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Abstract
Coronavirus disease 2019 (COVID-19) is a disease produced by severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) and it is currently causing a 
catastrophic pandemic affecting humans worldwide. This disease has been lethal 
for approximately 3.12 million people around the world since January 2020. 
Globally, among the most affected countries, Mexico ranks third in deaths after 
the United States of America and Brazil. Although the high number of deceased 
people might also be explained by social aspects and lifestyle customs in Mexico, 
there is a relationship between this high proportion of deaths and comorbidities 
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such as high blood pressure (HBP), type 2 diabetes, obesity, and metabolic 
syndrome. The official epidemiological figures reported by the Mexican govern-
ment have indicated that 18.4% of the population suffers from HBP, close to 10.3% 
of adults suffer from type 2 diabetes, and approximately 36.1% of the population 
suffers from obesity. Disbalances in the gut microbiota (GM) have been associated 
with these diseases and with COVID-19 severity, presumably due to inflam-
matory dysfunction. Recent data about the association between GM dysbiosis and 
metabolic diseases could suggest that the high levels of susceptibility to SARS-
CoV-2 infection and COVID-19 morbidity in the Mexican population are 
primarily due to the prevalence of type 2 diabetes, obesity, and metabolic 
syndrome.

Key Words: SARS-CoV-2; COVID-19; High blood pressure; Hypertension; Type 2 diabe-
tes; Obesity; Metabolic syndrome; Gut microbiota; Immunity
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Core Tip: This work reviews recent data about gut microbiota (GM) diversity in 
Mexico, a country in which more than 18.4% of adults present high blood pressure, 
39.1% are overweight, 36.1% are obese, and more than 10.3% suffer from type 2 
diabetes. This review highlights the link between GM dysbiosis and severe acute 
respiratory syndrome coronavirus 2 prevalence, which ranks Mexico third in cumu-
lative coronavirus disease 2019 deaths in the world.
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INTRODUCTION
Bacteria maintain the immune response in the gut
The human body harbors approximately 100 trillion cells belonging to commensal 
microorganisms[1], and they are primarily concentrated in the intestine[2]. The term 
gut microbiota (GM) refers to the symbiotic intestinal collection of bacteria, archaea, 
and some eukaryotes with an important influence on health and disease[3]. Among 
the several functions in the host, the GM participates in the synthesis of water-soluble 
vitamins, the supply of quinones[4], the metabolism of xenobiotics[5], neurotrans-
mitter modulation[6], the production of energy substrates from dietary fiber[7] and the 
regulation of immune homeostasis[8].

A functional microbiota promotes the host’s immunity[9]. For example, the polysac-
charide A in Bacteroides fragilis’ directs lymphoid organogenesis and corrects systemic 
T lymphocyte (TL) deficiencies and TL-helper Th1/Th2 imbalances through me-
chanisms such as interleukin (IL)-12/Stat4-mediated Th1 differentiation. Moreover, B. 
fragilis’ polysaccharide A presentation by intestinal dendritic cells (DCs) activates 
clusters of differentiation in CD4+ TLs, eliciting appropriate cytokine production[10]. 
Commensal GM is also required for Th17 cell differentiation in the small intestine by 
activating the transforming growth factor (TGF)-β[11] and influences gut immuno-
globulin (Ig) repertories and B lymphocyte (BL) development in the intestinal mucosa
[12]. Elevated serum levels of IgE through BL isotype switching at mucosal sites have 
been reported for germ-free (GF) mice in a CD4+ TL- and IL-4-dependent manner, 
suggesting that a healthy GM is required to inhibit high IgE induction[13].

The GM plays a vital role in the innate immune system[14]. A total lack of TL and 
DC under GF conditions in the jejunum of piglets was reverted by Escherichia coli 
colonization, favoring the recruitment of both cell types to the lamina propria[15]. GM 
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metabolites such as trimethylamine N-oxide and butyrate drive macrophage pola-
rization using the NLRP3 inflammasome as a proteolytic activator[16], they promote 
monocyte to macrophage differentiation by inhibiting histone deacetylase (HDAC3), 
and they amplify antimicrobial host defense[17]. Furthermore, GF mice lack IL-22-
producing natural killer (NKp46+) cells[18] and have lower levels of mast cell 
densities in the small intestine than conventional mice due to the absence of CD182 
ligands from gut epithelial cells[19]. All this evidence illustrates the vital function of 
the GM in relation to innate immunomodulation.

