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Abstract
Viral B and C hepatitis are a major current health issue, both diseases having a 
chronic damaging effect on the liver and its functions. Chronic liver disease can 
lead to even more severe and life-threatening conditions, such as liver cirrhosis 
and hepatocellular carcinoma. Recent years have uncovered an important 
interplay between the liver and the gut microbiome: the gut-liver axis. Hepatitis B 
and C infections often cause alterations in the gut microbiota by lowering the 
levels of ‘protective’ gut microorganisms and, by doing so, hinder the microbiota 
ability to boost the immune response. Treatments aimed at restoring the gut 
microbiota balance may provide a valuable addition to current practice therapies 
and may help limit the chronic changes observed in the liver of hepatitis B and C 
patients. This review aims to summarize the current knowledge on the anato-
functional axis between the gut and liver and to highlight the influence that 
hepatitis B and C viruses have on the microbiota balance, as well as the influence 
of treatments aimed at restoring the gut microbiota on infected livers and disease 
progression.
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Core Tip: We have provided an overview of the mechanisms involved in the 
immunomodulation of the gut-liver axis. We highlight the mechanisms by which 
hepatitis B virus and hepatitis C virus infections influence the microbiota and how in 
turn these changes affect the liver pathology. We have also looked at the current 
treatment options and their influence on the intestinal microflora.
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INTRODUCTION
Viral B and C hepatitis are two types of infections with a high rate of morbidity and 
mortality[1]. Hepatitis B virus (HBV) is a DNA virus belonging to the Hepadna virus, 
and hepatitis C virus (HCV) is an RNA virus in the Flaviviridae family. These viruses 
have hepatic tropism, are non-cytopathic with the ability to cause chronic liver inflam-
mation and even liver cirrhosis and hepatocellular carcinoma[2].

Both HBV and HCV may cause similar clinical manifestations. Some patients may 
be asymptomatic, while others may have mild signs and symptoms from general 
manifestations (fatigue, fever, loss of appetite) to gastrointestinal symptoms 
(abdominal pain, nausea, vomiting, jaundice)[3].

The microbiota represents the totality of microbes (bacteria, viruses, fungi, 
protozoans, and archaea) associated with the human microorganism, while the 
microbiome consists of all microbes and their genes[4]. The main part of the body 
colonized by microbes is the gastrointestinal tract, whereas other parts such as skin, 
airways, vaginal tract, etc. are also colonized, but to a lesser extent. Changes in the 
microbiota are continuous throughout our life and there are many influencing factors, 
from type of delivery and breastfeeding, to long-term dietary changes, frequent and 
prolonged antibiotic treatment or other medications, etc.[5]. There are six bacterial 
dominant phyla in the gut microbiota: Firmicutes and Bacteroidetes (90%), Pro-
teobacteria, Actinobacteria, Fusobacteria and Verrucomicrobia[6]. The intestinal microbiota 
is a cornerstone in maintaining the homeostasis of the human body. Firstly, this 
"organ" provides nutrients and energy from ingested food and, secondly, it is able to 
produce important metabolites that play a role in maintaining the host's metabolism
[7].

The liver can be considered the largest immune organ in the body with a high 
ability to select and activate immune cells in response to metabolic products in the gut 
or to signals sent by various pathogens[8]. Recent years have seen advances in our 
understanding of the human microbiome and its interaction with us as hosts. The gut-
liver axis is part of these new discoveries, integrating the microbiome modifications 
and dysbiosis in hepatic pathologies.

Our review will discuss part of the mechanisms by which the microbiome 
influences host immunity, as well as the gut-liver axis, with an accent on viral hepatitis 
B and C.

