
WJD https://www.wjgnet.com 1832 November 15, 2021 Volume 12 Issue 11

World Journal of 

DiabetesW J D
Submit a Manuscript: https://www.f6publishing.com World J Diabetes 2021 November 15; 12(11): 1832-1855

DOI: 10.4239/wjd.v12.i11.1832 ISSN 1948-9358 (online)

REVIEW

Anti-diabetics and antimicrobials: Harmony of mutual interplay

Wael A H Hegazy, Azza A H Rajab, Amr S Abu Lila, Hisham A Abbas

ORCID number: Wael A H Hegazy 
0000-0001-5683-4803; Azza A H 
Rajab 0000-0001-9018-6002; Amr S 
Abu Lila 0000-0001-7385-868X; 
Hisham A Abbas 0000-0002-2429-
327X.

Author contributions: Hegazy 
WAH and Rajab AAH wrote the 
paper; Abu Lila AS and Abbas HA 
performed the collected the data.

Conflict-of-interest statement: 
Authors declare no conflict of 
interests for this article.

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Provenance and peer review: 
Invited article; Externally peer 
reviewed

Specialty type: Endocrinology and 
metabolism

Country/Territory of origin: Egypt

Wael A H Hegazy, Azza A H Rajab, Hisham A Abbas, Department of Microbiology and 
Immunology, Zagazig University, Zagzig 44519, Egypt

Amr S Abu Lila, Department of Pharmaceutics, Zagazig University, Faculty of Pharmacy, 
Zagzig 44519, Egypt

Amr S Abu Lila, Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 
81442, Saudi Arabia

Corresponding author: Wael A H Hegazy, PhD, Professor, Department of Microbiology and 
Immunology, Zagazig University, Faculty of Pharmacy, Zagzig 44519, Egypt.  
waelmhegazy@daad-alumni.de

Abstract
Diabetes is one of the four major non-communicable diseases, and appointed by 
the world health organization as the seventh leading cause of death worldwide. 
The scientists have turned over every rock in the corners of medical sciences in 
order to come up with better understanding and hence more effective treatments 
of diabetes. The continuous research on the subject has elucidated the role of 
immune disorders and inflammation as definitive factors in the trajectory of 
diabetes, assuring that blood glucose adjustments would result in a relief in the 
systemic stress leading to minimizing inflammation. On a parallel basis, microbial 
infections usually take advantage of immunity disorders and propagate creating a 
pro-inflammatory environment, all of which can be reversed by antimicrobial 
treatment. Standing at the crossroads between diabetes, immunity and infection, 
we aim in this review at projecting the interplay between immunity and diabetes, 
shedding the light on the overlapping playgrounds for the activity of some 
antimicrobial and anti-diabetic agents. Furthermore, we focused on the anti-
diabetic drugs that can confer antimicrobial or anti-virulence activities.
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Core Tip: Understanding the mutual interplay between diabetes and microbial infection 
is necessary to control both and to avoid a lot of serious complications that may happen 
in such clinical conditions. Repurposing of approved drugs and investigation of their 
new application represents a promising approach for maximizing treatment outcomes. 
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INTRODUCTION
Diabetes is a chronic metabolic disorder associated with high blood glucose levels. 
Diabetes is a lifelong condition which requires proper monitoring and change in the 
patient’s diet and routine habits. The world health organization reported an increase in 
the incidence of diabetes over the last decades worldwide that affected all social, 
economic and ethnic backgrounds. The universal prevalence of diabetes has nearly 
doubled since 1980 to 2014, rising from 4.7% to 8.5% in the adult population, and 
expected to rise to 10.4% in 2040[1]. This alarming uprise in the statistics of diabetes is 
owed to the global shift towards urban habits generally characterized by unbalanced 
diet, stress and reduced physical activity. Before the coronavirus disease 2019 (COVID-
19) pandemic 650 million adults (13% of the world's adult population) were obese and 
it was estimated that 19.7% of the world's population will be obese by the year of 2030
[2]. The COVID-19 pandemic has been associated with increased risk of obesity and 
associated health hazards mainly diabetes. The global application of quarantine 
requirements forced billions of people into a new life style of isolation where people 
are forced to spend more time indoors with minimum physical activities and limited 
contact with others. The quarantine related frustration pushed people to consume 
larger amounts of high sugar foods which is reflected as higher incidence of obesity[3,
4]. Moreover, many studies have outlined the role of obesity and diabetes as important 
risk factors in COVID-19 infections[5,6].

Diabetes is commonly divided into two major categories depending on the age of 
onset and the pathophysiological cascade of events giving rise to diabetes; type I 
diabetes (T1DM), also known as juvenile diabetes, is characterized by the inability of 
pancreas to secrete insulin due to damage of β-cells mostly caused by an autoimmune 
disorder. The onset of T1DM appears usually in childhood and requires lifelong 
insulin injections. On the other hand, type II diabetes (T2DM) is characterized by 
insulin resistance that can be accompanied by reduced insulin secretion from the 
pancreas. T2DM is more common than T1DM, its onset appears in adulthood and its 
treatment involves diet control, medications for control of blood glucose level and 
eventually insulin injection is required in late stages[7].

The delay in diagnosis and treatment of diabetes can lead to irreversible damage to 
many of the body organs; some of the complications of diabetes include neuropathy, 
retinopathy, nephropathy, cardiovascular diseases, peripheral insufficiency, and 
diabetic foot ulcers. Failure to control diabetes can eventually lead to life threatening 
complications like kidney failure, lower limbs gangrene, heart attacks and stroke[8]. 
Some of the most distinguished complications of diabetes include: Immunodeficiency, 
high risk of infection and longer recovery period, all of which represent lifelong 
companions of diabetic patients. The most frequent infections in diabetic patients are 
respiratory tract infections, urinary tract infections, skin and soft tissues infections, 
diabetic foot ulcers, otitis and periodontal infections[9]. Many mechanisms were 
proposed for the reasons behind the high risk of contracting infection in diabetic 
individuals like the high blood glucose level, the lower-than-normal pH in body fluids
[9,10], in addition to poor vascularity of peripheral tissues[11], all of which support 
pathogenic infestation. However, the most profound factor is the impaired immune 
functions. The relation between microbes and diabetes is bidirectional. In other words, 
the high blood glucose levels complicate infections and also some microbial infections 
can contribute to the etiology of diabetes[12-16]. The undeniable role of inflammation 
in both diabetes and infection have been extensively portrayed, which lead to the 
conclusion that the use of anti-inflammatory agents can represent a rationale treatment 
approach for better control of diabetes or even delaying its complications. Generally, 
anti-inflammatory agents are essential members in any anti-diabetic regimen; non-
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steroidal anti-inflammatory drugs and salicylates are commonly prescribed anti-
inflammatory agents for better control of the diabetes associated inflammation[17].

