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Abstract 

A key challenge in the field of Quantitative Structure Activity Relationships (QSAR) is how to effectively treat experi-
mental error in the training and evaluation of computational models. It is often assumed in the field of QSAR that 
models cannot produce predictions which are more accurate than their training data. Additionally, it is implicitly 
assumed, by necessity, that data points in test sets or validation sets do not contain error, and that each data point 
is a population mean. This work proposes the hypothesis that QSAR models can make predictions which are more 
accurate than their training data and that the error-free test set assumption leads to a significant misevaluation of 
model performance. This work used 8 datasets with six different common QSAR endpoints, because different end-
points should have different amounts of experimental error associated with varying complexity of the measurements. 
Up to 15 levels of simulated Gaussian distributed random error was added to the datasets, and models were built on 
the error laden datasets using five different algorithms. The models were trained on the error laden data, evaluated on 
error-laden test sets, and evaluated on error-free test sets. The results show that for each level of added error, the RMSE 
for evaluation on the error free test sets was always better. The results support the hypothesis that, at least under 
the conditions of Gaussian distributed random error, QSAR models can make predictions which are more accurate 
than their training data, and that the evaluation of models on error laden test and validation sets may give a flawed 
measure of model performance. These results have implications for how QSAR models are evaluated, especially for 
disciplines where experimental error is very large, such as in computational toxicology.
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Introduction
One of the key challenges in Quantitative Structure 
Activity Relationship (QSAR) modeling is evaluating 
the predictive performance of models, and evaluation 
methodology has been the subject of many studies in the 
past several decades [1–6]. Evaluation of predictive per-
formance has critical implications for the fields of drug 
discovery [6, 7], toxicological risk assessment [8], and 
environmental regulation [9], among others. The impor-
tance of model evaluation and comparison is reflected in 
the fourth principle from the Organization for Economic 
Cooperation and Development (OECD), which states 
that a QSAR model must have “appropriate measures 
of goodness of fit, robustness, and predictivity” [9, 10]. 
While best practice guidelines have often emphasized 
the need for external validation on compounds that have 
been rigorously excluded from the training set, implicit 
assumptions about error in the training and validation 
data, and how these assumptions might affect perfor-
mance evaluation, tend to be overlooked [1–3]. It is nec-
essary to examine these assumptions and their effects in 
order to appropriately evaluate the predictivity of QSAR 
models and utilize their predictions with confidence.

The most problematic assumption about errors implic-
itly made during most QSAR modeling is that the given 
value for any experimental endpoint is the “true” value 
for that measurement. This assumption is necessarily 
taken when the following conditions are met: when the 
endpoint values are represented as single measurements, 
and when models are compared via their prediction met-
rics, such as root mean squared error (RMSE) and the 
coefficient of determination (R2). As detailed below, it 
is often the case that endpoint values are represented as 

single measurements, and this obligates the modeler to 
assume that these measurements are representative of 
the true value. Additionally, the modeler must then com-
pare models using performance metrics that implicitly 
assume endpoint quantities to be sufficiently representa-
tive of physical truth, that is, there is no mathematical 
mechanism built in to account for the fact that these 
single values may be several standard deviations away 
from the actual population mean of that measurement. 
To put all of this in more rigorous statistical terms, the 
assumption is made that the given experimental value is 
the sample mean, and that this sample mean sufficiently 
approximates the population mean (true value) of all pos-
sible measurements [11]. This assumption is made for 
two main reasons. The first reason is that most models 
are built on datasets which have only a single, or at best 
three replicates, for any given measurement and there-
fore the data does not support a more detailed under-
standing of the population distribution and uncertainties. 
For example, an analysis performed on a large set of drug 
metabolism and pharmacokinetic (DMPK) data showed 
that 87% of the 358,523 measurements had only a single 
replicate [7]. Second, most machine learning algorithms, 
with the exception of Bayesian methods such as Gauss-
ian Process [12] and conformal prediction [13, 14], treat 
endpoints as discrete quantities rather than distributions 
thereby forcing QSAR modelers to use only a single value 
when applying most learning methods. Unfortunately, 
the assumption that the single experimental value is a 
good representative of the population mean is often not 
true. It is unlikely that a measurement’s sample mean 
will closely approximate the population mean unless 
the number of replicates is very high [11], although for 
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endpoints which involve fitting a curve to measurements 
made at multiple concentrations, parametric bootstrap-
ping can provide a workaround to the issue of having few 
replicates [15]. In sum, the assumption that experimental 
endpoints are true values ignores the reality that experi-
mental measurements have a distribution and uncer-
tainty associated with them, and this statistical reality has 
important effects on the predictivity of QSAR models.

Ignoring experimental error of the target property 
creates two main problems in modeling studies. The 
first issue is that inaccurate training data may cause a 
QSAR model to fit the trends in the noise rather than 
the underlying trends in the data, a well-known phenom-
enon called overfitting [16]. Overfitting can be diagnosed 
because performance metrics such as root mean squared 
error (RMSE) and the coefficient of determination (R2) 
will be far worse for the test set than for the training set 
[16]. The second and more pernicious issue is that end-
point values in the test set also have experimental error, 
but these test set values set the standard by which a 
model is evaluated. If these error laden test set values are 
used to calculate a model’s performance statistics, then 
even if a QSAR model predicts close to the true value, 
the error for that prediction will be observed as high if 
the experimental test set value is far from the true value 
(Fig. 1).

Experimental measurements are complicated by two 
main sources of error. Systematic error biases a measure-
ment in one direction and can be the result of natural or 
instrumental phenomena [11]. Random error, by defini-
tion, is equally likely to affect a measurement in either 
direction. Systematic error is notoriously difficult, if not 
impossible, to identify statistically, but random error can 
be treated effectively using a Gaussian distribution [17]. 
Experimental error, in the absence of known systematic 
error, is generally treated to be random. This conten-
tion is well supported because variability in natural pro-
cesses tends to be random, due to contributions from 
many small underlying factors. The central limit theorem 
allows us to model random processes using the Gauss-
ian distribution [18]. The sum of this line of reasoning is 
that most experimental error, in the absence of identifi-
able systematic error, can be reasonably modeled using 
a Gaussian distribution. Furthermore, there is a verifi-
able body of scientific literature (especially in chemistry) 
which shows that measurements tend to an average value 
with a Gaussian distribution. [11, 19, 20].

Drawing from this accepted treatment of experimental 
error, several studies have attempted to better understand 
the relationship between random experimental error 
and predictivity. Several works have analyzed propri-
etary pharmaceutical data and public databases in order 
to estimate the average error in commonly measured 

pharmacological and toxicological quantities such as pKi, 
[20] pIC50, [19] and cytotoxicity [21]. Brown and cowork-
ers used a computational approach to develop empirical 
rules for distributions of coefficients of determination 
(R2) based on dataset parameters such as range of end-
point values and number of samples [6]. All three of these 
studies provide benchmarks to evaluate whether or not 
the predictivity of any given model is reasonable or not, 
given what is known about average random error in com-
monly measured endpoints and how this error propa-
gates to performance statistics such as RMSE and R2. A 
seminal contribution to this topic comes from Cortes-
Ciriano and coworkers, in which they performed a full 
factorial study of random experimental error on 12 dif-
ferent datasets, 12 algorithms, and 10 levels of simulated 
random experimental error [22]. The results showed that 
algorithms have different levels of sensitivity to added 
random experimental error, such that while algorithm A 
might have a lower RMSE than algorithm B at low noise 
levels, algorithm A can have a higher RMSE than algo-
rithm B at high noise levels.