MICROBIOTA AND THE IMMUNE SYSTEM
Through its products, the human microbiota can influence both the local, enteric, and 
the systemic immune system, dysbiosis being correlated with several autoimmune, 
metabolic and neurodegenerative diseases (inflammatory bowel disease progression, 
rheumatoid arthritis, diabetes, asthma and bones homeostasis)[9-15]. This shows that 
the microbiota is not only involved in intestinal, but also in systemic and organ specific 
pathologies. This relationship is bidirectional; systemic modifications can trigger 
intestinal changes, but also intestinal dysbiosis can trigger and maintain organ 
dysfunctions. Gut-associated lymphoid tissue (GALT) is an important "immunological 
organ" of the body that belongs to the gut-mucosal immune system. GALT consists of 
Peyer's patches, intraepithelial lymphocytes, lamina propria lymphocytes (including 
dendritic cells) and mesenteric lymph nodes. Activation of this system has the ability 
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to produce various mediators with immunostimulatory or immunosuppressive effect
[16].

Some of the products by which the intestinal microflora communicates with the rest 
of our organism are lipopolysaccharides (LPS), bacterial DNA and RNA, flagellin, 
short-chain fatty acids (SCFA) such as acetate, propionate and butyrate, tryptophan 
(Trp) and it’s metabolites, teichoic acid and peptidoglycans and secondary bile acids 
(BA)[9,17]. These bacterial components and products of the bacterial metabolism are 
recognized by pattern recognition receptors, which particularly include the toll-like 
receptors (TLR) family. TLRs are expressed on epithelial and immune cells and are 
capable of recognizing specific bacterial molecules, triggering specific local protective 
and immunomodulatory (both pro- and anti-inflammatory) responses[18,19]. TLR 
activation is an essential element of the innate immune systems fight against the HBV 
and HCV infections[20,21]. Not all of these pathways were studied directly in 
connection with HBV and HCV. Therefore, more studies are needed to determine the 
exact relationship between the bacterial products, the immune system and hepatitis.

We will briefly mention some of the most important of the microbial-produced 
products and their interaction with the immune system (Figure 1).

LPS
In Gram-negative bacteria, LPS are an important pathogen-associated molecular 
pattern and a well-studied microbial marker in connection with bacterial translocation 
and host systemic responses[22,23]. The outer membrane of gram-negative bacteria 
consists of LPS, which possess a hydrophobic endotoxin, called lipid A[24]. This 
component is recognized by TLR4 and via this mechanism it further activates nuclear 
factor kappa B (NF-κB) and elicits pro-inflammatory effects[25,26]. One type of LPS is 
Escherichia coli (E. coli) produced LPS. This stimulates TLR4 receptors and triggers the 
release of pro-inflammatory cytokines. E.coli LPS also increases endotoxin tolerance 
and decreases the autoimmune activity, protecting against autoimmune diabetes[27]. 
However, some bacterial species produce LPS molecules with underacylated lipid A 
that exhibit an immuno-inhibitory effect[28]. These LPS molecules are produced 
especially by members of the Bacteroidales order and instead of stimulating TLR 
receptors, they silence the TLR4 signaling and the inflammatory process[29]. LPS 
induces the upregulation of cluster of differentiation 14 protein (CD14) via the TLR4 
pathway, which decreases the relative epithelial resistance and increases its 
permeability. Increased intestinal permeability allows for more LPS to reach the 
general circulation, aiding it in reaching different organs and exhibiting a pro-inflam-
matory effect[30]. This is also true in cases of dysbiosis with an increase in LPS 
production that is correlated with an increase in tumor necrosis factor alpha (TNF-α), 
interleukin (IL) 6 and C-reactive protein levels[31,32]. Intestinal dysbiosis caused an 
LPS-induced inflammatory response in a mice model, while unaltered host microbiota 
reduced the inflammatory response to LPS in the liver[33]. LPS-induced monocyte 
activation has been shown to be increased in patients with HBV or HCV[34].

This underlines the ability of LPS and gut lipid metabolism to modulate both 
intestinal and organ-specific inflammatory response.