The interactions of the host with the microbiota are complex, numerous, and 
bidirectional. The GM significantly regulates the development and function of the 
innate and adaptive immune systems[20]. Intestinal bacterial commensals secrete 
antimicrobial peptides and compete for nutrients and habitat sites, thereby aiding in 
the state of homeostasis[21]. The GM and immune homeostasis have a reciprocal 
relationship and are a topic of great interest and intense research investigation in the 
eld of infectious diseases. Additionally, GM-derived signals modulate immune cells 
for pro- and anti-inflammatory responses, thereby affecting susceptibility to various 
diseases[22]. Immune gut homeostasis is orchestrated by fine adjustments in the 
regulatory balance of pro-inflammatory responses such as Th17 cells vs inflammatory 
regulatory T cells (Tregs), whose function is influenced by commensal microorganisms
[23]. During the process of launching a response against pathogenic infections and 
etiological agents such as coronavirus, a healthy gut microbiome is pivotal to main-
taining an optimal immune system to prevent an array of excessive immune reactions 
that eventually become detrimental to the lungs and vital organ systems. Under those 
circumstances, it becomes crucial to have a balanced immune response as opposed to 
an overreactive or an under reactive response that could aggravate the disease, 
causing clinical complications such as pneumonia and/or even acute res-piratory 
distress syndrome to occur in response to viral diseases such as coronavirus disease 
2019 (COVID-19).

Several studies have linked the GM with adaptative immune system homeostasis
[24]. For instance, B. fragilis induces CD4+ TL differentiation to Th1 and interferon 
(IFN)-γ production[10], whereas segmented filamentous bacteria favor this process of 
Th17 differentiation and IL-17 and IL-22 production[8]. However, bacteria such as 
indigenous Clostridium spp. promote this differentiation to CD4+ T regulatory cells 
and the production of IL-10 and IL-35 through the induction of the TGF-β cytokine and 
the FOXP3 transcription factor expression[8,25].

An essential role of the GM in the host’s susceptibility to viral infection has been 
suggested by some reports[26]. For example, while Bifidobacterium breve and prebiotic 
oligosaccharides prevented rotavirus infection through IFN-γ, IL-4, tumor necrosis 
factor (TNF-α), and Toll-like receptor (TLR2) expression[27], human milk oligosac-
charides (HMOs) increased Enterobacter/Klebsiella abundance and rotavirus infectivity, 
possibly through the viral structural stability conferred by HMOs[28] and lipopolysac-
charides[29]. Moreover, there is an interesting report showing that short-chain fatty 
acids produced by GM protect against allergic inflammation in the lungs[30].

ASSOCIATION OF COVID-19 SEVERITY WITH HIGH BLOOD PRESSURE, 
TYPE 2 DIABETES, OBESITY, AND METABOLIC SYNDROME
Non-communicable diseases (NCDs) are the leading cause of mortality and premature 
disability worldwide, with over 36 million deaths per year[31]. Obesity (OB) is 
considered a major risk factor for NCDs, and it is associated with an estimated loss of 
5–20 years of life expectancy[32]. OB also increases the risk of metabolic diseases such 
as fatty liver disease and type 2 diabetes mellitus (T2DM)[33]. From 2000 to 2019, there 
was an increase in global T2DM prevalence from 151 to 463 million, and this number is 
expected to grow to 700 million by 2045[34]. It is estimated that T2DM accounts for 87 
to 91% of diabetes cases, while type 1 diabetes is only considered to be responsible for 
7 to 12% of global diabetes cases[35]. Although there are some reports indicating that 
in general, the prevalence of diabetes is stabilizing in some populations, overall, it 
keeps increasing in non-Hispanic black and Hispanic populations[36].