As diabetics are immunocompromised chronic patients and are more susceptible to 
microbial infections, exploring antimicrobial activities of approved anti-diabetic agents 
may be highly appreciated by clinicians. Preferential selection of anti-diabetic agents 
that have additional antimicrobial activities for diabetic patients can offer multiple 
advantages, including antimicrobial protection enhancement and decreasing the 
treatment costs[18-21]. In this work we intend to discuss the multiple facets of the 
relation between infection and diabetes. We shed the light on the interplay between 
immunity, diabetes and microbial infections, discussing the influence of diabetes on 
worsening of microbial infections. Additionally, the antimicrobial agents that can 
harbor anti-diabetic activities were discussed, with special interest in the anti-diabetic 
drugs which have antimicrobial activities, enhance immune responses or mitigate 
microbial virulence (Figure 1).

DIABETES AND IMMUNITY INTERPLAY
The interplay between immune-dysfunction and diabetes has a deep complicated 
background that exceeds our full understanding. The question whether immune-
dysfunction is the cause or the effect of diabetes was always questioned. It is widely 
accepted that an immune disorder is responsible for T1DM via T cell-mediated 
selective destruction of pancreatic β-cells[15]. The activation of such destructive 
autoimmune behavior is based on a genetic factor in addition to a triggering environ-
mental event[22]. Meta-analysis of genomic data has identified the genetic loci related 
to high risk of T1DM, the most prevailing are haplotypes in human leukocyte antigen 
class II, other common risk loci include mutations in INS-gene leading to preproinsulin 
misfolding and polymorphisms in Protein tyrosine phosphatase, non-receptor type 
(PTPN-22), interleukin-2 (IL-2), renalase (RNLS) and CTLA-4 genes[9,15,23]. The 
presence of a single or multiple risk loci would lead to an unfortunate sequence of 
immunological reactions starting by loss of tolerance to pancreatic islets β-cell 
antigens, the production of anti-diabetic islet antibodies from plasma B-cells and the 
active involvement of autoreactive CD4- and CD8-T cells, eventually leading to steady 
rate damage in pancreatic β-cells[24]. This steady autoimmune destructive pattern 
remains hidden from the individual up until a critical damage limit is reached in the 
pancreatic islets after which hyperglycemia prevails and external insulin dependence 
becomes crucial[25]. During the prolonged silent preclinical period, early detection 
and reversal of the disease is possible by screening for the genetic risk loci, circulating 
anti-islet autoantibodies, and auto-reactive CD4 and CD8-T cells[15,25,26]. The 
presence of high-risk genetic loci only presents a predisposing factor to the disease; as 
a matter of fact, an individual carrying a high-risk gene could enjoy a delay in the 
onset of symptoms if he was lucky enough to escape the triggering factors associated 
with T1DM[22,27]. The triggering event can be an alteration in gut microbiota, obesity, 
a dietary factor like gluten or early introduction of cow’s milk in infancy, toxins or a 
viral infection especially by dsRNA virus[28-31]. It is widely conceived that such 
events could trigger abnormal immunogenicity of β-cells and the loss of tolerance to 
pancreatic islets β-cell antigens which marks the onset of the autoimmune response[22,
24,27].

On the other hand, T2DM etiology involves weaker dependence on genetic factors 
and more correlation to life style factors[32]. The genetic risk factors predisposing to 
T2DM were outlined by genome-wide association studies as polymorphisms in TCFL2, 
ABCC8, CAPN10, PPAR, CDNKN2A/B, CDKAL1, and IGF2BP2 genes[33]. How- ever, 
the genetic susceptibility factor plays little role in the development of T2DM and again 
immunity related disorders play the leading role in the pathogenesis of the disease[9]. 
T2DM is generally characterized by a chronic low grade of inflammation arising from 
the immune response to hyperglycemia, aging, obesity and stress[7,34]. A growing 
mass of evidence suggests the involvement of both innate and adaptive immune-
responses in the inflammatory trajectory of T2DM. The diabetes related dysfunctions 
in adaptive immunity include decreased γδ-T cell function, increased inflammatory T-
helper phenotypes, decreased regulatory T-cells, and impaired B-cells function[7,35-
37]. On the other hand, T2DM innate response defects come with altered neutrophil 
function, increased pro-inflammatory M1 macrophages, abnormal natural killer cell 
phenotypes, and increased inflammatory dendritic cells[7,35,36,38]. It should be noted 
that systemic inflammation is less projected in T1DM due to stimulated production of 
IL-10 from dendritic cells which is reflected as low incidence of insulin resistance[7,
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Figure 1 Interplay between diabetes, infection and immunity.

36]. Moreover, an autoimmune response characterized by circulating autoantibodies 
has been increasingly recognized in many T2DM patients[35,36,38]. However, the 
autoimmune pathway differs in T1DM compared to T2DM, since autoimmunity in 
T2DM patients is more related to obesity-activated chronic inflammatory responses 
and β-cells fatigue[36,38].

MICROBIAL INFLUENCE ON DIABETES
Imbalance in gut microbiota and diabetes
The gut microbiota represents an ecosystem of trillions of inhabitants that co-exist in 
our gastrointestinal track in perfect balance with other body systems, actively 
engaging in a mutually beneficial relationship[39,40]. The formation of the gut 
microbiota starts in infancy and continues to develop and diversify throughout our 
lifetime[41]. The complex and dynamic population of the gut microbiota includes 
bacteria, fungi, protists, archaea, and viruses with bacteria comprising the vast 
majority in the gut population[42]. The composition of the gut microbiota is subjected 
to continuous alterations and development depending on age, diet, geographical 
distribution, infection history, antimicrobial treatments, medication regimen, stress 
and physical activity among many other parameters[43,44], leading to huge 
composition variability between individuals in a pattern that can resemble fingerprint 
uniqueness[45]. Indeed, the gut microbiota plays an undeniable role in many 
metabolic and immune related disorders e.g., metabolic syndrome, diabetes, inflam-
matory bowel diseases and obesity[46-48]. However, the exact contribution of gut 
microbiota to the pathophysiology of diabetes is widely variable due to the individual 
variations on the matter. That being said, a handful of gut microbiota members have 
shown repeated signals in multiple researches, where the results suggested some 
bacterial genus to impact protective effects against T2DM e.g. Bifidobacterium, Lactoba-
cillus, Bacteroides, Roseburia, Faecalibacterium, Clostridium cluster IV and subcluster XIVa 
and Akkermansia[49], such members were suggested as probiotics treatment with high 
association to improved glucose homeostasis and protection against T2DM, bearing in 
mind the importance of species-dependent variation in the result outcomes[49,50].