A common assertion in the QSAR literature, which is 
brought up in the studies mentioned above, is that the 

Fig. 1  Graphical representation of experimental error and prediction 
error for an arbitrary dataset. Each row of bars is a separate 
observation for an arbitrary endpoint. The red bars represent 
population means (“true” values) for the observation, the grey bars 
represent experimental values, and the blue bars represent prediction 
values. If prediction values are closer to the population means than 
the experimental values, the true error will be smaller than the 
observed error
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experimental error in a dataset puts a hard limit on the 
predictivity of a model, or in other words, that a model 
cannot make predictions which are more accurate than 
its training data [7, 20, 23]. The assertion that there is a 
hard limit on prediction accuracy relies on the assump-
tion that the test set values are true values, but as men-
tioned above, the test set values also have experimental 
error. This work poses the main hypothesis that a QSAR 
model can indeed make predictions which are more 
accurate than the training data; however, we are unable 
to validate that these models are better than our test data. 
This hypothesis is made under the condition that the 
experimental error is Gaussian distributed; this condition 
is certainly not representative of every real-world data 
situation, but it allows the hypothesis to be tested under 
a set of ideal conditions. A logical method of testing this 
hypothesis is to compare RMSEobserved and RMSEtrue for 
a variety of models, which requires model development 
with two sets of values for each molecule in a dataset, 
artificially generated error laden experimental values and 
true values.

Understanding the effect of error on predictivity is par-
ticularly important for the field of toxicology, because 
environmental risk assessments and subsequent regula-
tions depend on the results and confidence intervals of 
the predictions [24]. Furthermore, toxicological mod-
els are often built on in vivo or animal studies measure-
ments, which are notoriously variable due to the myriad 
factors which contribute to error [8, 25]. It has been pos-
ited that variance in the experimental data contributes 
more to prediction error than the error from the model 
itself [26, 27]. If the hypothesis that a QSAR model can 
make predictions which are more accurate than the train-
ing data is true, then it would suggest that models trained 
on highly variable toxicological datasets could produce 
accurate and therefore reliable predictions. This work will 
test this hypothesis and discuss the results in the context 
of toxicological datasets.

Methods
Experimental design
Residual error in a model prediction for a validation 
compound can be understood in two different ways. 
Based on the assumption that the experimentally meas-
ured values are true, the error is calculated as simply the 
difference between the observed value and the predicted 
value, εobserved. However, the error of interest for a predic-
tive model is actually the difference between the popula-
tion mean and the predictive value, εtrue (Fig.  1). While 
this argument conforms with our understood goals for a 
QSAR model, population means are difficult to ascertain 
for most endpoints of biological relevance, and therefore, 
εtrue is often out of reach. However, if a computational 

experiment made it possible to determine εtrue, it would 
allow us to investigate the question of whether there is a 
hard limit on the predictivity of a model, or if the limit is 
actually on our ability to accurately measure the predic-
tivity of the model.

If Y is the vector of experimental endpoints, Z the vec-
tor of true values, and Ŷ the vector of model predictions, 
then εi is the difference between an experimental meas-
urement and the true value, RMSEobserved is the prediction 
error calculated from the experimental endpoints, and 
RMSEtrue is the prediction error calculated from the true 
values. RMSEobserved will be higher than RMSEtrue if the 
average ε is large. The problematic assumption is that ε 
is assumed to be 0. This means that RMSEobserved is often 
mistaken for RMSEtrue when evaluating a QSAR model, 
and thus the true predictivity of a model is probably 
underestimated.

As mentioned above though, evaluating this claim 
requires having both true values and experimental meas-
urements to assess whether RMSEobserved is greater than 
RMSEtrue. In the absence of such true values, we assume 
that for the datasets used in this experiment, the origi-
nal values are the true values and then create simulated 
“experimental” observations adding increasing amounts 
of Gaussian error to those “true” values. This assump-
tion (which directly contradicts our premise that doing 
so is dangerous) and its possible ramifications will be 
addressed in the “Data sets” and “Discussion and conclu-
sion” sections.

While the effect of error (including the addition of sim-
ulated error) has been studied in previous publications 
by Cortes-Ciriano and co-workers [22], this work has 
some key differences which are important to highlight. 
The purpose of the previous work was to systematically 
explore how different algorithms respond to simulated 
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error in order to benchmark performance. The authors 
achieved this by modeling 12 different protein pIC50 data-
sets with 12 algorithms, and by observing the increase in 
RMSE as simulated Gaussian distributed error is added 
to these datasets. While the datasets showed a diversity 
of targets, the type of endpoint, pIC50, is the same for 
each dataset. Additionally, the range of estimated native 
experimental error for these datasets is only 1.1 log units. 
In contrast, the objective of the present work is to test the 
hypothesis that a QSAR model can predict more accu-
rately than the dataset on which it is trained. The present 
approach, similarly, is to use several common algorithms 
to model different datasets and observe how the addi-
tion of simulated Gaussian distributed error affects the 
RMSE. A key difference here, however, is to compare the 
performance statistics for a model’s prediction on the 
noisy data vs a model’s prediction on the true data in an 
effort to de-couple the potential causes of observed pre-
diction error and assess their individual impacts on our 
observed model performance. The hope is to be able to 
separate and better understand three potential causes 
of error: learning error (i.e., prediction error caused by 
the modeling methodology being insufficient), propa-
gated training set error (i.e., prediction error caused by 
the training set having errors that are then learned by 
the model), and validation error (i.e., prediction “error” 
that is perceived due to the validation set itself having 
error). Here, RMSE0 can be understood as learning error; 
RMSEtrue—RMSE0 would approximate propagated train-
ing error; and RMSE—RMSEtrue would approximate the 
validation error.

Data sets
All data sets have error associated with their target 
properties, including random experimental error and 
systematic error. However, the magnitude of random 
experimental error and the nature of systematic error 
varies widely with the type of endpoint. For this study, 
we primarily consider the differences in error character-
istics likely within five categories of endpoints: quantum 
mechanical calculations, physicochemical properties, 
biochemical binding, in  vitro bioactivity, and in  vivo 
toxicity. While quantum mechanical calculations do not 
have random experimental error, because the same cal-
culation will give exactly the same number [28], system-
atic error is prevalent and comes from the fundamental 
choice of exchange–correlation approximations used 
in the density functional theory (DFT) method [29]. 
Measurements of physiochemical properties typically 
require determination of equilibrium concentrations of 
compounds in various solvents or phases [30], and are 
often made with standard analytical chemistry methods 
such as liquid chromatography, gas chromatography, or 

spectroscopy [31]. The random experimental and sys-
tematic error associated with these measurements thus 
comes from factors such as the purity of the compounds, 
instrument calibration, and instrument sensitivity [11]. 
In contrast, factors in biochemical measurements, such 
as protein purity, accurate determination of protein con-
centration, and equilibration time contribute to higher 
random experimental and systematic error that can make 
these measurements highly variable [32]. Toxicological 
datasets can include many different types of in vitro bio-
activity and in vivo measurements, which are sometimes 
aggregated in order to provide composite scores for use 
in classification problems [33, 34]. These datasets likely 
have the highest level of random experimental and sys-
tematic error because the sources of error are diverse 
and the accumulated errors propagate. Utilizing data-
sets from each of these categories allows a comparison to 
be made between datasets with which are likely to have 
increasing amounts of native random experimental error 
thereby allowing us to investigate how our assumption 
regarding the “truth” of the values provided in the dataset 
affects our conclusions.