SCFA
In the gut, non-digestible carbohydrates are transformed by the microbiota into SCFA 
such as acetate, propionate and butyrate[35]. Acetate and propionate are produced 
mainly by Bacteroidetes, while butyrate, the main source of energy for colonocytes, by 
Firmicutes. A small portion of SCFA that is not metabolized can reach the liver through 
the portal vein, being used as energy substrates for hepatocytes[36,37]. Certain bacteria 
such as Butyricimonas and Prevotella have the ability to generate butyrate and 
propionate, SCFAs with anti-inflammatory effect[38].

SCFA bind to the G-protein coupled free fatty acid receptors (FFA): GPR41 (FFA2) 
and GPR43 (FFA3)[39,40]. Enteroendocrine and pancreatic β-cells present both GPR41 
and GPR43 receptors, while immune cells and adipocytes present mostly GPR41 and 
peripheral neurons GPR43[41]. This links SCFA production to a multitude of 
metabolic, neurological and inflammatory mechanisms. Thus, FFA receptors and 
SCFA production presents therapeutic targets in these diseases[41-43].

In immune cells (leukocytes and neutrophils) SCFA increase the intracellular 
calcium levels[39,44,45]. This reaction leads to an increased production of reactive 
oxygen species, as well as an increased neutrophil recruitment and a pro-inflammatory 
effect[46-48]. GPR41 activation by SCFAs in the gut promotes the function and size of 
regulatory T cells, protecting against intestinal inflammation[49]. Also, GPR43 was 
found to be a chemotactic receptor for neutrophils, stimulating their migration 
towards the source of SCFAs[50,51]. In a mouse model of gout, the intestinal 
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Figure 1 The mechanisms by which the gut microbiome influences the immune system. LPS: Lipopolysaccharides; SCFA: Short-chain fatty acids.

microbiota-produced SCFA determined inflammasome assembly, reactive oxygen 
species formation and IL-1b production and improved the inflammatory response[52]. 
Increased SCFA levels determined the production of macrophages and dendritic cells, 
protecting the lung against allergic inflammation[53]. Also, by activating another G-
protein coupled receptor, GPR109A, the microbiota is involved in inflammatory 
suppression via the NF-κB pathway in normal and colon cancer cells[54].

Another SCFA mechanism involved the inhibition of histone deacetylases (HDAC). 
By non-competitively inhibiting the activity of HDAC 1 and 2, butyrate causes histone 
hyperacetylation. By this mechanism, butyrate and other SCFAs are thought to serve 
as a protective factor against colon cancer, dysbiosis being a risk factor for the 
development of this disease, as well as other chronic inflammatory diseases[55]. 
HDAC inhibition also promotes macrophage activity and CD8 T cells and improves 
anti-cancer therapy[56-59]. Furthermore, class 1 HDACs inhibition is proposed as a 
target in pulmonary inflammation, due to its contribution in the release of pro-inflam-
matory cytokines[60]. HDAC inhibition promotes effector and regulatory T-cell differ-
entiation and the production of IL-17, interferon-γ (IFN-γ) and IL-10, contributing to 
an overall anti-inflammatory effect mediated by SCFAs[61,62].

By increasing acetyl-CoA activity and controlling gene expression, SCFA are 
involved in plasma B cells metabolism, activity, energy production boosting, and 
differentiation. During an infection, they support B cells antibody production, 
decreasing the host susceptibility to pathogens[63].

Therefore, SCFA present both a pro- and anti-inflammatory role[61]. There is still 
the need for more studies to fully understand the implications of SCFA in inflam-
matory and immune diseases and determine in which conditions they act as pro-
inflammatory or as anti-inflammatory factors.

Trp
The microbiota is involved in the transformation of Trp in indole derivatives, 
serotonin (5-hydroxytryptamine) and kynurenine[64].