The OB prevalence in Mexico is one of the highest in the world, corresponding to 
36.1% of the Mexican population[37]. The number of cases of T2DM in Mexico is 12.8 
million people, with 101257 deaths due to related complications, and T2DM is second 
in Latin America and sixth in the world[34,38].
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The global epidemic of severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) has immediate implications for the therapy of common metabolic disorders 
such as T2DM, gestational diabetes, OB, metabolic syndrome (MetS), and high blood 
pressure (HBP). T2DM is associated with an increased risk of severe bacterial and viral 
respiratory tract infections, including H1N1 and influenza[39]. T2DM was also a 
comorbidity associated with adverse outcomes in hospitalized patients with SARS-
CoV-2 in both China and Italy[40,41]. In the Italian cohort, hyperglycemic COVID-19 
patients had a higher risk for mechanical ventilation, shock, and multiple organ failure 
requiring intensive care unit (ICU) assistance and showed higher mortality rates than 
normoglycemic COVID-19 patients. Hyperglycemic COVID-19 patients treated with 
insulin infusion had reduced inflammation and coagulation markers and a better 
prognosis[41]. In a series of 168 lethal cases of SARS-CoV-2 pneumonia collected from 
21 hospitals between January 21 and 30, 2020 in Wuhan, China, 75% were men, with a 
median age of 70 years old, and T2DM was reported in 25% of cases[42].

In Mexico, the first case of COVID-19 was detected on February 27, 2020, and 64 d 
after this first diagnosis, the number of patients increased exponentially, reaching 
19224 confirmed cases and 1859 (9.67%) deceased; currently, these figures amount to 
2667769 confirmed cases and 244081 deaths[43]. An epidemiological study conducted 
in Mexico from February 27, 2020 to April 30, 2020 showed that most cases of COVID-
19 were in Mexico City, and the average age of patients was 46 years old. Among the 
12656 confirmed cases, the highest number of infected people occurred in the 30- to 59-
year-old range (65.85%), with a higher incidence in men (58.18%) than in women 
(41.82%). Deceased patients had one or multiple comorbidities, primarily HBP or 
hypertension (45.53%), T2DM (39.39%), and OB (30.4%)[44]. One of the first reports 
from Wuhan, China indicated that most hospitalized COVID-19 patients presented 
underlying diseases, such as diabetes, hypertension, and cardiovascular disease 
(CVD). The occurrence of hypertension worsened the prognosis and was associated 
with a higher rate of death[40]. In another study in Mexicans conducted from February 
27, 2020 to April 10, 2020, a total of 23593 patient samples were evaluated by a 
laboratory from the Mexican Institute of Epidemiological Diagnosis and Reference. Of 
these, 18443 were negative for COVID-19, and 3844 were positive for COVID-19. The 
results showed that patients diagnosed with COVID-19 who developed a severe 
condition upon admission had higher proportions of OB (17.4%), T2DM (14.5%), and 
HBP (18.9%) than those without a confirmed diagnosis[45]. Moreover, OB, T2DM, and 
HBP conditions were accompanied by an inflammatory status, and some molecular 
mechanisms induced by inflammation altered the microvasculature, resulting in 
endothelial dysfunction (ED) and lung damage. Thus, COVID-19 patients with these 
comorbidities have higher rates of ICU treatment[46].

The Mexican Ministry of Health reported that HBP (17.21%), T2DM (13.25%), OB 
(13.25%), and smoking (7.33%) were the top 4 risk factors associated with SARS-CoV-2 
infection mortality[43]. Many OB cases in Mexico live in geographical areas of 
increased social vulnerability, which poses a fundamental inequality that might also 
increase mortality from COVID-19 associated with both T2DM and OB. In a study 
conducted in Mexico on 177133 subjects with COVID-19, the odds of SARS-CoV-2 
positivity were higher in subjects affected by T2DM, HBP, OB, being more than 65 
years old, and of male sex[47]. When assessing age, reduced odds of SARS-CoV-2 
positivity in patients less than 40 years old were observed, but when exploring its 
interaction with T2DM, an increased probability of SARS-CoV-2 infection was noted
[47].

Having a diagnosis of T2DM has been linked to increased susceptibility and adverse 
outcomes associated with bacterial, mycotic, parasitic, and viral infections, all of which 
are attributed to a combination of dysregulated innate immunity and defective inflam-
matory responses[48]. Pulmonary and systemic coronavirus infections, including 
SARS-CoV-2, may be complicated by secondary bacterial infection, denoting the 
importance of the epithelial barrier function in the lungs and gastrointestinal tract. 
T2DM alone or in combination with older age, HBP, and/or CVD characterized by 
pro-inflammatory states can contribute to SARS-CoV-2 infection and to a larger pro-
inflammatory response, which would lead to a more severe and ultimately lethal form 
of the disease[49].