The suggested mechanisms for the protective effect of these bacterial groups against 
T2DM involves multiple pathways; observations have recorded an increase in the anti-
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inflammatory cytokines IL-10 and IL-22, enhanced T regulatory cell function, 
increased transforming growth factor-beta (TGF-β), suppressed intestinal inflam-
mation, decreased gut permeability and increased insulin sensitivity[49]. On the other 
hand, other bacterial genera were repeatedly associated with impaired glucose 
homeostasis and increased risk of obesity and diabetes e.g., Ruminococcus, Fusobac-
terium, Blautia and Firmicutes[49,51,52]. The involved mechanisms are not clearly 
elucidated; however, some studies suggested that the introduction of a dietary factor 
like gluten, unbalanced high fat diet or the reduction in gut pH can significantly 
increase the pro-diabetic bacterial population at expense of the balance and diversity 
in the gut microbiota[14], with many observations relating these effects to increased 
pro-inflammatory cytokines and induction of antigen-specific T cells-initiated 
destruction of the pancreatic β-cells in T1DM[14,16], increased bowel permeability[53], 
endotoxemia[54,55], and altered metabolism of bile acids[56,57]. Moreover, the shift in 
balance in the gut microbiota can lead to overgrowth of bacteria that has an increased 
capacity to harvest energy from the diet, such members of microbiota can boost energy 
uptake from diet by hydrolysing the undigested plant polysaccharides (cellulose, 
xylan and pectin) thus contributing to higher risk of obesity and subsequently higher 
risk of T2DM[58,59].

MICROBIAL INFECTIONS TRIGGER DIABETES
Many of the risk factors related to diabetes have been studied and identified like the 
genetic risk loci, obesity and stress among others. Nevertheless, the role of some 
microbial related events has been repeatedly outlined as potential triggers in both 
T1DM and T2DM. In the following segment we discuss examples of the identified 
microbial suspects in the etiology of diabetes.

One of the leading triggers of T1DM is believed to be an enterovirus infection by 
Coxsackievirus B (CVB), rotavirus, mumps or cytomegalovirus[60-62]. This idea was 
first conceived when an observation in the Finnish population, where the highest 
incidence of T1DM is reported, lead to linking the first signs of autoantibodies in 
genetically susceptible children to the seasonal pattern of enterovirus infections, 
especially by CVB-1[13,60]. Additionally, enteric infections by CVB-4 were repeatedly 
associated with pancreatic islets inflammation and infiltration mediated by β-cell 
specific autoantigens and subsequent β-cell apoptosis[62]. Another study has outlined 
the positive correlation between enterovirus (A) overpopulation in the gut and an 
autoimmune response in the pancreatic islets of genetically susceptible individuals
[63]. Some enterovirus can directly infect the β-cells via targeting specific pancreatic 
receptors such as the poliovirus receptor and integrin αvβ3, hence initiating an inflam-
matory autoimmune response[64,65]. This effect was clearer in some individuals who 
suffer a chronic viral induced β-cell inflammation that can be detected by tracing 
enteroviral major capsid protein VP1, enteroviral RNA and the over-expression of the 
major histocompatibility complex-1[12,66,67].

The association between hepatitis C virus (HCV) and T2DM was repeatedly 
studied; it is known that some extra-hepatic manifestations of HCV are related to 
impaired glucose homeostasis, decreased glucose uptake and increased insulin 
receptor damage[68,69]. Molecular investigations into the underlying mechanisms 
have revealed that HCV core protein enhances the production of reactive oxygen 
species (ROS) in the mitochondria and endoplasmic reticulum of hepatocytes. The 
accumulating oxidative stress results in propagating hepatic cirrhosis and fibrosis with 
impairment in liver mediated glucose homeostasis[70]. HCV core protein also activates 
serine phosphorylation with subsequent deterioration of insulin receptor substrate 
(IRS)-1 and consecutive blocking of insulin signal propagation at the insulin receptors
[68,71]. Additionally, the function of (IRS)-1 is further impaired due to degradation 
mediated by the inflammatory mediator tumour necrosis factor (TNF)-α[69,71]. 
Moreover, HCV induces gluconeogenesis, reduced glucose uptake and accumulation 
of lipid droplets via up-regulation of the enzymes glucose 6 phosphatase (G6P) and 
phosphoenolpyruvate carboxykinase 2 (PCK2), and down regulation of glucose 
transporters (GLUT)-2 and (GLUT)-4[68]. The preceding information leads to the 
general conclusion that treatment of HCV infection could impose improvement in 
glucose homeostasis and insulin resistance, that was indeed observed in patients 
receiving anti-HCV antiviral regimens as shall be discussed shortly.

In an epidemiological study, an inverse relationship has been established between 
the decreasing prevalence of helminth infections and the increasing prevalence of 
metabolic diseases as diabetes[9]. But the controversy about the influence of Helico-
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bacter pylori (H. pylori) bacteria on diabetes is more interesting. H. pylori, Gram-
negative bacteria, is the most common causative agent of peptic ulcer and chronic 
gastritis[72]. H. pylori infection persists in the gastric epithelium generating local and 
systemic inflammation induced by multiple mediators[73-76] in addition to molecular 
antigenicity which provokes autoimmune responses[77,78]. All of these abnormalities 
predispose to a storm of inflammatory manifestations that has been linked to multiple 
extra-gastrointestinal disorders such as diabetes, cardiovascular disease, metabolic 
syndrome, atherosclerosis, neurodegenerative disorders, idiopathic iron deficiency 
anemia and vitamin B12 deficiency[79]. The relation between H. pylori infection and 
diabetes was proposed and discussed multiple times with conflicting significances 
being presented. Multiple meta-analyses have established positive correlation between 
chronic H. pylori infections and T2DM with less significant correlation to T1DM[80,81]. 
The correlation was more obvious in studies performed on data from Asian, European 
and African cases, with contradictory results obtained from United States patients[80,
81]. There are two main proposed mechanisms for the diabetogenic effect of H. pylori: 
The diffuse inflammation stress induced by the infection and gastric hormones 
imbalance[82,83]. It can be expected that the pro-inflammatory environment caused by 
H. pylori would impact insulin receptors, leading to impaired insulin sensitivity. This 
hypothesis was confirmed in multiple studies that highlighted the positive correlation 
between H. pylori infections and insulin resistance[84,85]. Furthermore, one study 
reported that the presence of H. pylori antibodies was linked to 2.5 higher levels of 
insulin resistance[86]. H. pylori infection was also associated with higher incidence of 
chronic complications in T2DM patients, and associated with higher mean glycated 
hemoglobin (HbA1c), an indicator of chronic hyperglycemia in Prediabetic individuals
[75]. On the other hand, it was reported that eradication of H. pylori by antibiotic 
treatment courses was not associated with improved insulin sensitivity[87]. In 
addition to the inflammatory pathways connecting H. pylori to T2DM, a parallel 
hormonal mechanism was proposed; H. pylori infection was reportedly associated with 
imbalance in secretion of the gastric hormones, with increased secretion of gastrin and 
decreased secretion of ghrelin, leptin and somatostatin[83,88,89]. The H. pylori induced 
imbalance in these hormones was associated with impaired insulin release from 
pancreatic islets, increased appetite and fat deposition[90-92]. More studies are 
required to clarify the exact pathways for H. pylori triggered insulin resistance and the 
interactions between gastric hormone imbalance and insulin release from the 
pancreatic islets, by which H. pylori interferes with insulin release from the pancreatic 
islets.