Lactobacilli species can metabolize Trp into indole-3-aldehyde, a ligand for the aryl 
hydrocarbon receptor (AhR) that is involved in intestinal immunity and the 
production of IL-22[65,66]. There are only a few species such as Peptostreptococcus 
russellii and Lactobacillus spp. with the ability to produce AhR ligands[64]. In high fat 
diets IL-22 can act as an antioxidant and anti-inflammatory agent, protecting the 
intestinal mucosa and epithelial cells from oxidative and inflammatory stressors[67]. 
Also, IL-22 is involved in the intestinal mucosa immune response against exterior 
pathogens[68,69]. However, in patients with inflammatory bowel disease, Il-22 is 
considered a “two-headed cytokine”: it acts as a mucosal producing and healing agent, 
but in the chronic form of the disease it is also involved in tumorigenesis, promoting 
tumoral growth[70-72].

The Trp microbiota metabolite AhR regulates the activation and transcription of 
several other pathways, including IL-6, cytochrome P450 1A1 (CYP1A1), and 1B1 
(CYP1B1), vascular endothelial growth factor A, and prostaglandin G/H synthase 2 
and also stimulates innate lymphoid cells and intraepithelial lymphocytes 
development, mediating their anti-inflammatory effects[73,74]. Other bacteria that 
interfere with Trp metabolism are E. coli, Lactobacilli and Clostridium sporogenes. The 
first two possess tryptophanase which converts Trp to indole, while the latter 
decarboxylates Trp and increases tryptamine production[64].
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The microbiota influence on Trp provides intestinal anti-inflammatory effects, but it 
also poses potential research directions regarding systemic inflammation[75,76].

Flagellin
The locomotive bacterial flagella contain flagellin, which is recognized by the host 
TLR5. Via the TLR pathways, flagellin is involved in several immunological 
mechanisms, both locally, in the gut, but also systemic, inducing the release of pro-
inflammatory molecules[77]. In a study administering purified flagellin in mice, there 
was a decreased microbial dysbiosis, as well as an amelioration of IL-10 deficiency-
induced colitis[78]. This shows that flagellin presenting bacterial species could pose a 
beneficial effect in chronic inflammatory diseases. However, in patients with inflam-
matory bowel diseases there have been observed higher concentrations of flagellin, 
putting into question its supposed protective role[79]. Also, flagellin has been 
observed to be a potent TLR5/NF-κB activator, promoting inflammation in intestinal 
epithelial cells[80]. Via the same TLR5/NF-κB mechanism, flagellin could also promote 
the attachment and development of viral molecules, supporting viral infections via the 
intestine[81].

Bacterial CpG motifs
Bacterial DNA contains unmethylated CpG dinucleotides that are recognized by the 
immune system and produce an immunostimulatory effect[82,83]. These bacterial CpG 
motifs are recognized by TLR9 receptors and, depending on their localization, they 
exhibit several effects. Apical TLR9 activation inhibits NF-κB activation, while 
basolateral receptors stimulate NF-κB activation and the subsequent inflammatory 
pathways[84].

INFLAMMATION AND B AND C HEPATITIS
Many extrahepatic changes (metabolic, cardiovascular, autoimmune, renal) have been 
correlated with chronic HCV infection. This statement is supported by a prospective 
cohort study in which patients with chronic HCV infection (with HCV RNA detected 
in the serum) had a high risk of death due to liver or non-liver disease (cardiovascular 
and renal disease) compared to uninfected patients (without serum HCV RNA) or 
with patients presenting HCV antibodies[85].

Inflammatory cytokines are normally released in response to various stimuli, 
including viral infection. This limits cellular stress and cell damage[86]. HCV infection 
is associated with an immune activation status that can further influence the levels of 
inflammatory markers (Il-6, TNF-α, iNOS, COX-2, IL-1), which are correlated with 
various extrahepatic diseases[87,88]. In HBV-infected patients there is an increase in Il-
8, IL-29 and COX-2. Under normal conditions, adult hepatocytes do not express COX-
2, but in chronic inflammatory diseases, the expression of this isoenzyme increases. 
Furthermore, IL-8 activates the extracellular signal-regulated kinase and c-Jun N-
terminal kinase signaling pathways, which are also involved in inflammatory 
processes[86].