The majority of quantum mechanical [35, 36], physi-
ochemical [38], and biochemical data [39] sets included 
in this analysis were taken from MoleculeNet [40], a large 
curated collection of chemical data which is intended 
to provide standard benchmarking data sets for QSAR 
models. As the primary goal of this work is to bench-
mark different common QSAR algorithms, the Molecu-
leNet collection provides several high-quality data sets 
for comparison. In  vitro bioactivity sets were obtained 
from the EPA’s ToxCast [34] database and in vivo toxicity 
datasets were represented by an LD50 data set gathered 
a report by Gadeleta and coworkers; 75% of these LD50 
values were taken from the EPA’s DSSTox database, with 
the other 25% assembled from literature publications as 
described in Gadeleta et al. [41] A summarization of the 
datasets used is available in Table  1. Additional dataset 
details are described in Additional file 1.

Descriptors
Molecular descriptors were generated using PadelPy [42], 
a python package which wraps the Padel descriptor soft-
ware [43, 44], or with OPERA, an open source software 
package which also generates Padel descriptors [45, 46]. 
The Padel software generates up to 1,875 descriptors, 
including 1444 1D/2D, and 431 3D descriptors. These 
quantities include electrotopological, topochemical, and 
linear free energy descriptors, as well as ring counts, 
McGowan volume, Crippen’s logP, and others. While 
there are many choices of descriptor sets [4, 47, 48], 
Padel descriptors are commonly used in QSAR work-
flows and thus provide a logical and reasonable method 
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for performing a proof of concept study such as the work 
presented here. For this work, only the 1,444 1D and 2D 
Padel descriptors were used.

Modeling workflow
Padel descriptors were first generated using PadelPy or 
OPERA using a SMILES string for each molecule [49]. In 
some cases, a subset of descriptors (up to 12) had infinite 
values, in which case those descriptors were removed 
from the dataset. If the dataset has more than 1000 mol-
ecules, it was sampled down to a size of 1,000; if the data-
set has less than 1000 molecules, it continued without 
sampling. Custom code was written in python, utilizing 
the popular machine learning package scikit-learn [50], 
to run the dataset through a machine learning pipeline. 
The code implemented the following workflow on each 
dataset. The endpoint data column was used to gener-
ate 15 additional endpoint data columns with increas-
ing levels of gaussian distributed noise. This process was 
repeated five times at each noise level to give 75 total 
datasets. A machine learning algorithm was chosen, such 
as k-nearest neighbors (kNN) or random forest (RF). The 
algorithm was then preprocessed, optimized, trained, 
and fit on each of the 75 datasets with added noise, giv-
ing 75 unique models, 75 RMSE’s, and 75 R2’s. Each of 
these models was then fit on the original dataset which 
has no added noise, giving an additional 75 RMSEtrue’s 
and 75 R2

true’s. The RMSE, RMSEtrue, R2, and R2
true val-

ues were then plotted against noise level. This process 
was repeated for each algorithm and each dataset. Details 
on each step of this process are given below. A graphical 
representation of the modeling workflow and machine 
learning pipeline is provided in Fig. 2.

Machine learning pipeline
Prior to modeling a given dataset, 25% of the data was split 
into a test set, and 75% of the data was split into a training 

set. Each algorithm was then put through a pipeline of 
steps before training on the training set and predicting on 
the test set. This pipeline consisted of three steps: scaling, 
principal component analysis (PCA), and algorithm fitting, 
with PCA and algorithm hyperparameters optimized using 
fivefold GridSearchCV or RandomSearchCV. Scaling was 
applied to all features (descriptor values) using Standard-
Scaler, which centers each feature on the mean and scales 
to unit variance, which is a common requirement for many 
algorithms. Dimension reduction was then applied using 
PCA, optimizing the number of principal components. 
Algorithm hyperparameters were then optimized as shown 
in Table 2.

Random error generation
Random error was added to datasets by sampling from a 
Gaussian distribution of zero mean and increasing stand-
ard deviation σnoise. Noise was added only to the target 
variables and not to the descriptors. This σnoise was deter-
mined from the product of the range of endpoint values in 
the dataset, the noise level n, and a multiplier. This multi-
plier was set to 0.01 after experimentation with a range of 
values and observing the effect on RMSE. Each dataset was 
used to generate 15 noise levels with 5 replicates at each 
noise level. Because n starts at 0, the 0th noise level has no 
added noise.

(7)Ynoisen,i = Y + N
(

0, σnoisen
)

(8)σnoisen = (Ymax − Ymin)∗multiplier∗n

n ∈ (0, . . . , 14)

i ∈ (1, . . . , 5)

Table 1  Datasets used in this work, with the number of molecules, endpoint, endpoint units, range, and reference for each

a Original size of the dataset. If datasets have more than 1000 molecules, they were randomly sampled down to a size of 1000 before modeling
b Includes data exclusively from the ATG-PPre-cis assay
c Includes data exclusively from the ATG-PPARg-trans assay

Dataset Category Entriesa Endpoint Range Refs.

G298_atom Quantum mechanical 131,082 ΔGo
at (kcal mol−1) − 2417to − 288 [29, 30]

Alpha Quantum mechanical 131,082 α (Bohr3) 9.0 to 27.8 [29, 30]

Lip Physiochemical 4200 logD − 1.5 to 4.5 [31]

Solv Physiochemical 642 ΔGo
hyd (kcal mol−1) − 25.5 to 3.4 [32]

BACE Biochemical 1513 pIC50 2.5 to 10.5 [33]

Tox_102b Toxicological in vitro 971 logAC50 − 2.1 to 4.7 [28]

Tox_134c Toxicological in vitro 1347 logAC50 − 4.0 to 2.8 [28]

LD50 Toxicological in vivo 5003 logLD50 (mg kg−1) − 1.9 to 4.8 [35]
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Algorithms  Several machine learning algorithms were 
chosen for this study which are common to QSAR mod-
eling workflows and which represent a variety of math-
ematical approaches for capturing complex patterns in 
data. Applying this analysis to a selection of algorithms 
allows us to determine whether the ability to make pre-
dictions which are more accurate than the training data is 
conserved across a variety of methods.