OB is also a risk factor for increased severity of SARS-CoV-2-related symptoms. An 
analysis of 124 consecutive ICU admissions in a single center in Lille, France, from 
February 27, 2020 to April 5, 2020 revealed a large frequency of OB among SARS-CoV-
2 patients in comparison to non-SARS-CoV-2 controls. In this observational study, the 
frequency of OB was 47.5%, compared to 25.8% in a historical control group of ICU 
subjects with non-SARS-CoV-2 illness. In this study, the requirement for intubation 
and mechanical ventilation was higher in subjects with OB[50]. In another report 
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conducted in Shenzhen, China, with 383 patients with COVID-19, overweight (OW) 
was associated with 86% and OB with a 142% higher risk of developing severe 
pneumonia compared to patients of normal weight in a statistical model controlling 
for potential confounders[51]. In another study conducted in Mexico between April 1, 
2020 and May 8, 2020, 167 hospitalized patients (67% male) with an average age of 54-
years old were suspicious or confirmed for COVID-19; approximately 75.3% suffered 
from OW or OB, including 7.8% with grade III OB. An 11% mortality rate among 
patients with Grade I OB was observed, along with a high 33% mortality rate in 
underweight or Grade III OB patients[52].

Mexicans exhibiting comorbidities such as CVD, HBP, OB, and T2DM, which are 
also related to MetS, also show more severe disease and higher mortality related to 
COVID-19. An additional analytical study including 528651 cases for the period from 
February 25, 2020 to June 6, 2020, of which 202951 were confirmed for COVID-19, 
allowed the authors to conclude that the presence of one MetS factor doubles the risk 
of death from COVID-19, and it was higher among patients affected by HBP and 
T2DM[53].

With regards to SARS-CoV-2 infection and intestinal health, important enzymes 
such as dipeptidyl peptidase-4 (DPP-4), angiotensin-converting enzyme 2 (ACE2), and 
transmembrane serine protease 2 (TMPRRSS2) are substantially expressed outside the 
lungs in epithelial tissues, including small and large bowel enterocytes[54-56]. Acute 
hyperglycemia has been shown to upregulate ACE2 expression in cells, which might 
facilitate viral cell entry, but paradoxically, chronic hyperglycemia downregulates 
ACE2 expression, making the cells vulnerable to the inflammatory and damaging 
effects of the virus[57]. In addition, the expression of ACE2 on pancreatic β cells 
directly affects β cell function, suggesting that T2DM is not only a risk factor for a 
severe form of COVID-19 disease but also that viral infection could trigger diabetes
[58]. A great proportion of insulin requirements in patients with a severe course of the 
infection has also been observed in different countries affected by COVID-19. Ne-
vertheless, it is not clear whether SARS-CoV-2 has a direct role in insulin resistance. 
Another aspect to consider is the link between COVID-19 and T2DM involving the 
DPP-4 enzyme, which is commonly targeted pharmacologically in people with T2DM
[59].

The gut plays an important role in metabolic homeostasis, producing metabolically 
active gut hormones, interacting with the microbiota, and by its potential capacity to 
contribute to gluconeogenesis[60]. It is crucial to have adequate gut health and 
microbiota to achieve the best absorption of medicinal drugs designed to lower blood 
glucose levels in patients with diabetes[61].

There is important evidence supporting the notion that intestinal dysbiosis due to 
HBP, T2DM, OB, and MetS predisposes a patient to greater clinical severity from 
COVID-19. However, it cannot go unnoticed that other social aspects and lifestyle 
customs in Mexico, including vulnerability and undernutrition, might substantially 
contribute to the probability of hospitalization among individuals with COVID-19 and 
associated comorbidities, as discussed previously[62].

THE DEATH TOLL FOR COVID-19 IN MEXICO IS NOW MORE THAN TWO 
HUNDRED THOUSAND CASES
During the last month of 2019, a respiratory-type infectious outbreak emerged in 
China, and despite the sanitary measures established in that country, the disease 
continued to expand around the world, becoming a critical health issue[63]. This 
SARS-CoV-2 outbreak has become more serious, becoming a pandemic with more 
than 150 million confirmed cases and more than 3 million deaths worldwide[64]. 
According to the Mexican government, there were more than 2.5 million reported 
estimated cases with 234178 confirmed deaths by April 2021[43], and an association of 
comorbidities such as HBP, OB, smoking, and T2DM with COVID-19 disease severity 
has been reported[45]. Among the most affected countries, Mexico ranks third in 
deaths worldwide after the United States of America, with more than 30 million 
estimated positive cases and more than half a million deaths, and Brazil, with more 
than 14 million positive cases and almost 400 thousand deaths due to COVID-19[65], 
Table 1).