In infected hepatocytes with HCV, the production of type 1 and 3 interferons is 
blocked by the action of the viral NS3/4A protease. This protease may also influence 
the innate immune adaptor molecules mitochondrial antiviral signaling proteins with 
an effect on the intracellular antiviral defense system. In an experimental study on 
hepatic macrophages the first activated factor in liver macrophages with HCV 
infection has been shown to be TNF-α that further activates NF-κB and increases IL-1β. 
Adding to this, the HCV core protein also activates the NLRP3 inflammasome. The 
hepatic inflammatory environment is ensured by the activity of the NLRP3 inflam-
masome, phospholipase-C and IL-1β. Thus, NLRP3 inflammasome and IL-1β can be 
considered as target of treatment in HCV-induced liver disease[89].

THE GUT-LIVER AXIS
The gut microbiome can interact tightly with the liver via the so-called gut-liver axis. 
Blood from the intestine, rich in microbiota-derived molecules, reaches the liver via the 
portal vein. In the liver, these molecules are recognized by TLRs pattern recognition 
receptors, mediating their effect on the liver tissue[90]. Related to liver pathologies, the 
gut microbiota is particularly involved in liver fibrosis and cirrhosis, hepatic cancers, 
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alcoholic and non-alcoholic fatty liver disease, autoimmune hepatitis, primary 
sclerosing and primary biliary cholangitis as well as viral hepatitis[91-96]. Some of the 
most studied components that affect liver pathologies are represented by LPS and 
SCFAs.

LPS produced by the microbiota are scarcely found in the normal liver, being 
cleared by Kupffer cells and not causing any damage[97]. However, in alcoholic liver 
disease, because of an increase intestinal permeability, an increased amount of LPS 
reached the liver[96]. LPS binds to TLR4, causing an excessive release of pro-inflam-
matory cytokines IL-1 and TNF-α[33,98]. Also, LPS can upregulate the expression of 
the cluster of differentiation 14 (CD14) receptor on Kupffer cells[99]. This could 
potentially make the liver more sensitive to LPS toxicity, as CD14 is vital for Kupffer 
cells LPS activation[100]. Kupffer cells activation produces a pro-inflammatory state, 
increasing the levels of NF-κB, TNF-α and IL-1. This leads to liver injury and disease 
progression, dysbiosis favoring the chronic inflammatory state[101].

SCFA such as acetate, propionate and butyrate may have a protective effect on liver 
diseases progression. High levels of butyrate restore the intestinal microbiota in cases 
of dysbiosis, reducing the intestinal permeability and thus the levels of endotoxins 
reaching the liver via the portal circulation. This attenuated the histological aspect of 
steatohepatitis livers, reducing the levels of TNF-α, IL-1, IL-6 and IFN-γ pro-inflam-
matory cytokines, as well as the expression of TLR4 receptors[102]. In an experimental 
study by Endo et al[103], administering probiotics, aimed at increasing butyrate levels, 
significantly improved non-alcoholic fatty liver disease progression, reducing the 
inflammation and oxidative stress. This clearly shows that intestinal-produced 
metabolites can influence the immune and inflammatory state of the liver. Dysbiosis 
and an increased intestinal permeability allows for the gut-liver balance to change, 
causing a pro-inflammatory state of the liver and contributing to disease progression
[104,105]. Pathogen-associated molecular patterns (bacterial antigens and products) 
such as LPS and viral RNAs activate TLR4 on Kupffer cells and other immune cells. 
Thus, the innate immune response is induced.

The liver is influenced by the intestine through the portal circulation, while the 
intestine is influenced by the liver through the released mediators and hepatic bile 
flow. It is known that increased intestinal permeability contributes to systemic inflam-
mation and disease progression[106]. BA and other mediators such as immuno-
globulin A (IgA) regulate the gut-liver axis. IgA influences the homeostasis of the 
intestinal microbiota, preventing bacterial translocation. BA modulate the intestinal 
barrier and have antimicrobial activity. Several enzymes involved in BA synthesis are 
regulated by the microbiota. However, some secondary BA (e.g., deoxycholic acid) 
resulting from intestinal biotransformation produce microbial dysbiosis and increase 
the intestinal permeability[107].