Ridge regression
Ridge regression is a form of linear regression that uti-
lizes a technique called regularization in order to reduce 
model complexity and minimize overfitting [51]. If a 
dataset has n number of features x, then a linear model 
calculates a prediction ŷ as a function of n number of 
weight coefficients β times x (Eq.  9). The resulting cost 
function for this linear model simply minimizes the 

Fig. 2  The modeling workflow and machine learning pipeline which is used in this work. Fifteen noisy datasets are first generated by adding 
Gaussian distributed noise to the dataset. Each of these noisy datasets is then split into Testnoise_n and Trainnoise_n, and the true data is split into 
Testtrue and Traintrue (no training is performed on Traintrue). The hyperparameters for PCA and the chosen algorithm are then optimized using 
GridSearchCV (or RandomSearchCV) to give a Best estimator. The Best estimator is then fit on Trainnoise_n to give Model_noisen, and Model_noisen 
predicts on both Testnoise_n and Testtrue to give RMSEnoise_n and RMSEtrue_n. This procedure is repeated for each noisy dataset

Table 2  Algorithms used in this work and their respective hyperparameter optimization spaces

a Ridge, kNN, SVR, and GP algorithms were optimized using fivefold GridSearchCV, but RF was optimized using fivefold RandomSearchCV with 500 iterations
b All algorithm hyperparameters which are not listed in this table were set to the defaults provided in the sci-kit learn library
c For most datasets, only a single kernel converged. So the kernel was not optimized in GridSearchCV, it was chosen beforehand and used for the entire dataset

Algorithm Hyperparameters searched in optimizationa,b

Ridge regression (Ridge) PCA n components ∈ (1, 3, . . . , 59)

α ∈ (1, 2, 3, 4, 5, 10)

k-nearest neighbors (kNN) PCA n components ∈ (1, 3, . . . , 59)

k ∈ (1, 2, . . . , 20)

Support vector regressor (SVR) PCA n components ∈ (1, 3, . . . , 59)

C ∈ (0.01, 0.1, 1, 10)

kernel: radial basis function (RBF)

Random forest (RF) PCA n components ∈ (1, 3, . . . , 59)

n estimators ∈ (1, 10, . . . , 200)

max depth ∈ (1, 3, . . . , 99)

max leaf nodes ∈ (2, 12, . . . , 92)

Gaussian process (GP) PCA n components ∈ (1, 3, . . . , 59)

kernel:c RBF, WhiteKernel, Matern, DotProduct, 
ExpSineSquared, ConstantKernel or RationalQuad-
ratic
Normalize y: true
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squared difference between predictions ŷ and observa-
tions y by adjusting β (Eq.  10). Ridge regression adds a 
regularization term to this cost function which contains 
a regularization coefficient λ times the square of each 
weight coefficient β (Eq. 11). This λ is set as a hyperpa-
rameter for the ridge regression algorithm. The larger 
λ is, the more a particular coefficient will be dampened 
by the cost function. This means that if some feature xi 
is dominating the linear model, causing overfitting, the 
weight coefficient will be dampened and the influence on 
the model will be reduced.

K nearest neighbors
KNN regression [52] uses distance measures to find the 
k observations which are closest to the coordinates of the 
input features in n dimensional vector space. The average 
observation value of these k neighbors is used to calcu-
late the prediction ŷ. Each observation yi of the k near-
est neighbors can also be weighted by the distance Di 
(Eq.  12). The most common distance measure to use is 
Euclidean distance (Eq. 13), which was used in this work.

Support vector machines
Support vector machine (SVM) methods [53] are non-
parametric algorithms which rely instead on kernel 
functions to make predictions. SVM’s predict complex 
non-linear trends by transforming the n dimensional 
input vector space into a higher m dimensional vector 
space. This is achieved by a mapping function, otherwise 
known as a kernel function k(x, x’) which acts on the vec-
tors x and x’. Once the input vectors are in the higher 
dimensional space, a linear hyperplane can be drawn to 
separate the data by maximizing the margin between 
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each data point and the hyperplane. This hyperplane 
is a function of the input vector x and the weight vec-
tor β (Eq. 14). The linear form of this hyperplane can be 
learned by minimizing the cost function J (Eq. 15). When 
a kernel function is applied to transform x into a higher 
dimensional space, and when we define the weighting 
coefficient vector β by a linear combination of the train-
ing observations (Eq. 16), we arrive at the new functional 
form for support vector regressor (SVR) (Eq. 17).

Random forest
The Random Forest (RF) algorithm [54] is an ensemble 
method which makes predictions from the average of 
many individual decision trees predictions. The RF algo-
rithm uses bagging with replacement to create n samples 
from a dataset and builds a decision tree on each of those 
bagged samples, creating a “forest” of random decision 
trees. The features, or input variables x, can also be sam-
pled during this process. This approach reduces the com-
mon problem of overfitting with decision trees. In Eq. 18, 
Ti(x) is an individual decision tree trained on a subset of 
the input variable vector x, and there are B decision trees.

Results
RMSE response to error
Each dataset was used to generate 15 levels of noise with 
five replicates at each noise level, and the ridge, kNN, 
SVR, and RF algorithms were used to model each data-
set with the various levels of added noise. These noisy 
data simulate the real-world situation in which the 
experimental data has large amounts of random experi-
mental error. Algorithms are optimized and trained on 
Trainnoise, then the resulting model predicts both Testnoise 
and Testtrue sets. The quantities RMSEnoise and R2

noise are 
the metrics of the predicted values versus Testnoise data, 
replicating the real-world situation where test/validation 

(14)ŷ = β0 + β1x1 + . . .+ βnxn = β · x

(15)J (β) = 1

2
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sets have the same level of noise as the training data. The 
quantities RMSEtrue and R2

true are the metrics of the pre-
dicted values versus Testtrue data, our presumed “true” 
endpoint values. Therefore, the RMSEnoise reports on the 
ability of the algorithm, which is trained on Trainnoise, 
to predict the noisy values in Testnoise. In contrast, the 
RMSEtrue reports on the ability of the algorithm to pre-
dict the values in Testtrue, which have no added noise and 
thus represent what we can define as “true” values. In this 
experimental design, for a given noise level, if RMSEtrue 
is lower than RMSEnoise, then the model has made fewer 
errors when predicting the true values.

The results for a representative datasets and algo-
rithm are shown in Figs. 3 and 4 (additional figures for 
other datasets are available in the Additional file  1). 
In order to compare trends in data across algorithm 
and dataset, we chose to normalize the RMSE and the 

amount of added noise by RMSE0, which is the RMSE 
obtained from training and predicting on the origi-
nal noiseless dataset. In the top subplot, the y-axis is 
RMSE/RMSE0. The x-axis is the standard deviation of 
the Gaussian distribution from which the added error 
was sampled (σ), divided by RMSE0. Therefore, the 
y-axis indicates the multiplicative increase in observed 
prediction error, while the x-axis is most accurately 
understood as the fractional amount of error inserted 
into the dataset standardized by the amount of predic-
tion error seen in the noiseless dataset. In this figure, a 
constant value of 1 on the y-axis would corresponds to 
seeing the exact same error at a particular noise level as 
was seen when modeling the native dataset. Similarly, 
a line through the origin with a slope of 1 would rep-
resent the expected RMSE obtained if one compared 
Testnoise to Testtrue.

