Skip to main content
. 2021 Nov 21;27(43):7480–7496. doi: 10.3748/wjg.v27.i43.7480

Table 1.

Comprehensive list of artificial intelligence-based investigations in pancreatic ductal adenocarcinoma

Ref.
Modality
Type of algorithm
Sensitivity (%)
Specificity (%)
ROC-AUC (or accuracy %)
PDAC risk prediction
Boursi et al[25], 2021 7 clinical variables Logistic regression 66.53 54.91 0.71
Appelbaum et al[29], 2021 18 risk factors Logistic regression NA NA 0.71
Muhammad et al[30], 2018 Personal health data (18 features) ANN 80.7 80.7 0.85
Hsieh et al[28], 2018 ICD-9 code Logistic regression NA NA 0.727
Boursi et al[26], 2017 10 clinical variables Logistic regression 44.7 94 0.82
Cai et al[27], 2011 5 clinical variables Logistic regression NA NA 0.72
Early diagnosis of PDAC
Zhang et al[34], 2020 Nine-gene signature Support vector machine 98.65 100 93.3
Zhang et al[83], 2020 CT DCNN 83.76 91.79 0.9455
Si et al[42], 2021 CT Fully end-to-end deep learning 86.8 69.5 0.871
Liu et al[54], 2020 CT CNN 79 (United States) 97.6 (United States) 0.920 (United States)
Ma et al[84], 2020 CT CNN 98.2 91.6 95
Chu et al[85], 2019 CT Deep learning (details are NA) 94.1 98.5 NA
Liu et al[53], 2019 CT CNN NA NA 0.9632
Tonozuka et al[86], 2021 EUS CNN 90.2 74.9 0.924
Ozkan et al[87], 2016 EUS ANN 83.3 93.3 87.5
Săftoiu et al[88], 2015 EUS ANN 94.64 94.44 NA
Zhu et al[63], 2013 EUS Support vector machine 92.52 93.03 NA
Zhang et al[62], 2010 EUS Support vector machine 94.32 99.45 NA
Das et al[61], 2008 EUS ANN 93 92 0.93
Săftoiu et al[89] 2008 EUS elastography NN 91.4 87.9 89.7
Norton et al[60], 2001 EUS NN 73 NA 83
Alizadeh Savareh et al[40], 2020 Circulating microRNA signatures PSO + ANN + NCA 93 92 93
Urman et al[90], 2020 Bile juice NN 88 100 0.98
Pancreatic fistula after pancreaticoduodenectomy
Kambakamba et al[71], 2020 CT k-NN, random forest classifier, etc 96 98 0.95
Mu et al[72], 2020 CT CNN 86.7 87.3 0.89
Pathological tumor response to neoadjuvant chemotherapy
Watson et al[80], 2020 CT and CA19-9 CNN NA NA 0.785
Survival model
Zhang et al[77], 2020 CT CNN NA NA 11.81% in IPA
Alizadeh Savareh et al[40], 2020 Circulating microRNA signatures PSO + ANN + NCA NA NA NA
Kaissis et al[66], 2019 MRI Random forest 87 80 0.90
Walczak et al[79], 2017 14 clinical variables ANN 91 38 0.6576
Molecular subtype
Kaissis et al[68], 2020 CT Random forest 84 92 0.93
Tumor subtype (QM vs non-QM)
Kaissis et al[67], 2019 MRI Gradient boosting decision tree 90 92 0.93
Molecular subtype (KRT81 positive vs negative)
Microsatellite instability status
Li et al[19], 2020 PreMSIm (15-gene signature) k-NN 85 97 95

AI: Artificial intelligence; PDAC: Pancreatic ductal adenocarcinoma; NA: Not available; ROC-AUC: Area under the receiver operating characteristic curve; ICD-9: International Classification of Diseases 9th Revision; ANN: Artificial neural network; CT: Computed tomography; DCNN: Deep convolutional neural network; EUS: Endoscopic ultrasound; NN: Neural network; CA19-9: Carbohydrate antigen 19-9; IPA: Index of prediction accuracy; MRI: Magnetic resonance imaging; QM: Quasi-mesenchymal; PSO: Particle swarm optimization; NCA: Neighborhood components analysis; k-NN: k-Nearest neighbor.