TGR5 is a G-protein-coupled BA receptor involved in the anti-inflammatory 
immune response, energy homeostasis, metabolic pathways and in pathologies such as 
diabetes and obesity[108]. In the intestine, TGR5 is involved in regulating the colonic 
motility and the intestinal permeability via the farnesoid X receptor — cAMP pathway
[109,110]. Moreover, TGR5 activation stimulates mucosal proliferation and protects 
against mucosal injuries[111]. In liver pathologies, the levels of BA are significantly 
decreased, leading to a reduced activation of TGR5 in the gut[112,113]. In a mouse 
model with TGR5 silencing, there was a significant reduction in gut epithelial 
cellularity, with histological abnormalities and distortions and an increased intestinal 
permeability[114]. BA and TGR5 activation are therefore necessary for a normal 
functioning of the intestine and the gut-blood barrier. BA administration is beneficial 
for viral hepatic diseases. In a HBV model, TGR5 agonists administration suppressed 
the infection[115]. BA and TGR5 agonists pose as potential treatment options for viral 
hepatitis[116].

Decreased BA quantities in virus hepatitis could be responsible for the increased 
intestinal permeability and the subsequent increase in LPS and other endotoxins. This 
in turn favors the progression of the liver pathology, creating a vicious circle where the 
liver pathology creates an environment that further promotes the liver pathology 
(Figure 2). Future studies should determine the exact mechanism by which liver 
diseases influence the intestinal permeability and lead to the production of dysbiosis.

THE GUT MICROBIOTA-VIRAL B AND C HEPATITIS
The presence of the HBV or HCV infection can lead to intestinal dysbiosis[117]. Some 
of the microbial changes present in patients with HBV and HCV-related liver diseases 
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Figure 2 The gut-liver axis in liver diseases. TGR5: G-protein-coupled bile acid receptor; PAMPs: Pathogen-associated molecular patterns; LPS: 
Lipopolysaccharides; TLR: Toll-like receptor.

are shown in Table 1.
These studies showed significant differences in the composition of the intestinal 

microbiota between patients with B or C hepatitis with or without cirrhosis present. A 
healthy gut microbiota means a gut microbiota with great diversity and the ability to 
react to changes. Thus, B and C viruses can cause changes and can shape the gut 
microbiota in different directions[122].

Nowadays, the treatment of B and C hepatitis is well established by international 
guidelines[124-126]. The main question is: does the treatment of B or C hepatitis 
influence the diversity and abundance of the intestinal microbiota? And if so, are these 
changes helping in preventing or halting the evolution of the disease? A part of the 
studies looking into the microbial changes caused by HBV and HCV treatments are 
presented in Table 2.

Entecavir increases the abundance of the genus Clostridium sensu stricto 1 which has 
been associated with large and extra-large HDL particles and also with a decreased 
risk of cardiovascular disease[131]. Increased lipid content in the liver and steatosis 
can result in the development of inflammation and, over time, cirrhosis, and can also 
increase oxidative stress[132]. Genus Intestinibacter along with genus Escherichia, 
Shigella can be considered as a major contributor to NAFLD progression. Increases in 
the abundance of Intestinibacter have been correlated with severe intestinal disorders in 
humans and are recognized as a biomarker of the onset of Crohn's disease[133].

In a study by Pérez-Matute et al[129], it was shown that the use of direct antiviral 
agents in patients with chronic HCV infection could only restore the intestinal 
bacterial changes in those patients with a lower degree of fibrosis (F0-1). The data 
highlight a strong relationship between the liver and the intestine and suggest that 
mild intestinal changes caused by liver damage could possibly be counteracted with 
the appropriate drugs.