Fig. 3  Plots showing RMSE versus the amount of random error added for the g298_atom and Tox134 datasets, for the Ridge regression, k-Nearest 
Neighbors (KNN), Support Vector Regression (SVR), and Random Forest (RF) algorithms. For each plot, the y-axis is RMSE, and the x-axis is the 
standard deviation (σ) of the Gaussian distribution of the added error. The blue lines show data evaluated on test sets with error, and orange lines 
show data evaluated on test sets without error
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For each dataset and algorithm, the RMSEnoise/RMSE0 
clearly increases as σ/RMSE0 increases. The RMSEtrue/
RMSE0 values increase slightly or stay essentially con-
stant, depending on the dataset. What is qualitatively 
clear from these plots is that RMSEtrue/RMSE0 stays low 
and constant, while RMSEnoise/RMSE0 rapidly outpaces 
it. These results, which investigate a variety of different 
datasets and endpoints, are consistent with the work 
of Cortés-Ciriano and coworkers, in which, for pIC50 
datasets, the RMSE on the test set remained constant 
while noise was added to the training set [22]. The fact 
that RMSEtrue/RMSE0 remains nearly constant indicates 
these models are still accurately predicting the noise-
less Testtrue values despite being trained on increasingly 

noisy data in Trainnoise. The RMSEnoise being consist-
ently higher than RMSEtrue for each algorithm and 
dataset indicates that while the models are retaining 
their accuracy, our ability to validate the models as 
being accurate using Testnoise is significantly degraded. 
It is also clear that R2

noise and R2
true generally get worse 

with increasing σ/RMSE0, and that R2
true is better than 

R2
noise for all noise levels. This trend is more apparent in 

dataset/algorithm combinations which have acceptably 
large R2 values, such as the quantum mechanical data-
set G298_atom, than in datasets which have extremely 
low starting R2 values, such as the toxicological dataset 
Tox134. Especially with, for example, the combination 
of Tox134 and RF, both R2

noise and R2
true are 0, indicat-

ing that these predictions are not reliable. Having such 

Fig. 4  Plots showing R2 versus the amount of random error added for the g298_atom and Tox134 datasets, for the Ridge regression, k-Nearest 
Neighbors (KNN), Support Vector Regression (SVR), and Random Forest (RF) algorithms. For each plot, the y-axis is R2, and the x-axis is the standard 
deviation (σ) of the Gaussian distribution of the added error. The blue lines show data evaluated on test sets with error, and orange lines show data 
evaluated on test sets without error
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a small R2 with a small dynamic range makes forming 
conclusions about this particular data tenuous at best.

To facilitate the comparison of these trends between 
algorithms and datasets, a representative quantitative 
measure of the observed behavior was chosen. First, 
the slope of RMSEnoise/RMSE0 versus σ/RMSE0 (mnoise) 
and the slope of RMSEtrue/RMSE0 versus σ/RMSE0 
(mtrue) were obtained by fitting lines to the respective 
data. These slopes directly report on how RMSEnoise 
and RMSEtrue behave with the addition of error to the 
dataset. For example, if mnoise is high, then RMSEnoise 
increases significantly as noise is added to the train-
ing set, meaning the algorithm becomes worse at pre-
dicting Testnoise as Trainnoise becomes noisier. If mtrue 
is high, then RMSEtrue increases significantly as noise 
is added to the training set, meaning the algorithm is 
getting worse at predicting Testtrue as noise is added. 
The ratio of mnoise/mtrue provides a single metric defin-
ing whether a model is predicting closer to true val-
ues or noisy values as the training set becomes noiser. 
If mnoise/mtrue is large, then RMSEnoise is increasing 
much faster than RMSEtrue, and the resultant models 
are predicting true values much more accurately than 
noisy values (as they should). This indicates our predic-
tive power on noisy datasets using such an algorithm is 
likely much better than often perceived from our test/
validation statistics. If mnoise/mtrue is close to 1, then 
RMSEnoise and RMSEtrue are responding very similarly 
to noise, and the model is not predicting true values 
much better than noisy values. Table 3 shows mnoise and 
mtrue, and Table 4 shows mnoise/mtrue ratios.

Inspecting the values of mnoise and mtrue in Table  3 
reveals some consistent behaviors. For a given dataset, 
mnoise and mtrue are reasonably constant across algo-
rithms (across rows). This observation is consistent with 
the consistent behavior across algorithms that Cortés-
Ciriano observed [22]. For a given algorithm, m (and to 
a lesser extent mtrue) vary more significantly over datasets 
(down columns). This indicates that the RMSE response 
to added error is consistent for a given dataset with dif-
ferent algorithms, and that the RMSE response is highly 
variable for a given algorithm across different datasets. 
These datasets were chosen specifically to encompass 
a range of experimental complexity and thus a range of 
native random experimental error. While not definite, the 
variable nature of the RMSE response to noise over data-
sets may indicate that these algorithms respond differ-
ently to different amounts of native error; Cortés-Ciriano 

Table 3  Slopes mnoise and mtrue for each dataset and algorithm

a Entries marked with * have p-values above 0.05 and thus are not statistically significant

Dataset Slope Ridge kNN SVR RF

G298_atom mnoise 0.98 ± 0.011 0.79 ± 0.032 0.71 ± 0.032 0.79 ± 0.030

mtrue 0.090 ± 0.010 0.09 ± 0.011 0.08 ± 0.00 0.09 ± 0.013

Alpha mnoise 0.79 ± 0.033 0.83 ± 0.037 0.87 ± 0.023 0.89 ± 0.032

mtrue 0.12 ± 0.016 0.10 ± 0.012 0.12 ± 0.014 0.11 ± 0.013

Lip mnoise 0.40 ± 0.031 0.36 ± 0.024 0.44 ± 0.024 0.41 ± 0.031

mtrue 0.020 ± 0.011 0.021 ± 0.010 0.062 ± 0.013 0.032 ± 0.012

Solv mnoise 0.75 ± 0.031 0.81 ± 0.031 0.89 ± 0.033 0.72 ± 0.031

mtrue 0.13 ± 0.022 0.27 ± 0.011 0.27 ± 0.012 0.12 ± 0.012

BACE mnoise 0.52 ± 0.042 0.53 ± 0.041 0.67 ± 0.033 0.54 ± 0.031

mtrue 0.041 ± 0.021 0.052 ± 0.011 0.23 ± 0.023 0.050 ± 0.011

Tox_102 mnoise 0.44 ± 0.031 0.49 ± 0.043 0.44 ± 0.031 0.43 ± 0.031

mtrue 0.010 ± 0.00 0.053 ± 0.011 0.00*a 0.010 ± 0.00

Tox_134 mnoise 0.52 ± 0.034 0.57 ± 0.034 0.55 ± 0.031 0.49 ± 0.033

mtrue 0.01*a 0.041 ± 0.00 0.010 ± 0.00 − 0.020 ± 0.010

LD50 mnoise 0.44 ± 0.042 0.43 ± 0.042 0.48 ± 0.033 0.48 ± 0.031

mtrue 0.00 ± 0.010 0.044 ± 0.016 0.083 ± 0.012 0.033 ± 0.012

Table 4  Ratios of mnoise/mtrue for each dataset and algorithm

a Entries marked with a—had a null or negative denominator
b Entries marked with an * are not statistically significant

Dataset/algorithm Ridge kNN SVR RF

G_298_atom 11 ± 1.3 8.8 ± 1.4 8.9 ± 0.40 8.8 ± 1.6

Alpha 6.6 ± 1.1 8.3 ± 1.3 7.3 ± 1.0 8.1 ± 1.3

Lip 20 ± 12 17 ± 9.0 7.1 ± 1.9 13 ± 5.7

Solv 5.8 ± 1.2 3.0 ± 0.23 3.3 ± 0.26 6.0 ± 0.84

BACE 13 ± 7.7 10 ± 2.8 2.9 ± 0.44 11 ± 3.0

Tox_102 44 ± 3.1 9.2 ± 2.7 –a 43 ± 3.0

Tox_134 52* ± 3.1b 14 ± 0.84 55 ± 3.3 –a

LD50 –a 9.7 ± 4.4 5.8 ± 1.2 15 ± 6.3
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and coworkers observed and commented on the differen-
tial response of algorithms to noise, but did not empha-
size how noise response differed over different types of 
endpoints [22]. For example, the quantum mechanical 
datasets have high mnoise values (approaching 1) while 
toxicity datasets have more moderate slopes (near 0.5). 
It is expected that higher native error existed in the toxi-
cological datasets compared to the quantum mechanical 
datasets and such error could have an impact in observ-
ing the effects of the additional simulated noise. This 
suggests that the RMSE response to additional noise 
likely decreases as the amount of native error in a data-
set increases. In contrast, mtrue varies little and does not 
follow a decreasing trend over datasets. This observation 
indicates that these algorithms are capable of finding the 
“true” values as simulated error was added, regardless of 
the amount of native error in the original dataset.