Research in other countries of the world showed that the most common comor-
bidities are also HBP, T2DM, CVD, and respiratory disease[66], similar to the 
panorama in Mexico. In Mexico, the principal comorbidities are HBP, OB, T2DM, and 
smoking[43]. It notable that according to the Non-Communicable Disease Risk Factor 
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Table 1 Coronavirus disease 2019 reported cases and deaths

Location Cases per 100K people Deaths per 100K people

United States 32152531 9795 573044 175

Brazil 14369423 6809 391936 186

Mexico 2329534 1826 215113 169

India 17636307 1291 197894 14

United Kingdom 4409635 6598 127451 191

The figures are based on data from the Johns Hopkins University Center for Systems Science and Engineering, accessed 2021-04-27 (https://
coronavirus.jhu.edu/map.html).

Collaboration (NCD RisC), the United States of America, Brazil, and Mexico rank 
among the top countries afflicted by some of these maladies. For HBP, there is a 19.9% 
prevalence in Brazil, 17.3% in Mexico, and 10.5% in the United States of America; as a 
reference, Nigeria has a prevalence of 35.5%[67]. Regarding T2DM, there is an 11.5% 
prevalence in Mexico, 8.7% in Brazil, and 6.4% in the United States of America; as a 
reference, there is a 19.8% prevalence in Egypt[68]. Lastly, for OB, there is 38.2% 
prevalence in the United States of America, 34.0% prevalence in Mexico, and 26.4% 
prevalence in Brazil, and as a reference, Qatar has a 44.6% prevalence[69].

UNDER PANDEMIC CONDITIONS, BREASTFEEDING PROVIDES THE 
BEST SEEDING OF THE GM FOR NEWBORNS
As has been discussed, the importance of the functional GM is critical to contribute to 
appropriate primary (innate) and secondary immune responses. In the context of the 
global COVID-19 pandemic, a particular concern about mother and infant health is 
related to the possibility of vertical transmission from infected mothers to neonates or 
infants. In the mother-neonate pair, transmission may occur primarily through breast-
feeding or the consumption of human milk, which may carry the virus. However, 
although it is essential to consider the potential role of human milk in SARS-CoV-2 
transmission, it is more important to consider the protective effects of targeted 
antibodies and other immunoprotective components present in human milk against 
the viral agent of COVID-19. Among the multiple benefits breastfeeding provides to 
neonates, human milk contains a complex community of bacteria that helps to seed the 
infant GM[70,71]. This event is extremely important since appropriate initial bacterial 
colonization is essential for adequate intestinal immune development[72,73]. Whether 
infective SARS-CoV-2 viruses are present in human milk, the data are still limited, and 
breastfeeding by women with COVID-19 remains a controversial issue. In a recent 
work reporting data from 30 COVID-19-positive mothers, only one human milk 
sample was positive for the SARS-CoV-2 via quantitative real-time polymerase chain 
reaction (RT-qPCR) test, even after repeating the analysis the next day. The authors 
did not find proof for the transmission of the SARS-CoV-2 virus from mother to child 
through breastfeeding in the Indian population[74].

Furthermore, there are 37 published studies in which the presence of SARS-CoV-2 
RNA was assessed in 68 human milk samples from mothers with a positive COVID-19 
diagnosis. Only 9 of the 68 samples (13.23%) had detectable levels of SARS-CoV-2 
RNA[75]. However, a previous report analyzing milk from two nursing mothers 
infected with SARS-CoV-2 reported positive results for the presence of viral RNA in 
only one of the two sampled mothers. Viral RNA was detected in milk for 4 con-
secutive days, and its presence coincided with mild COVID-19 symptoms and a SARS-
CoV-2-positive diagnostic test for the newborn. However, whether the newborn was 
infected by breastfeeding or by other modes of transmission remains unclear[76]. In 
another study performed on two participants, only 50% of human milk samples were 
positive for SARS-CoV-2 RNA, suggesting that the virus is shed intermittently in the 
milk[77]. Both works conclude that further studies on milk samples from lactating 
women are needed to propose recommendations on whether mothers with COVID-19 
should breastfeed. In a recent review, the authors concluded that there was no 
evidence of SARS-CoV-2 transmission through breast milk[75]. Human milk contains 
antibodies, and a recent publication reports the presence of SARS-CoV-2-specific 

https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html
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Table 2 High abundance bacterial taxa characterizing the gut microbiota dysbiosis of selected diseases

Population Disease Relevant taxa Analysis Ref.