Blautia, Coprococcus, Dorea, Lachnospira, Oribacterium, Roseburia and L-Ruminococcus 
were detected in the human intestine as the main genera belonging to the Lachnos-
piraceae family[134]. Lachnospiraceae is considered a "good" family of bacteria, having a 
beneficial role in host homeostasis. The bacteria belonging to this family can convert 
carbohydrates into SCFA in the gut[135]. Decreasing the abundance of Lachnospiraceae 
leads to decreased SCFA production and thus increases the pH of the colon. This 
change increases the production of ammonia and its absorption in the intestine[136].

Direct-acting antivirals (DAA) treatment in cirrhotic patients appears to have a 
positive impact on changes in the intestinal microbiota, as well as fibrosis and inflam-
mation, but without a positive impact on the function of the intestinal barrier. DAA 
has greatly reduced the abundance of Enterobacteriaceae, Staphylococcus, and Veillonel-
laceae[130]. The abundance of the Enterobacteriaceae family, belonging to the Proteo-
bacteria phylum, depends on the amount of oxygen that crosses the intestinal barrier. 
The abundance of Enterobacteriaceae is elevated after the oxygen level increases and can 
aggravate intestinal inflammation. Members of this family cannot degrade complex 
carbohydrates (as Clostridia and Bacteroidia do); they are only involved in the passive 
transport of oligosaccharides. This disadvantage may explain the lower abundance of 
Enterobacteriaceae compared to Clostridia and Bacteroidia in the healthy distal intestine
[137]. Veillonellaceae belonging to Firmicutes phylum, is one of the main microbial taxa 
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Table 1 Microbiota changes in different studies regarding hepatic B and C virus

Changes of gut microbiota in patients vs healthy subjects Ref.
Type of HBV infection

↓ Bacteroidetes and Firmicutes; ↑ Proteobacteria and Actinobacteria Chen et al
[117]

↑ Bifidobacterium dentium; ↓ Bifidobacterium catenulatum and longum Xu et al
[118]

Chronic HBV infection

↑ Veillonellaceae; ↓ Lachnospiraceae, Rikenellaceae, Ruminococcaceae Wang et al
[119]

HBV liver cirrhosis ↓↓↓ Bacteroidetes and Firmicutes; ↑↑↑ Proteobacteria and Actinobacteria Chen et al
[117]

Decompensated HBV 
cirrhosis

↓ Bifidobacteria/Enterobacteriaceae ratio; ↑ Enterobacteriaceae; ↓ Firmicutes (F.prausnitzii, Clostridium clusters XI and 
XIVab, Bifidobacterium); ↓ Bacteroidetes

Lu et al
[120]

HBV related 
hepatocellular 
carcinoma

↓ Proteobacteria; ↑ Prevotella, Phascolarctobacterium, Anaerotruncus; ↑ Proteus, Veillonella, Prevotella 2, Barnesiella and 
Ruminococcaceae spp.

Liu et al
[121]

Type of HCV infection

Chronic HCV infection 
without cirrhosis

↑ Veillonella spp., Lactobacillus spp., Streptococcus spp. and Alloprevotella spp.; ↓ Bilophila spp., Clostridium IV spp., 
Clostridium XlVb spp., Mitsuokella spp. and Vampirovibrio spp.; No changes: Akkermansia spp., Bifidobacterium spp., 
Escherichia/Shigella spp., Haemophilus spp., Micrococcus spp. and Weissella spp.

Heidrich et 
al[122]

Chronic HCV infection 
with cirrhosis

↑↑↑ Veillonella spp., Lactobacillus spp., Streptococcus spp. and Alloprevotella spp.; ↓↓↓ Bilophila spp., Clostridium IV spp., 
Clostridium XlVb spp., Mitsuokella spp. and Vampirovibrio spp.; ↑↑↑ Akkermansia spp., Bifidobacterium spp., 
Escherichia/Shigella spp., Haemophilus spp., Micrococcus spp. and Weissella spp.