Analyzing the mnoise/mtrue ratios in Table 4 reveals how 
the relative noise responses of RMSEnoise and RMSEtrue 
change across algorithm and dataset. One immediate 
observation is that the ratios for the Tox102 and Tox134 
datasets are more highly variable than the ratios of the 
other datasets. This variability comes from the fact that 
mtrue is generally very small, so small changes in this 
small number lead to large fluctuations in the mnoise/mtrue 
ratios. This instability could be viewed as one detriment 
of this metric. It is also apparent that the Tox102 and 
Tox134 datasets have the highest ratios, albeit with large 
variability. This means that as noise is added to these 
datasets, RMSEnoise increases much more rapidly than 
RMSEtrue, and the algorithms can predict the true values 
more accurately than the noisy values. We expect that 
Tox102 and Tox134 have relatively high native error com-
pared to the quantum mechanical, physiochemical, and 
biochemical datasets, and we propose that the addition 
of more error to these datasets does not affect the algo-
rithms ability to predict the true values as drastically as it 
does to the other datasets. This proposal is supported by 
the fact that the mtrue values for Tox102 and Tox134 are 
roughly an order of magnitude smaller than mtrue values 
for the G298_atom, Alpha, and Solv datasets.

These experiments used PCA to reduce the number 
of descriptors involved in prediction while maintain-
ing as much variance as possible. Using PCA achieves 
dimension reduction by forming linear combinations of 
the original descriptors; although this process ultimately 
reduces the physical interpretability of the model, it does 
provide a significant computational advantage because 
the predictive algorithm has fewer, but more information 
dense, variables to work with. However, given that this 
preprocessing step is somewhat uncommon in the QSAR 
literature, the effect of using PCA on the mnoise/mtrue 
ratios was tested. The results without PCA in Table  5 

show mixed trends when compared with Table  4. The 
most dramatic effect is seen across each dataset using 
the Ridge algorithm, for which the ratios all drop signifi-
cantly. This is expected because Ridge regression uses 
a regularization to mitigate variance at the expense of 
adding bias; this means that the algorithm is sensitive to 
having many feature variables that complicate finding a 
useful trend. Therefore, when PCA is not used, the Ridge 
algorithm does not predict the true values as well and the 
ratio decreases. For kNN and SVR however, the ratios 
are not sensitive to the use of PCA. This experiment was 
not carried out for RF because computational time scales 
with the number of descriptors, so performing the work-
flow without dimension reduction made the calculation 
time unreasonable. The other apparent trend is that the 
ratios for the Tox102 and Tox134 datasets are signifi-
cantly reduced without PCA. This result suggests that 
predicting the true values in these datasets is sensitive to 
the number of descriptors, so that when many extrane-
ous descriptors are used the ratios become smaller.

Additionally, it is useful to contextualize the amount of 
simulated error which has been added to these datasets 
within what is known about experimental uncertainties. 
Estimates for most of the endpoints used in this study are 
not readily available, however Kramer, Kalliokoski and 
colleagues found from an examination of the ChemBL 
database that heterogeneous pIC50 data has an average 
standard deviation of 0.68 log units [19]. For the BACE 
dataset, which uses a pIC50 endpoint, 1.1 log units of 
noise were added, or 1.6 times the average standard devi-
ation reported in ChemBL.

Gaussian process results
In addition to quantifying how accurate QSAR predic-
tions are, it is very useful to quantify how precise pre-
dictions are. While machine learning algorithms such as 
Ridge regression, kNN, SVR, and RF do not have a direct 
method of quantifying the precision or uncertainty of the 

Table 5  Ratios of mnoise/mtrue without Principal Component 
Analysis

Dataset/algorithm Ridge kNN SVR

G_298_atom 1.4 ± 0.10 8.0 ± 1.4 5.1 ± 0.22

Alpha 1.7 ± 0.13 13 ± 3.4 4.7 ± 0.58

Lip 1.9 ± 0.53 12 ± 5.0 3.1 ± 0.26

Solv 1.4 ± 0.080 2.5 ± 0.24 3.3 ± 0.48

BACE 1.6 ± 0.10 6.8 ± 0.95 14 ± 0.64

Tox_102 1.5 ± 0.075 6.4 ± 0.70 7.6 ± 0.29

Tox_134 1.0 ± 0.15 7.8 ± 1.2 10 ± 0.44

LD50 1.3 ± 0.15 7.5 ± 1.0 31 ± 1.7
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predictions made on each molecule, the Gaussian Pro-
cess (GP) algorithm does provide direct uncertainties for 
each of its predictions. We utilized the GP algorithm to 
investigate how prediction precision is affected by the 
addition of simulated error into each dataset.

There has been extensive work carried out on the gen-
eral topic of prediction uncertainties in the QSAR litera-
ture, typically involving Bayesian methods. Wood and 
coworkers analyzed model output with the Kullback–
Leibler divergence to generate estimates of prediction 
uncertainty [55]. Burden introduced GP to the QSAR 
community [56], Obrezanova and coworkers later applied 
GP to ADME properties, highlighting its usefulness as an 
application in drug discovery [57, 58], and many other 
works have utilized GP with other endpoints [59–61]. 
Cortés-Ciriano and coworkers applied GP to the field of 
proteochemometrics, using the prediction uncertainty 
to estimate the applicability domain of the model [62]. 
Conformal prediction is a non-Bayesian technique which 
also produces confidence intervals, and has been applied 
often in QSAR and computational toxicology [63–71]. 
Conformal prediction has the advantage that it does not 
require the selection of a prior distribution like GP, which 
means that no assumptions need to be made about the 
underlying distribution of the data. While a quantitative 
comparison of conformal prediction and GP is outside 
the scope of this work, the comparison has been made 
elsewhere [72]. The advantage of providing prediction 
uncertainties in the field of QSAR motivated the study of 
GP in this work, in order to understand how the addition 
of noise to the various datasets affects the precision of 
the predictions.

Following the analysis of the Results section for the 
other algorithms, we examined RMSE and R2 for GP to 
give a measure of prediction accuracy. However, to quan-
tify prediction precision, we examined the prediction 
uncertainty σŷ, or width of each individual prediction. We 
examined both the mean σŷ (Eq.  21), which is the aver-
age of all the individual prediction uncertainties, and the 
σŷ 95% confidence interval (Eq. 22), which is the spread 
of the individual prediction uncertainties. An important 
point of emphasis is that the prediction uncertainty σŷ 
is completely dependent on the descriptor values and is 
independent of whether the prediction is evaluated using 
the true test set or the noisy test set. In other words, the 
precision of a prediction is completely dependent on how 
close that molecule is in feature space to other molecules. 
This behavior contrasts with the metrics RMSE and R2, 
which depend entirely on whether the “true” answer 
comes from a true test set or a noisy test set.