ED f_Veillonellaceae, f_ S24-7, g_Ruminococcus, g_Bacteroides, g_Parvimonas, g_
Oscillospira.

MaAsLin Nirmalkar et al
[87], 2018

T2DM o_Bacteroidales, f_Koribacteraceae, g_Suterella, g_Roseburia, g_Pelomonas, g_
Oscillospira.

LEfSe Chávez-Carbajal et 
al[85], 2020

f_ S24-7, g_Roseburia, g_Succinivibrio. LEfSe Chávez-Carbajal et 
al[86], 2019

OB

g_Lachnospira, g_Roseburia, g_Faecalibacterium. UPGMA Murugesan et al
[88], 2015

Mexico

MetS g_Lachnospira, g_Coprococus, g_Faecalibacterium, g_Ruminococcus, g_Megamonas. LEfSe Chávez-Carbajal et 
al[86], 2019

HBP g_Dorea, s_Alistipes finegoldii, s_A. indistinctus. LEfSe Kim et al[89], 2020

g_Bifidobacterium, g_Akkermansia, g_Oxalobacter. Pearson’s correlation Johnson et al[90], 
2019

ED

o_Bacteroidales, f_ Prevotellaceae, g_ Hungatella, g_Succiniclasticum. Mann Whitney U Kummen et al[91], 
2018

T2DM g_Bifidobacterium, g_Prevotella. Mann-Whitney 
nonparametric test

Barengolts et al
[92], 2018

c_Bacilli, f_Streptococcaceae, f_Lactobacillaceae, g_Streptococcus, g_Blautia. Kruskal-Wallis Peters et al[93], 
2018

OB

f_Ruminococcacea, g_Prevotella, g_Gardnerella, g_Turicibacter, g_Megasphera. LEfSe Sergeev et al[94], 
2020

g_Ruminococcus, g_Haemophilus, g_Varibaculum, g_Veillonella, g_Sarcina, 
g_Lactobacillus, g_Turicibacter, g_Actinomyces, g_Bifidobacterium, 
g_Lachnobacterium.

Correlations Tricò et al[95], 2019

United 
States

MetS

g_Clostridium, g_Ruminococcus, g_Faecalibacterium, g_Oscillospira, 
g_Coprococcus, g_Prevotella.

Compute core 
microbiome (95%)

Zupancic et al[96], 
2012

ED f_Lachnospiraceae g_Roseburia g_Coprococcus Mann–Whitney U Silveira-Nunes et al
[97], 2020

T2DM g_Gemella g_Coprococcus g_Desulfovibrio Relative Abundance Al Assal et al[98], 
2020

OB g_Fusobacterium g_Enterococcus s_Escherichia coli FISH Sarmiento et al
[99], 2019

Brazil

MetS p_Firmicutes RT-qPCR Miranda et al[100], 
2019

ED: Endothelial dysfunction; T2DM: Type 2 diabetes; OB: Obesity; MetS: Metabolic syndrome; UPGMA: Unweighted pair group method with arithmetic 
mean; FISH: Fluorescence in situ hybridization.

antibodies in human milk after a COVID-19 vaccination scheme in 84 breastfeeding 
Israeli mothers[78].

Regarding the human milk that is handled and distributed by human milk banks 
(HMBs), when this review was written, there was no basis for imposing restrictions on 
the consumption of human milk by neonates in need. It should be mentioned that a 
requirement for the use of milk from HMBs is heat treatment aimed at reducing the 
bacterial load, which might include potential pathogens[79]. The standard heat 
treatment procedure used is Holder pasteurization, which is reported to inactivate the 
SARS-CoV-2 virus efficiently[80].

GM DYSBIOSIS IS ASSOCIATED WITH ED, T2DM, AND OB IN MEXICANS 
AND OTHER POPULATIONS
During the pandemic, the ribonucleic acid of SARS-CoV-2 has been detected in 
different types of samples around the world, including feces[81]. There is evidence of 
gastrointestinal infection with the viral agent of COVID-19 under conditions in which 
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Table 3 Taxa associated with immunological or inflammatory diseases

Taxa Immunological disease Ref.

