in TrustGauss§
D0 Gaussian 0 1 - 0 1.9 × 10-5 3.00 DistributionY=“Gaussian”, MeanY.gauss=0, SDY.gauss=1
D1 Binomial 0.5 0.25 - 0 6.5 × 10-6 1.00 DistributionY=“Binomial”, zeroLevelY.zero=0.5
D2 Gaussian with categories and zero-inflation# 0 1 5 0.5 0.64 2.02 DistributionY=“GaussianZeroCategorical”, MeanY.gauss=3, SDY.gauss=1, nCategoriesY.cat=5
D3 Gaussian with zero-inflation# 0 1 - 0.5 0.45 1.69 DistributionY=“GaussianZero”, MeanY.gauss=3, SDY.gauss=1, zeroLevelY.zero=0.5
D4 Absolute Gaussian# 0 1 - 0 1.00 3.87 DistributionY=“AbsoluteGaussian”, MeanY.gauss=0, SDY.gauss=1
D5 Student's t 0 2 - 0 0.01 20.71 DistributionY=“StudentsT”, DFY.student=4
D6 Gamma with categories# 10 100 3 0 3.45 15.09 DistributionY=“GammaCategorical”, nCategoriesY.cat=3, ShapeY.gamma=1, ScaleY.gamma=10
D7 Negative Binomial 10 110 - 0 2.00 9.02 DistributionY=“NegativeBinomial”, ShapeY.gamma=1, ScaleY.gamma=10
D8 Binomial 0.9 0.09 - 0 -2.67 8.12 DistributionY=“Binomial”, zeroLevelY.zero=0.90
D9 Gamma 10 1000 - 0 6.32 62.84 DistributionY=“Gamma”, ShapeY.gamma=0.1, ScaleY.gamma=100

#Mean and Variance refer to the distributions prior to adding categories, zero-inflation or taking the absolute values.

Skewness and kurtosis were estimated from the simulated distributions with 50 million data points using the moments R package (v0.14, Komsta & Novomestky, 2015).

§Here we specified the arguments for the dependent variable Y only. However, the specified values are identical for the independent variable X.