DIABETES PROMOTES MICROBIAL INFECTIONS
The evidence of bidirectional link between diabetes and viral, bacterial, fungal, and 
parasitic infectious agents has been proven and extensively documented[9,10,93,94]. 
This bidirectional link between diabetes and infection is governed by the inflammatory 
mediators that link inflammation process and diabetes vulnerability to infection[9,10,
23]. In other words, diabetes augments the outcome of microbial infections and vice 
versa (Figure 2). As a consequence of diabetes, immune alterations would lead to (1) 
Increased activity of ROS; (2) Increased production of the pro-inflammatory mediators 
TNF-α, INF-γ, IL-1β, IL-6, IL-8, IL-12 and IL-17; (3) Reduced protective effect of the 
anti-inflammatory mediators interferon-1, IL-2, IL-10 and IL-22; (4) Reduced 
expression of cathelicidins in macrophage leading to impaired bactericidal activity and 
chemotaxis; and (5) Reduced glutathione and non-enzymatic glycation of complement 
factor thus inhibiting its activation[7,9,35,36,38]. Such ramifications are responsible for 
impaired function of the first line antimicrobial defense, higher susceptibility to 
pathogens and delayed healing[7,35]. Long term hyperglycemia will cause advanced 
glycation end (AGE) products of proteins such as AGE-albumin which hinders trans-
endothelial migration in macrophages[35].

Just as diabetes weakens both humoral and cellular immune responses, 
hyperglycemia can enhance the microbial virulence. Generally, diabetic patients with 
higher HbA1c (> 6.5%) are at higher risk of hospital-acquired and community-acquired 
infections and sepsis[10,95,96]. Elevated HbA1c represent a risk factor for bacteremia 
and sepsis in diabetic patients who suffer from urinary tract infections[96]. The 
increased susceptibility to E. coli infections is owed to glycation of E. coli fimbrial FimH 
adhesin which promotes the bacterial adhesion to urinary tract epithelial cells[97]. In 
periodontitis, diabetes enhances expression of IL-17 and increases pathogenicity of the 
oral microbiome[98]. In respiratory infections, the elevation of blood glucose in 
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Figure 2 Some proposed mechanisms for the effect of diabetes on enhancement of microbial infections. NF-κB: Nuclear factor kappa B; AGEs: 
Advanced glycation end; EPCs: Endothelial progenitor cells; ROS: Reactive oxygen species.

diabetic mice promotes the Staphylococcus aureus growth in the airways increasing the 
possibility of infection[99]. Moreover, the influences of diabetes on patient's immunity 
are considered in defensing mechanisms against mycotic, parasitic and viral infections. 
For instance, Candida spp. constitute the most frequent isolates from urogenital tract of 
hyperglycemic patients[100,101] and the severity of infection is in correlation with 
glucose level[102]. The adhesion of Candida spp is enhanced in presence of high 
glucose which increases the expression of intercellular adhesion molecule-1[103]. 
Diabetes changes the morphology of Leishmania major lesions[104] and particularly 
causes severe cutaneous Leishmania infantum lesions[105]. Chickenpox complications 
such as postherpetic neuralgia are more severe and persistent in diabetics[106], and 
T1DM vascular complications confers an additional virulence to herpes zoster[107]. 
The severity of liver damage is more observed in HCV patients with uncontrolled 
glucose levels[108].

In context with prominent effects of diabetes on both innate and adaptive immunity, 
diabetic patients are more susceptible than nondiabetics to all types of infections such 
as nosocomial infections[95], sepsis[10] tuberculosis[109-111], Legionella infections
[112], gum infections[113], fungal infections[114], dengue fever[115], influenza virus
[116], herpes zoster[106,117,118], and other infections reviewed in[9]. Moreover, the 
risk of post-sepsis infections increases due to alterations in innate and adaptive 
immune responses resulting in chronic inflammation and persistence of causative 
microbe[10,96]. As a consequence of impaired immunity, diabetic patients are prone to 
more aggressive, recurrent and life uncommon life-threatening infections[9,10,95,119,
120]. Conclusively, diabetes augments the bacterial virulence either by impairing the 
patient's immune responses or even by enhancing the invasion and spreading of 
bacterial[9,10,120,121].

Diabetes complications favor the microbial pathogenesis due to decreased blood 
supply to the affected areas and reduced neural sensation[122]. Furthermore, the 
development of resistance to antimicrobial agents is more common in diabetic patients 
as compared to nondiabetics[123]. The prevalence methicillin-resistant S. aureus[124-
126], vancomycin-resistant Enterococci, carbapenem-resistant Enterobacteria, extended-
spectrum β-lactamases-producing Enterobacteria, and non-fermenting Gram-negative 
bacilli are elevated in diabetic patients[9,120,127,128]. This is owed to the impaired 
immunity of diabetic patients which principally leads to increasing their susceptibility 
to infectious agents and failure in complete eradication of persistent infections, this 
results in more exposure to antimicrobial agents and subsequently higher risk of 
antimicrobial resistance. Examples for the antimicrobial resistance development in 
treatment of surgical infections and diabetic foot are tremendous and very serious as 
reviewed[9,10,120,129]. Although H. pylori is well known for its susceptibility to usual 
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therapy regimen, it resists eradication in diabetics which require specific modified 
antimicrobial regimen[130].

ANTIMICROBIALS WITH ANTI-DIABETIC ACTIVITY
Antimicrobial agents can induce multiple pharmacological effects beyond their 
lethality to invading pathogens; these effects can be reflected as metabolic changes 
which sometimes affect glucose homeostasis. Recently, it was shown that the exposure 
to antibiotics in childhood has been linked to increased risk of metabolic disorders 
later in life and associated with changes in development of pancreas[63]. Additionally, 
some antibiotics may alter the antidiabetic plasma levels; diabetic patients with 
tuberculosis were advised to take rifampicin and metformin with sufficient time 
interval[131]. Clarithromycin is another antimicrobial agent associated with severe 
hypoglycemia in diabetic patients receiving hypoglycemic medications, the risk 
increases with renal impairment and in elderly patients[132]. The suggested 
mechanism for clarithromycin induced hypoglycemia is the inhibition of the 
cytochrome-P450 enzyme which is responsible for metabolic inactivation of 
sulfonylurea or meglitinide hypoglycemics, this leads to increased plasma concen-
tration of these medications and subsequent hypoglycemia[133]. Similar hypoglycemic 
effects were reported for metronidazole which also inhibits CYP2C9 inhibitor which 
interferes with the metabolism of hypoglycemic agents[134]. It can be concluded from 
the above that clarithromycin and metronidazole don’t have a direct hypoglycemic 
effect, rather they increase the systemic concentration of sulfonylurea or meglitinide 
drugs as a result of the delay in their metabolism[134]. More considerably, some 
antibiotics impose disrupting effects on gut microbiota with alterations in the 
expression of their key metabolic pathways which influences both their response to 
antibiotics and the glucose metabolism[135-137]. In addition to the above mentioned 
indirect hypoglycemic effects of some antimicrobial agents, others have showed direct 
hypoglycemic effects. In the next paragraphs we will give a glance at some of these 
drugs.