The GP algorithm also has the option to include infor-
mation about the uncertainty of the experimental meas-
urement vector Y; we will define this uncertainty vector 

as σy (Eq. 24). When σy is given to GP, the algorithm can 
incorporate this information to adjust the precision of 
each element in its prediction vector Ŷ. Ignoring native 
error in the datasets, the uncertainty in the measure-
ments σy is just the width of the gaussian distribution 
from which the error was sampled; each term σyn within 
the vector σy will be the same.

Plots of a selection of GP results are shown in Fig.  5, 
and the tabulated GP prediction accuracy results are 
shown in Table  6. Each row gives the ratio of mnoise to 
mtrue for each dataset. The first column shows values for 
which uncertainty in the Y vector was not provided, and 
the second column shows values for which uncertainty in 
the Y vector was provided. For the first column, without 
σy, the mnoise/mtrue ratios are all greater than 1, however 
they are somewhat lower than average than the ratios 
for the other algorithms, which are shown in Table  4. 
This result suggests that GP when instructed to assume 
no uncertainty exists in its training set is not as robust 
to error inserted into its training set, at least in compari-
son to the other algorithms in this study. However, in the 
second column, where σy was provided to GP, the ratios 
increased. The mnoise/mtrue ratio approximately doubled 
for the BACE dataset, and more than quadrupled for the 
Alpha dataset. This result shows that when information 
about the uncertainty in the measurements is known, the 
GP algorithm makes predictions which are much closer 
to the true values than the artificially noisy values with a 
similar robustness to other learning algorithms. The abil-
ity to directly incorporate measurement uncertainty into 
predictions is a unique feature of the GP algorithm and 
provides useful insight into how prediction accuracy and 
precision are connected to experimental error.

As mentioned above, GP provides quantitative infor-
mation about the uncertainty in its predictions, which 
is contained in the vector σŷ. In order to investigate how 
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prediction precision is affected by the addition of simu-
lated error, the prediction uncertainty σŷ was plotted 
versus the amount of added error σ. Additionally, the 
effect of providing measurement uncertainty σy to the 
GP algorithm was explored. Table 7 shows the slopes of 
mean σŷ versus σ and the σŷ 95% confidence interval ver-
sus σ, for GP models where σy was and was not provided. 
Slopes were obtained by linear fits to the data, although 
in some cases the data was significantly non-linear; while 
this analysis is imperfect, we feel that it still allows useful 
qualitative trends to be captured.

Inspection of Table  7 and the accompanying Fig.  6 
show that when the measurement uncertainty σy is 
withheld from the algorithm, the slopes of mean σŷ ver-
sus σ are all positive. This indicates that prediction pre-
cision gets worse as noise is added into the data. These 
slopes also generally become smaller as the qualitative 

complexity of the datasets increase. This could be 
attributed to the amount of native error present in each 
dataset. For example, while the G298atom dataset has 
no experimental uncertainty because it is composed 
of quantum mechanical endpoints, the Tox102 data-
set is composed of in vitro measurements with a large 
degree of variability. Because the Tox102 dataset con-
tains more native error, the prediction precision is not 
as sensitive to the addition of noise.

The slope of prediction uncertainty σŷ is very sensi-
tive to the inclusion of measurement uncertainty σy. 
Including measurement uncertainty in the calcula-
tion decreases the slope for each of the datasets, even 
causing some of the slopes to become negative. This 
indicates that information about the variability in the 

Fig. 5  Plots showing RMSE versus the amount of added error to the Solv and Tox134 datasets, using Gaussian Process algorithm. Plots on the left 
are for data where no information about the added error has not been fed to the GP algorithm, and plots on the right are for data where added 
error information has been fed to the GP algorithm

Table 6  Ratios of m to mtrue for the Gaussian Process algorithm

a Slopes mnoise and mtrue were calculated excluding the first point due to a 
discontinuity in the line
b The slope mtrue was negative for these plots, so the slope ratio was not 
calculated

Dataset No σy With σy

G_298_atom 6.9 ± 1.5 1.7 ± 0.26

Alpha 1.8 ± 0.11 9.3 ± 0.37a

Solv 1.6 ± 0.24 2.4 ± 0.17a

BACE 3.7 ± 2.0 8.6 ± 1.6a

Tox_102 2.7 ± 1.7 –b

Tox_134 6.5 ± 1.6 –b

LD50 5.3 ± 0.74 5.5 ± 0.83

Table 7  Slopes of mean σŷ and σŷ 95% CI versus σ for the 
Gaussian Process algorithm. Results are shown with and without 
the input of σy into the algorithm

a The first point was omitted in these calculations because of a discontinuity in 
the line

Dataset No σy No σy With σy With σy

Mean σy σy 95% CI Mean σy σy 95% CI

G_298_atom 1.0 0.40 0.52 − 0.10

Alpha 1.1 0.16 0.44a 0.32a

Solv 0.94 − 0.19 0.10 0.10

BACE 0.25 0.38 − 0.12 − 0.35

Tox_102 0.32 0.028 − 0.96 − 0.48

Tox_134 0.49 0.53 − 0.66 − 0.17

LD50 0.66 − 0.39 − 0.60 0.14
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measurements reduces the effect that added error has 
on the prediction precision. This reductive effect is 
mild for the quantum mechanical and physiochemical 
datasets but becomes more pronounced for the in vitro 
and in vivo datasets. This result shows that even when 
datasets have large uncertainty in the measurements, 
the predictions from GP can apparently become more 
precise as more error is introduced as long as the mag-
nitude of that error is known, the error is normally dis-
tributed, and the error is provided as an input. Error 
in datasets is not always known, nor is it always nor-
mally distributed. The experiments described here nev-
ertheless provide a foundation for understanding how 
the effect of added error can be mitigated when using 
Gaussian Processes, when the nature of that error is 
known. Because of the nature of this experiment, the 
distribution and magnitude of the error was predeter-
mined, which, admittedly, is not a situation that is com-
mon in QSAR modeling.

The 95% confidence interval of σŷ shows more com-
plicated behavior as error is added to the datasets. 
When measurement uncertainty is withheld from the 
algorithm, the slope of 95% confidence interval versus σ 
is positive for each dataset except Solv and LD50, which 
show negative trends. Additionally, the G298atom and 
Alpha datasets show a quadratic trend which levels off 
at high values of σ, which contrasts with the more lin-
ear trends observed in the other datasets. This indicates 
that, generally, the distribution of prediction error is 
getting larger as more error is added to the datasets. In 
other words, as more error is added to the datasets, not 
only does the average prediction uncertainty increase, 
but the spread in those average uncertainties becomes 
larger as well. It remains unclear why this behavior is 
different for the Solv and Tox134 datasets. Although 
the Solv dataset shows a relatively flat slope, the LD50 
dataset shows a clearly negative trend.