Heidrich et 
al[122]

Stage 4 HCV infection 
(cirrhosis)

↓ Firmicutes; ↑ Prevotella, Faecalibacterium (F. prausnitzii); ↑ Acinetobacter; ↑ Veillonella Aly et al
[123]

HBV: Hepatitis B virus; HCV: Hepatitis C virus.

Table 2 Microbial changes as a result of several treatments in viral B and C hepatitis

Drug Type of study Changes in gut microbiota Ref.

Experimental 
(mice)

↑ Lachnospiraceae, Akkermansia, Alistipes, Escherichia, Shigella, Oscillibacter, 
Bilophila

Li et al[127]Entecavir

Clinical ↑ Clostridium sensu stricto 1, Erysipelotrichaceae UCG-007, Intestinibacter; ↓ 
Streptococcus, Atopobium, and Murdochiella

Lu et al[128]

Direct antiviral agents in patients with 
HCV infection

Clinical ↑ Phylum Firmicutes, genera Lachnospira Pérez-Matute et 
al[129]

Direct antiviral agents in patients with 
HCV-related liver cirrhosis

Clinical ↓ Enterobacteriaceae, Staphylococcus and Veillonellaceae Ponziani et al
[130]

HCV: Hepatitis C virus.

associated with the severity of fibrosis in non-obese patients. This family has the 
ability to produce propionate, one of the most important SCFAs and has been 
associated with chronic liver disease[138]. The LPS and SCFA metabolites produced by 
intestinal Veillonella stimulate the release of cytokines (Il-6, IL-10, TNF-α) in human 
peripheral blood mononuclear cells and thus have a negative impact on liver 
pathology and host inflammation[139].

GUT MICROBIOTA-TARGET OF TREATMENT
Although standard therapy for B and C viral hepatitis is well established and 
presented in clinical guidelines, many dietary supplements, including pre-, pro-, and 
symbiotic agents, are being studied to reduce the toxicity of standard therapy (side 
effects) or to increase their effect. Also, fecal microbiota transplantation (FMT) is one of 
the methods that can manipulate the composition of the intestinal microbiota. It has 
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the ability to strengthen the intestinal barrier, reduce intestinal permeability and also 
improve host immunity[140]. There are various routes of administration for FMT: 
nasogastric tube, upper endoscopy or colonoscopy, retention enema, etc. The route of 
administration depends on the characteristics of the disease. For example, good results 
have been obtained after duodenal administration in metabolic disease[141].

There are only a few studies that support the effect of certain probiotics in viral B or 
C hepatitis.

Oo et al[142] studied the long-term (36-mo) effect of probiotic heat-treated strain 
Enterococcus faecalis FK-23 in patients with HCV infection. This probiotic may change 
the microbiota in these patients and may have an important role of decreased ALT in 
serum.

In patients with HBV-induced liver cirrhosis, the role of a probiotic (Clostridium 
butyricum combined with Bifidobacterium infantis) has been studied in the treatment of 
minimal hepatic encephalopathy. The results claim that the probiotic modulates the 
intestinal barrier and thus can lower the level of ammonia and can improve cognition
[143].

CONCLUSION
Most of the microbiota-derived components elicit an immunomodulatory effect, both 
pro- and anti-inflammatory. Alteration of the host microbiome produces an unbalance 
of these factors, leading to negative effects both locally in the intestine, as well as at 
distance in other organs. Therefore, we can conclude that by its factors, the host 
microbiota is an important determinant in the hosts immune response modulation. 
Future experimental and clinical studies are needed to determine the exact 
mechanisms of these changes, as well as the exact conditions in which the microbiota 
can serve as a protective factor.

Currently, the intestinal microbiota is a target of treatment for various diseases in 
humans. Future studies should focus on the effects and efficacy of treatments aimed at 
restoring the gut microbial environment (prebiotics, probiotics, symbiotics, fecal 
transplant) and their exact relationship with liver pathologies. By understanding the 
natural communication pathways between the liver and the gut, in both health and 
disease, we could potentially formulate better therapies aimed at reducing the effects 
of the chronic inflammatory response on the progression of liver diseases.
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