Sulfonamides are of the oldest known antimicrobial agents. During their long use, 
clinical observations revealed other clinical effects of sulfonamides including anti-
carbonic anhydrase, anti-obesity, diuretic, hypoglycemic, antithyroid, antitumor, anti-
neuropathic and anti-inflammatory activities[138]. The hypoglycemic activity of some 
sulfonamides received the most attention from the mid-20th century scientists, it was 
concluded that sulfonylureas have the best hypoglycemic activity through stimulating 
insulin secretion from pancreatic β-cells and decrease in hepatic clearance of insulin
[139]. Further investigations into the hypoglycemic effects of sulfonylureas lead to the 
development of first and second generations of hypoglycemic sulfonylureas which 
constitute an important group of anti-diabetic agents that are still widely used today 
for the treatment of T2DM[140]. It was repeatedly advised to be cautious while 
combining sulfonamides with other hypoglycemic agents due to the synergistic effects 
that can lead to life threatening hypoglycemia, which is more common in case of 
elderly and renal dysfunction patients[141-143].

Fluoroquinolones represent a group of broad-spectrum antimicrobial agents that are 
widely used for treatment of respiratory tract and urinary tract infections. Despite the 
fact that this group has outstanding antimicrobial efficiency against a wide range of 
infections, they suffer from serious risk factors like the significant risk of aortic 
aneurysm, neuropathy, tendinopathy, and interference with glucose homeostasis[127,
144,145]. Fluoroquinolones can induce life threatening hypoglycemia in diabetic 
patients, and dysglycemia in nondiabetic individuals. The suggested mechanism of 
hypoglycemia is via blocking the ATP-sensitive K+ channels in the pancreatic β-cell in 
the pancreas which boosts insulin secretion, however the mechanism behind the 
hyperglycemic effect is unclear[146]. The FDA repeatedly reported the high risk of 
dysglycemia associated with different members of fluoroquinolones. The multiple 
reports of severe hypo- and hyperglycemic clinical observations were the reasons 
behind the withdrawal of oral and systemic gatifloxacin preparations from the markets 
in 2006[147].

Hydroxychloroquine is an antimalarial drug that shows additional anti-inflam-
matory, immunomodulatory, anti-rheumatic and hypolipidemic activities. Hydroxy-
chloroquine is also known to exert a significant hypoglycemic effect[148]. The exact 
mechanism of the hypoglycemic effect is not known; however, it is suspected to 
increase insulin receptors sensitivity, decrease hepatic clearance of insulin and reduce 
systemic inflammation[148-150]. Benzimidazoles are group of medications mostly 
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used as anti-helminthic. It was reported that they have hypoglycemic activity 
mediated by augmenting insulin secretion and activity[151,152].

Telaprevir is a protease inhibitor effective against HCV genotype 1. Some studies 
reported the development of hypoglycemia in diabetic patients receiving the antiviral 
telaprevir treatment course. One case study reported a female diabetic patient with 
obesity and HCV-related cirrhosis. She was given triple antiviral treatment by 
interferon-α, ribavirin and telaprevir. During the course of treatment multiple episodes 
of severe hypoglycaemia were recorded, however this effect disappeared after course 
completion which drove the general conclusion that telaprevir could impose a 
hypoglycemic effect[153]. Similar conclusions were obtained from another case study 
of a male diabetic patients receiving anti-HCV triple treatment with interferon, 
ribavirin and boceprevir. The study reported reversal of diabetes and termination of 
the anti-diabetic treatment after the successful viral treatment. The study suggests a 
relation between HCV and diabetes and possible reversibility of glucose abnormalities 
with successful eradication of HCV[154]. Two years later, similar outcomes were 
reproducible with another diabetic male also receiving triple HCV treatment in 
addition to anti-diabetic regimen including insulin and metformin. After the successful 
antiviral treatment, the patient was able to gradually withdraw insulin from his anti-
diabetic treatment regimen and continued only the oral hypoglycemic linagliptin. This 
study weighs on the possibility of reduced glucose imbalance and even reversal of 
diabetes as an unexpected outcome after the antiviral treatment, the study attributes 
the improved glucose homeostasis due to retained normal functions of the liver after 
the termination of the viral infection[155]. Similar conclusions were reached in another 
retrospective study that included 65 diabetic patients subjected to the anti HCV triple-
treatment including sofosbuvir, the results indicated improved blood glucose levels in 
all enrolled cases after the antiviral treatment as a result of retained normal liver 
activity[156].

ANTI-DIABETICS WITH ANTIMICROBIAL ACTIVITIES
Just as there are antimicrobials that can induce dysglycemia, some anti-diabetic can 
alter the antibacterial metabolism[157]. Searching into new fields for application of 
currently approved medicinal drugs, scientists have been more interested in drug 
repurposing as an elegant strategy for applying maximum use of already approved 
medicinal agents[158,159]. The benefits may be augmented by repurposing routinely 
used anti-diabetics as antimicrobial agents, this decreases the dose and number of 
administrated drugs that results in saving time and cost, decreasing the drug-drug 
interactions and enhancing the patients’ compliance with the applied treatment 
regimens.

Likewise, most of the commonly used anti-diabetic agents offer additional anti-
inflammatory activity as a favorable side effect during the treatment; the anti-inflam-
matory properties of glitazones, metformin, sulfonylureas and Dipeptidyl peptidase 
(DPP)-4 inhibitors were authenticated and appraised. The hypoglycemic effect of these 
agents is usually associated with decreased oxidative stress, decreased pro-inflam-
matory and increased anti-inflammatory mediators[160].In this context, it is highly 
valuable to clearly identify anti-diabetic agents that have additional antimicrobial 
activity, which is considered an interesting and promising area of active research[18,
19]. During this search, we are interested in projecting the antimicrobial activities of 
some anti-diabetics (Table 1).