Fig. 6  Plots showing prediction error versus amount of added error to the G298_atom and Tox134 datasets, using the Gaussian Process algorithm. 
The top subplots show the average 95% confidence interval for prediction error versus added error. The bottom subplots show the mean prediction 
error versus amount of added error
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When measurement uncertainty is provided to the GP 
algorithm, the trends in the 95% confidence interval of σŷ 
change. The change in behavior is inconsistent and com-
plicated across the datasets but including information 
about measurement uncertainty clearly affects the trends 
significantly. One consistent effect is that the error bars 
become much smaller, which shows that the results are 
much more tightly distributed between the 5 repetitions 
at each level of σ added to the datasets.

Additionally, it is possible to evaluate the mean pre-
diction uncertainty that GP provides by comparing it to 
the mean experimental estimate of uncertainty for pIC50 
provided by Kolliokoski and colleagues [19]. The mean σŷ 
can be obtained using RMSE0 and σnoise of 0 for the GP 
calculations on the BACE dataset. Using the RMSE0 value 
of 0.98 for the GP calculations on the BACE dataset, the 
mean σŷ is 0.79 log units. The estimated experimental 
uncertainty for pIC50 is 0.68 log units, so GP’s prediction 
uncertainty is 1.2 times the experimental estimate, when 
no simulated noise has been added to the dataset.

Discussion and conclusions
The purpose of this work is to examine the common 
assumption that QSAR models cannot make predic-
tions which are more accurate than their training data. 
Many other works have contributed to this general topic, 
including thorough estimations of the random error in 
Ki, [20] IC50, [19] and cytotoxicity [21] databases and an 
investigation of the noise tolerance of machine learning 
algorithms with IC50 data [22]. These works and oth-
ers have supported the well-known phenomenon that 
machine learning algorithms are generally tolerant to 
noise. There is a general contention however that experi-
mental uncertainty sets the upper limit of in silico predic-
tions [20], and this study has attempted to examine that 
assertion. This work has attempted to ask, in the pres-
ence of increasingly noisy data, if these algorithms can 
formulate a trend that predicts closer to the true values 
than the artificial noisy values. However, investigation of 
this central hypothesis has two main limitations. The first 
limitation is statistical, which is that experimental values 
are typically only single values. When multiple values are 
available, there are still too few to reliably approximate 
the population mean for the measurement. This means 
that QSAR models are built on data which may poorly 
capture the physical reality of the trends being modeled. 
This limitation is recognized by the field, but there is lit-
tle that can be done without increasing the rate of experi-
mentation. The second limitation is the assumption that 
test sets and validation sets have no associated error, or 
at least this assumption is necessitated by the methods 
used. Because QSAR models are evaluated on these test 
and validation sets, this means that QSAR models are 

being judged by their ability to predict error laden values, 
when they should be judged by their ability to predict the 
population means of measurements. The result of these 
limitations is that it is commonly assumed/stated that 
QSAR models cannot make predictions which are “bet-
ter” or more accurate than their training data. A more 
exact statement would be that cross/external valida-
tion statistics (our standard metrics of predictivity) for 
QSAR models are limited based on the accuracy of the 
dataset. The present work has designed a set of experi-
ments to examine these limitations and this hypothesis 
by adding simulated error into a variety of representative 
QSAR datasets and designating two classes of test sets. 
The first class of test set comes from “true” error free 
values, and the second class of test set comes from the 
“noisy” error laden values. The difference in performance 
metrics between these two classes of test sets allows us 
to examine whether models can really generate predic-
tions which are more accurate than the noisy data they 
were trained on. The error added to the datasets in this 
work was Gaussian distributed, which provides a conven-
ient analogy for real-world data situations in which end-
point values fall somewhere on a Gaussian distribution of 
error. It is true that this situation is not always the case. 
Despite the fact that the present experiments are test-
ing a hypothesis that could be labeled an “ideal” case of 
dataset error, we posit that it still provides useful conclu-
sions that have not been clearly stated in QSAR modeling 
literature.

The results show that there is a consistent difference 
in the RMSE when predictions are evaluated against 
the true and noisy test sets, across 5 algorithms and 
8 datasets. The RMSEtrue values are all lower than the 
corresponding RMSE values. When increasing amounts 
of error were added to the datasets, the difference 
between RMSEtrue and RMSE became larger. This indi-
cates that these models are predicting true values more 
accurately than noisy values, even when the algorithms 
are trained on data with large amounts of added simu-
lated error. This scenario mirrors what likely happens 
for many QSAR models. A model is built on data with 
an unknown amount of error, which means that each 
experimental value may fall an unknown distance away 
from the true population mean for that measurement. 
Evaluation statistics for the QSAR model are then gen-
erated on internal test sets or an external validation set 
which are composed of values with unknown amounts 
of error. The RMSE, when calculated for these test 
sets, may be quite high, and thus the model is judged 
to be flawed. Work examining uncertainty in pKi data 
asserts that if the uncertainty in training and valida-
tion sets are comparable, then the minimum RMSE 
obtainable should be equivalent to the uncertainty in 
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the experimental data [20]. While this applies to situ-
ations in which experimental uncertainty estimates are 
available, it does not as readily apply when these esti-
mations are unavailable. These results show that those 
models may very well be predicting the population 
means of those measurements, but this fact is obscured 
by the error in the test sets. Even from a very conserva-
tive interpretation of the results shown here, this study 
indicates that this situation is plausible.

The results also show that the difference between the 
observed RMSE and the unknown RMSEtrue depends 
on algorithm and dataset complexity. This is an impor-
tant observation, because it suggests that when models 
using different algorithms are compared, they may have 
significantly different accuracies, even if the observed 
RMSEs are very close. For example, examining the Solv 
row in Table 3, the mnoise/mtrue ratio is 3.3 for SVR and 
6.1 for RF. This means that in a real modeling situation, 
if these SVR and RF algorithms produced the same 
RMSE for the Solv dataset, the RMSEtrue’s (and the rel-
evant comparison) would be different by a factor of 1.8. 
Because real world datasets are undeniably rife with 
unknown amounts of error, this example demonstrates 
that comparing QSAR models through error laden test 
sets may be producing misleading conclusions in terms 
of model performance.

It is important to recognize that error in training sets 
appears to result in only a minor increase in “true” pre-
dictive error as assumed in this work (at least when 
work with datasets containing 1000 datapoints). In gen-
eral, QSAR evaluation techniques cause us to perceive 
large amounts of predictive error when our training sets 
have error; this phenomenon is represented by the large 
RMSEnoise (what is observable in the general case) com-
pared to the small RMSEtrue (what unobservable in the 
general case). These observations were made by Cortés-
Ciriano and coworkers on pIC50 datasets, and the current 
work complements and extends those initial studies [22]. 
Therefore, new learning methods will not resolve the 
issue. While some methods like Gaussian Processes and 
Conformal Prediction take error into account as part of 
training and allow modelers to estimate prediction pre-
cision, there are associated limitations. Conformal Pre-
diction requires that a segment of the training set be put 
aside for calibration, while Gaussian Process requires a 
reasonable prior distribution and some knowledge of the 
experimental uncertainty to be effective. Much effort has 
been given towards analyzing experimental uncertainties 
for endpoints such as pKi, [20] pIC50, [19] and cytotox-
icity [21] using public databases, providing useful inputs 
for methods like Gaussian Process and Conformal Pre-
diction. Efforts towards estimating uncertainties of other 
common QSAR endpoints would be welcome.
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