Crohn’s disease Henke et al[101], 2019s_Ruminococcus gnavus

Rheumatoid arthritis Zhang et al[102], 2015

s_Ruminococcus lactaris Inflammatory bowel disease Forbes et al[103], 2016

Multiple sclerosis Cantarel et al[104], 2015

Psoriasis Zhang et al[105], 2021

g_Faecalibacterium

Inflammatory bowel disease Gevers et al[106], 2014

f_Veillonellaceae Multiple sclerosis Cantarel et al[104], 2015

g_Coprococus Anti-phospholipid syndrome Ruff et al[107], 2015

g_Roseburia intestinalis Increased risk of HIV infection Libertucci and Young[108], 2019

g_Parvimonas Acute Kawasaki disease Chen et al[109], 2020

Psoriasis Zhang et al[105], 2021g_Megamonas

Systemic lupus erythematosus Hevia et al[110], 2014

g_Bacteroides Arthritis susceptibility Xu et al[111], 2019

f_S24-7 Reduction in antibody response Yang et al[112], 2017

g_Coprococcus

g_Oscillospira

g_Sutterella

Reduction in antibody response. Inflammatory bowel disease Yang et al[112], 2017; Said et al[113], 2014

g_Gemella Asthma Stiemsma et al[114], 2016

Colitis Guerri et al[115], 2019g_Clostridium

Rheumatoid arthritis Forbes et al[116], 2018

g_Actinomyces Rheumatoid arthritis Forbes et al[116], 2018

g_Streptococcus Rheumatoid arthritis Alpizar-Rodriguez[117], 2019

Maeda and Takeda[118], 2019g_Prevotella Rheumatoid arthritis. Allergic rhinitis, Asthma

Chua et al[119], 2018

Rheumatoid arthritis Forbes et al[116], 2018f_Lachnospiraceae

Asthma Cherkasov et al[120], 2019

f_Veillonellaceae Autoimmune hepatitis Wei et al[121], 2020

g_Veillonella Multiple sclerosis Chen et al[122], 2016

g_Blautia

g_Dorea

g_Haemophilus

Multiple sclerosis Chen et al[122], 2016

g_Oscillospira

g_Succinivibrio

g_Suterella

o_Bacteroidales

Allergies Hua et al[123], 2016

HIV: Human immunodeficiency virus.

more than 20% of the qPCR tests are positive in feces by the time the respiratory tract 
results are negative[82]. Based on this information, it is possible that an already 
established GM dysbiosis, such as that observed in some metabolic diseases, influences 
SARS-CoV-2 clinical manifestations and outcomes. The diversity of the fecal 
microbiota is reportedly affected during SARS-CoV-2 infection[83], and supported by 
additional results, an association between the GM dysbiosis seen in T2DM and OB 
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with the severity of COVID-19 is proposed[84].
Our group has found evidence of dysbiosis in the distal colon microbiota diversity 

in Mexican adults affected by T2DM, as characterized by an increased relative 
abundance of Bacteroidetes in relation to Firmicutes[85] and a decrease in the relative 
abundance of Bacteroidetes to Firmicutes in OB and MetS[86], three diseases of 
epidemic proportions among Mexicans. Additionally, the results by our group have 
also uncovered characteristic dysbiosis in ED among Mexican adolescents[87]. There 
are also reports of a high abundance of specific bacterial taxa depicting GM dysbiosis 
in epidemic diseases such as HBP, T2DM, and OB in the USA and Brazil, which, along 
with Mexico, are the top three countries with the highest COVID-19 mortality 
(Table 2).

The presence of distal GM dysbiosis, as supported by the bacterial profiles charac-
terized in fecal samples of Mexican subjects affected by ED, T2DM, OB, and MetS, is 
enriched in different but common bacterial taxa. Moreover, the relative abundances of 
these taxa were augmented in several disorders associated with defective immune 
responses, allergies, and susceptibility to viral infections (Table 3).

CONCLUSION
As discussed in this review, there is a clear association between comorbidities such as 
type 2 diabetes, obesity, and MetS and COVID-19 severity in populations such as 
Mexicans, in which these diseases are a health problem. There is also a defined 
association of changes in the bacterial taxa of the GM associated with the same 
diseases. However, to complete the picture, a further characterization of these bacterial 
taxa should include their metabolic role in the GM function and the type of mutual 
interaction they maintain with the immune system of the host. This information 
should help to develop multidisciplinary strategies to manage the GM to improve the 
primary and secondary immune responses in the face of viruses such as SARS-CoV-2, 
the viral agent of COVID-19 disease.
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