INSULIN
Insulin is a peptide hormone produced by β-cells of the pancreatic islets. It regulates 
glucose metabolism in all body cells[161]. Yano et al[162], showed the antibacterial 
activity of insulin on surgical site S. aureus infection via restoring neutrophil 
phagocytosis and bactericidal activity[162]. In 1946, Bollenback and Fox[163] showed 
the antibacterial activity of protamine zinc insulin against Lactobacillus arabinousus, S. 
aureus and E. coli. they owed the antibacterial activity to the additive protamine 
sulphate not to insulin itself[163]. Similar conclusion was derived from another study 
performed on commercial U.S.P. insulin, the bactericidal activity against Staphylococcus 
epidermidis, S. aureus and E. coli was secondary to the preservatives placed in the 
insulin and not to the insulin itself[164]. In general, most studies suggest that insulin 
doesn’t have a direct antimicrobial effect, rather an indirect antimicrobial effect can be 
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Table 1 Examples of antimicrobial activities of some antidiabetic drugs

Antidiabetic drug Antimicrobial activity Proposed mechanism Ref.

Antibacterial Activation of the AMPK-mediated phagocytosis and production of 
mROS

[170] 

Disruption of the outer membrane permeability [170]

Down regulation of the Q.S encoding genes and mitigate the 
bacterial virulence

[19,186] 

Anti-TB Increasing the production of β-defensin-2, -3 and -4 which diminish 
bacterial growth and multiplication

[178]

Inhibition of mitochondrial complex-I which is analogous to 
mycobacterial NDH-I complex

[176]

Metformin

Activation of T regulatory and CD8 memory T cells responses 
activity

[177]

Antibacterial Downregulation of the Q.S encoding genes, occupy the Q.S 
receptors and diminish bacterial virulence

[18,19,186]

Reduction of the inflammation intensity [190,191]

Targeting viral proteins [192]

Anti-COVID-19

Binding to viral spikes [193]

Sitagliptin

Antibiofilm Targeting enzyme XPDAP, analogous to mammalian enzyme DPP 
IV

[187]

Antibiofilm Targeting enzyme XPDAP, analogous to DPP IV [187]Vildagliptin 

Anti-amoebic - [188]

Saxagliptin Antibiofilm Targeting enzyme XPDAP, analogous to DPP IV [187]

Pioglitazone Antibacterial Increasing phagocytosis and production of reactive oxygen species 
in phagocytes

[197,198]

Tolbutamide Antibacterial and antifungal - [205] 

Antifungal Inhibition of the NLRP3 inflammasome [206] 2nd generation sulfonylureas

Antibacterial Prevention of inflammasome effector IL-1β [207]

Glimepiride Anti-amoebic - [188]

Repaglinide Anti-amoebic - [188]

Glucagon-like Peptide-1 In HIV treatment Reduction of HIV-associated metabolic adverse effects [212]

Antibacterial Targeting bacterial glucosidase [220]α-glucosidase inhibitors

Antiviral and anti-COVID Alter glycosylation in viral life cycle [221]

mROS: Mitochondrial reactive oxygen species; IL: Interleukin; AMPK: Adenosine monophosphate-activated protein kinase; XPDAP: X-prolyl dipeptidyl 
peptidase; Q.S: Quorum sensing; COVID-19: Coronavirus disease 2019; HIV: Human immunodeficiency virus.

expected due to the adjustment of hyperglycemia and relief in inflammation and 
oxidative stress. It is noteworthy to highlight the intrinsic anti-inflammatory nature of 
insulin as opposed to the inflammatory downfalls of hyperglycemia, additionally 
insulin promotes protein and lipid biosynthesis thus improving wound healing. 
Moreover, insulin induces the expression of the anti-inflammatory cytokines IL-4/IL-
13, IL-10 and down regulates the pro-inflammatory cytokines IL-6 and IL-10[17,165]. 
However, research groups are invited to further investigate the insulin effects on 
microbial growth and virulence.

BIGUANIDE (METFORMIN) 
Metformin is a hypoglycemic drug used as first line treatment in T2DM. The 
hypoglycemic activity is owed to the suppression of hepatic glucose production, the 
reduced intestinal absorption of glucose and the increase in peripheral glucose uptake, 
however, the exact molecular mechanism of metformin is still the focus of active 
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research[166]. Metformin also showed multiple beneficial effects that extend beyond 
diabetes control, with increasing studies referring to anti-inflammatory, cardio- and 
nephro-protective, anti-proliferative, antifibrotic and antioxidant effects. Moreover, 
metformin was suggested as an anti-aging compound with promises of increased 
lifespan and delayed onset of aging-associated diseases[167-169]. The repurposing of 
metformin extended to explore its antimicrobial activity, which also presented 
promising antimicrobial effects. A late study has shown the ability of metformin to 
restore tetracycline susceptibility in multidrug resistant strains of S. aureus, Entero-
coccus faecalis, E. coli, and Salmonella enteritidis both in vivo and in vitro. The study 
proposed the disruption of outer membrane permeability in resistant bacteria as a 
mechanism for reversing the bacterial intrinsic resistance to tetracyclines. Furthermore, 
the study reported that metformin imposed anti-inflammatory and improved innate 
immunity responses due to activation of the adenosine monophosphate-activated 
protein kinase (AMPK)-mediated phagocytosis and production of mitochondrial ROS 
(mROS)[170]. Metformin is associated with reduced serum levels of C reactive protein 
(CRP) and monocyte release of TNF-α, IL-1β, IL-6, MCP-1, and IL-8 in pre-diabetic 
patients[171]. Another study reported elevated bactericidal and anti-inflammatory 
outcomes upon combining metformin with photodynamic therapy for the treatment of 
chronic resistant periodontitis[172].

The antibacterial activity of metformin also attracted the attention of scientists as an 
adjuvant in tuberculosis (TB) treatment regimens[173]. Meta-analysis studies revealed 
reduced mortality rates and improved treatment outcomes in diabetic patients 
subjected to anti-TB regimen combined with metformin as anti-diabetic drug, also 
metformin administration was linked to reduced risk of TB disease among diabetics
[174,175]. One suggested explanation was based on the fact that metformin is an 
inhibitor of mitochondrial complex-I which is analogous to mycobacterial NDH-I 
complex, hence giving the way for another mechanism of bactericidal activity of 
metformin[176]. Another study suggested that metformin had an immunomodulating 
effect by activating T regulatory and CD8 memory T cells responses activity leading to 
decreased pro-inflammatory responses which is reflected as reduction in lungs’ lesions
[177]. In another study, metformin was observed to reduce TB bacilli load in lung 
epithelial cells in relation to increased production of β-defensin-2, -3 and -4 which 
restrain bacterial growth and multiplication[178]. Contrary to expected, metformin has 
an enrichment rather than inhibition effect on gut microbiota, shifting the balance 
towards more short chain fatty acids-producing bacteria which are reported to confer 
protection against inflammation, maintain intestinal barrier integrity and augment 
insulin production from b-cells due to stimulation of glucagon-like peptide 1 (GLP-1) 
secretion[179,180].

In recent studies, the anti-virulence effects of metformin have been extensively 
studied. Significantly, metformin mitigated the virulence of Pseudomonas aeruginosa in-
vitro[19,181]. It reduced the production extracellular virulence enzymes such as 
protease, elastase and hemolysin and inhibited bacterial motility and biofilm 
formation. The anti-virulence activity of metformin was owed to its ability to 
downregulate the quorum sensing (Q.S) encoding genes[19]. Q.S is a process uses 
chemical language by which bacterial populations can communicate. This intercellular 
communication is performed through signaling molecules produced by bacterial cell 
called autoinducers that are detected by receptors on another cell. The Q.S signaling 
system controls various virulence factors and physiological functions in both Gram-
positive and Gram-negative bacteria. Q.S targeting has been proposed as an effective 
strategy to cripple the bacterial virulence[18,182,183]. Despite the in vitro metformin 
success in mitigation of Q.S, it failed to confer the protection to mice from P. aeruginosa. 
The in vivo failure of metformin was owed to its chemical nature which changed by the 
change of pH during bacterial growth, these changes hinder the complete blocking of 
Q.S receptors by metformin molecule[19]. Taking in consideration that metformin was 
not tested in combination with other antibiotics and was used in sub-MIC concen-
trations (10 mg/mL) which can be increased to enhance its efficacy, we encourage 
research group for further investigation of anti-virulence effects of metformin.

DPP-IV INHIBITORS (GLIPTINS)
Gliptins are oral hypoglycemic medications used for management of T2DM, they act 
by selective inhibition of DPP-IV leading to increased plasma GLP-1 and 
gastrointestinal insulinotropic peptide (GIP) levels, hence increased β-cell activity and 
suppression of glucagon secretion[184]. The alteration effects of gliptins on the 
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composition of gut microbiota developed functional shifts in the microbiome, that 
improves the glucose homeostasis[185]. Interestingly, DPP-4 inhibitors are associated 
with reduced inflammatory effects in adipose tissue and pancreatic islets through 
reduced expression of inflammatory cytokines and adjusted macrophage activity[171]. 
Among the thirteen members of gliptins, sitagliptin has an attractive chemical 
structure that may antagonize the Q.S receptors, plus it is the most prescribed gliptin. 
Hegazy et al[186], investigated the sitagliptin effects on the virulence behavior of 
Serratia marcescens. Interestingly, sitagliptin showed a significant capability of 
quenching the bacterial virulence both in vitro and in vivo via significant downregu-
lation of the virulence encoding genes[18,186]. These findings encouraged us to further 
investigate another gliptin member: Vildagliptin in comparison to sitagliptin on 
virulent Pseudomonas aeruginosa[18,181]. Despite the marked downregulation effect of 
both vildagliptin and sitagliptins on Q.S encoding genes, vildagliptin failed to attain 
significant inhibition of bacterial virulence in vitro and in vivo as compared to the 
effects of sitagliptin. Docking studies provided us with the satisfying explanation that 
sitagliptin structure offers better fitting onto Q.S receptors as compared to the weak 
association of vildagliptin on the same receptors. We hypothesized that the anti-
virulence or anti-Q.S activity of sitagliptin is not only due to its down regulation of 
responsible genes, but also due to its ability to block the Q.S receptors[19].

The potent competitive inhibition of bacterial virulence determinants of other 
bacterial species by sitagliptin and other gliptins were demonstrated (unpublished 
data). In a separate work, saxagliptin, vildagliptin and sitgliptin decreased ex vivo the 
biolm formation by dental caries causing odontopathogen Streptococcus mutans. As 
bacterial enzyme X-prolyl dipeptidyl peptidase (XPDAP) is analogous to mammalian 
enzyme DPP-IV, it was hypothesized that anti-protease activity of gliptins may affect 
XPDAP and bacterial growth[187]. In a separate prospect, vildagliptin reduced the 
numbers of viable Acanthamoeba castellanii that causes fatal granulomatous amoebic 
encephalitis. The amoebicidal activity of vildagliptin was significantly enhanced when 
formulated as vildagliptin-conjugated silver nanoparticles[188]. Surprisingly, some 
studies linked between reduction in COVID-19 mortality rates and treatment with 
sitagliptin[189]. Gliptins, especially sitagliptin, reduced the inflammation intensity and 
may control cytokine storms mostly via nuclear factor kappa B signaling pathway[190,
191]. Nevertheless, cheminformatics suggested sitagliptin as anti-severe acute 
respiratory syndrome coronavirus-2 (SARS-CoV-2)[192] as a result of the expected 
potential molecular binding between sitagliptin and viral spikes[193]. Nar et al[194], 
showed the ineffectiveness of gliptins against SARS-CoV-2 protease[194]. An 
enzymatic assay was performed to measure the sitagliptin, linagliptin, alogliptin and 
saxagliptin inhibitory effects on catalytic activity of SARS-CoV-2 main protease Mpro, 
significantly tested gliptins were inactive. They owed this inactivity due to lack of 
apparent structural similarity between Mpro and DPP-IV[194]. Regardless of the 
controversy about the efficacy of gliptins as anti-COVID-19, more investigations are 
required to explore whether gliptins harbor anti-viral activity or not. That being said, 
we consider gliptins in general and sitagliptin in particular to be promising targets for 
drug repurposing as bacterial anti-virulence agents.

GLITAZONES 
Thiazolidinediones (TZDs), also known as glitazones, are a group of oral 
hypoglycemic agents used in T2DM. Glitazones work by restoring insulin sensitivity 
through the selective activation of the nuclear receptor peroxisome proliferator-
activated receptor gamma (PPAR-γ) which controls the transcription of genes 
regulating glucose and lipids metabolism[195]. Glitazones also exert anti-inflam-
matory effects through suppression of IL-6 and reduction in circulating CRP levels
[196]. One study reported direct impact of TZDs via increasing phagocytosis by liver 
recruited macrophages, increased production of ROS in phagocytes and decreased 
serum pro-inflammatory cytokines (TNF-α, IL-12, IFN-γ)[197]. It was shown that 
pioglitazone has antibacterial activity against Streptococcus pneumoniae, E. coli and 
Klebsiella pneumoniae. Moreover, pretreatment of bacteria with a suboptimal concen-
tration of pioglitazone enhanced the antibacterial activity of some antibiotics[198]. In 
another study, pioglitazone was used as an adjuvant to amphotericin B to ameliorate 
cryptococcosis in a murine model, that may indicate its promising application as an 
adjuvant for controlling fungal infection[199]. Interestingly, thiazolidinedione nucleus 
is present in several antimicrobial compounds, e.g., antibacterial, anti-mycobacterium, 
anti-malarial and antiviral, which was reviewed[200]. However, the mechanism of the 
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antimicrobial activity is not fully understood since prokaryotes lack the PPAR-γ 
receptor which is the target site for glitazones, the antibacterial activity of glitazones 
may be owed to thiazolidinedione nucleus[197,200]. Although there are no deep 
studies on the antimicrobial or anti-virulence activities of glitazones, we predict that 
their antimicrobial activities are owed to thiazolidinedione nucleus.

SULFONYLUREAS AND MEGLITINIDES
Sulfonylureas antidiabetic drugs stimulate insulin secretion from the pancreatic β-cells, 
they bind to ATP-sensitive K-channels in the β-cell membrane, depolarizes the cells 
and open voltage-gated Ca2+ channels that results in insulin release. Sulfonylureas 
anti-diabetics, especially the second generation, are widely used in the management of 
T2DM[201]. Multiple antidiabetic sulfonylurea derivatives showed significant bacter-
icidal[202,203] and fungicidal activities[203,204]. The first generation of sulfonylurea 
antidiabetic tolbutamide analogues were screened for their antibacterial and 
antifungal activities, they showed activity against S. aureus, E. coli, Pseudomonas 
aeruginosa, Bacillus subtilis and C. albicans[205]. Interestingly, Lowes et al[206], and 
others suggested repurposing the secondgeneration sulfonylurea anti-diabetics 
(glyburide, glisoxepide, gliquidone, and glimepiride) to treat fungal and bacterial 
infections[206-208]. They demonstrated the sulfonylurea anti-diabetics capability to 
inhibit activation of the NLRP3 inflammasome in various disease models such as 
vaginal candidiasis[206] and Burkholderia pseudomallei infection (melioidosis)[207]. 
Sulfonylureas were reported to decrease M1 macrophage activity and reduce IL-1β 
synthesis, pioglitazone is a direct PPAR-γ inhibitor that reduces adipose tissue inflam-
mation[171]. It was supposed that sulfonylurea anti-diabetics prevent the release of 
major inflammasome effector IL-1β. Considerably, sulfonylurea anti-diabetics lack 
antimicrobial activity against C. albicans or Burkholderia pseudomallei and their anti-
inflammatory activity was not specific to microbial infections, that means the 
possibility of repurposing these drugs against infectious and other immunopatho-
logical diseases[206,207]. Moreover, glimepiride was repurposed as amoebicidal agent, 
it decreased the numbers and encysts of Acanthamoeba castellanii[188].

Meglitinides mechanism of action closely resembles that of the sulfonylureas, they 
stimulate the insulin release from the pancreatic β-cells. Meglitinides are used orally 
and comprise nateglinide and repaglinide[209]. Unfortunately, there is a shortage in 
reports discussing the meglitinides' effects on both immune system and microbes. One 
study, the anti-amoebic activity of repaglinide was assessed against Acanthamoeba 
castellanii. It showed significant amoebicidal activity comparable to vildagliptin and 
glimepiride[188].

GLP-1 AGONISTS
Gut enteroendocrine cells release GLP-1 to control the meal related hyperglycemia 
through inhibition of glucagon and enhancement of insulin secretions. GLP-1 receptor 
agonists or incretin mimetics such as exenatide, liraglutide and albiglutide are used for 
the treatment of T2DM[210]. Liraglutide can lead to wight loss by changing the overall 
composition of gut microbiota as well as the relative abundance of weight-relevant 
phylotypes[211]. Generally, the hypoglycemic effects of GLP-1 agonists improve the 
immune status in diabetic patients to counteract the microbial infections. The 
associated metabolic activities of these drugs may be helpful in the treatment of 
human immunodeficiency virus (HIV)-associated metabolic adverse effects[212], and 
PEGylated exendin-4 has the potential to treat sepsis[213].

SODIUM-GLUCOSE COTRANSPORTER-2 INHIBITORS
Sodium-glucose cotransporter-2 (SGLT-2) inhibitors, represented by canagliflozin, 
empagliflozin and dapagliflozin, are hypoglycemic agents that work by increasing 
renal clearance of glucose through decreasing the renal tubular glucose reabsorption, 
hence reducing blood glucose level[214]. The interaction between SGLT-2 inhibitors 
and antibiotics is bidirectional, while the pharmacokinetic profile of SGLT-2 inhibitors 
may be influenced by co-administration of some antibiotics as rifampicin[215], they 
confer protection from gentamicin induced nephrotoxicity[216]. There are no reports 
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documenting direct anti-microbial activities of SGLT-2 inhibitors. On the other hand, 
SGLT-2 inhibitors associated glucosuria increases the risk of urogenital infections 
especially in postmenopausal women with T2DM[217].

α-GLUCOSIDASE INHIBITORS AND AMYLIN ANALOGS
α-glucosidase inhibitors (AGI) reversibly bind to oligosaccharide binding sites of 
glucosidase enzymes, resulting in delaying the polysaccharide degradation to glucose, 
slowing down the food digestion and decrease blood glucose levels after meals[218]. 
Amylin analogs such as pramlintide affect glucose levels via several mechanisms, 
including slowed gastric emptying, regulation of postprandial glucagon, and 
reduction of food intake[219]. It has been hypothesized that the interaction capabilities 
of AGI to glucosidase enzymes may be beneficial in targeting bacterial glucosidase
[220] and altering glycosylation in viral life cycle, showing anti-viral activity against 
HIV, HBV and COVID-19[221]. However, we shortage in reporting antibacterial or 
antiviral activities of used antidiabetic AGI like acarbose, several studies indicated the 
antibacterial, anti-biofilm[222] and antifungal[223] activities of other similar AGI.

CONCLUSION
The relationship between diabetes, immunity and infection is complicated and bidirec-
tional in most cases. This fact is clearly presented in the tangled interactions between 
diabetes and immunity disorders where each can potentially contribute to the other in 
a kind of “the egg or the chicken” dilemma. On a parallel basis, antimicrobial and anti-
diabetic agents showed a grey area of overlapping activities that should be subjected 
to further investigations. It would be of great value to submit such information into 
practical applications by refining the currently used anti-diabetic regimens to include 
the anti-diabetic agents which offer antimicrobial protection as an accessory benefit. 
The systematic application of this approach would minimize the wide margins of 
morbidity and mortality usually associated with diabetes, in addition to reduced 
treatment costs and overall better treatment outcomes. In this review, we tried to 
aggregate the available information which would support this approach in addition to 
highlighting the proved antimicrobial activities of multiple anti-diabetic agents. By 
putting this information in the hands of clinicians and researchers, more attention can 
be paid during selection of the treatment options in order to offer diabetic patients the 
best outcomes and help in better containment of the emerging statistics of the diabetes 
pandemic.
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