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Abstract
The greater awareness of non-renewable natural resources preservation needs has led to the development of more ecological 
high-performance polymeric materials with new functionalities. In this regard, biobased composites are considered inter-
esting options, especially those obtained from agro-industrial wastes and by-products. These are low-cost raw materials 
derived from renewable sources, which are mostly biodegradable and would otherwise typically be discarded. In this review, 
recent and innovative academic studies on composites obtained from biopolymers, natural fillers and active agents, as well 
as green-synthesized nanoparticles are presented. An in-depth discussion of biobased composites structures, properties, 
manufacture, and life-cycle assessment (LCA) is provided along with a wide up-to-date overview of the most recent works 
in the field with appropriate references. Potential uses of biobased composites from agri-food residues such as active and 
intelligent food packaging, agricultural inputs, tissue engineering, among others are described, considering that the specific 
characteristics of these materials should match the proposed application.
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1 Introduction

Climate change due to greenhouse gases emissions (GGEs) 
is only one of the several problems derived from an unsus-
tainable linear economy: such as hiking raw materials prices, 
increasing products demand, resources depletion, irrevers-
ible environmental damage, and waste accumulation. Thus, 
a new regenerative economic view based on a balance 
between economy, environment, and society aims at a cir-
cular production/consumption system seeking to maximize 
resources use and avoid or, at least, minimize environmental 
impact [1]. A circular approach implies the substitution of 
fossil fuels as an energy source and petroleum-based prod-
ucts, such as plastics, for sustainable energy systems (i.e., 
solar, eolic, biofuels, etc.) and renewable feedstock (mainly 
biobased products); the development of easily recyclable or 

biodegradable products; optimization of waste management 
systems; and the design of products from residues.

Most petroleum-based plastics are highly resistant to 
degradation in nature, being able to persist for hundreds 
of years in the environment [2]. Even though they are 
potentially recyclable, only about 20% of all the plastic 
produced globally is properly recycled or reused [3]. Even 
with efficient waste management and recollection sys-
tems, the recovered polymers are often shipped to coun-
tries with low environmental regulations and control [4]. 
These, along with the continuous increase in total plastic 
production and consumption have led to severe plastic 
pollution, especially in the marine environment. Plastic 
littering in the oceans represent a hazard to marine fauna, 
directly damaging their habitat, constituting dangerous 
traps, and tampering with their food chain. Microplastic, 
plastic broken into small pieces by erosion, is ingested by 
marine mammals, reptiles, birds, and fish which can be 
mortal and affects seafood safety, hence human health [5]. 
Besides, plastic accumulated in coastal regions degrade 
their natural attraction having a further impact on tour-
ism and local economies based on this activity. Therefore, 
biobased and biodegradable plastics have gained interest 
as potential substitutes for conventional polymers with a 
growing market and a global production accounting for 
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about one percent of the over 368 tons of plastic that are 
nowadays annually produced [6]. Given their biodegrada-
bility, these biobased materials offer new end-of-life routes 
such as organic recycling through aerobic or anaerobic 
degradation, agricultural mulching, solubilization, or bio-
degradation in the environment, resulting in fewer wastes 
accumulation and soil contamination [1].

Given this context, a transition towards sustainable 
biobased productions is sought. Generally, biomass is rec-
ognized as a sustainable alternative to fossil fuels due to 
its abundant availability, carbon neutrality, and low sulfur 
content. However, if not based on a sustainable approach 
biofuels production entails extensive land use, soil acidifica-
tion, and eutrophication among other environmental impacts 
related to intensive agro-industry such as competition amid 
food and energy crop growing and limited net GGE reduc-
tions [7]. In this regard, biodegradable and biobased plastics 
face similar challenges as alternatives to conventional plas-
tics. Therefore, more sustainable biofuels and biobased prod-
ucts, such as food and pharmaceutical ingredients; fine, spe-
cialty, and commodity chemicals; polymers; and fibers have 
been developed from non-food crops, agricultural wastes, 
and forest residues to be coproduced in biorefineries [8]. Par-
ticularly, the use of agri-food waste has enormous potential 
in sustainable bioeconomy or green economies considering 
the food manufacturing industry [9]. In traditional agricul-
tural settings, production residues are usually burnt or land-
filled, which results in a noticeable  CO2 generation [10]. 
Other typical agri-food waste management implies its use as 
animal feed or fertilizer supply, composting, and anaerobic 
digestion, yet recovery and valorization capacity of these 
residues remain quite limited [11]. Considering that five per-
cent of global GGEs originate from organic waste decay and 
that agri-food residues contain macromolecules, such as car-
bohydrates, proteins, and lipids, as well as active compounds 
and pigments, strategies to obtain higher value-added mate-
rials from agri-food wastes and by-products are both urgent 
and conceivable [9, 12]. Numerous researches have been 
done and reviewed in this regard, from agro-industrial waste 
and by-products as feedstock for biofuels and bioplastic syn-
thesis [8, 13–15], direct biopolymers, and active compounds 
extraction from agri-food residues [9, 16, 17], are reinforcing 
materials for composite materials [10, 18–24]. Therefore, the 
present review focuses on revising and comparing the exist-
ing studies on fully biobased composite and nanocomposite 
materials, considering different processing technologies, 
and analyzing the potential uses of the developed materials. 
Current limitations on fully biobased products design and 
market as well as LCAs availability are discussed, aiming 
to give a relatively broad outlook on the state of the art and 
future perspectives on the field of sustainable biocomposite 
materials.

2  Potential agro‑industrial wastes 
and by‑products for biobased composites

2.1  Bioplastics

Plastic material is defined as bioplastic if it is either 
biobased, biodegradable, or features both properties. The 
term biobased implies that its components are mainly 
derived from biomass, while biodegradation is a chemical 
process by which a material is converted into water, carbon 
dioxide, and compost by the action of naturally available 
microorganisms under normal environmental conditions. 
For a polymer to be categorized as biodegradable bioplas-
tic should as well meet the following criteria [25]:

• Chemical characteristics: at least 50% of its final com-
position should be necessarily organic matter.

• Biodegradation: it should degrade by a minimum of 
90% of its weight/volume within 6 months under-stim-
ulated composting conditions.

• Ecotoxicity: non-degradable residuals after biodegra-
dation for 6 months should not be a potential threat to 
plant’s growth.

• Disintegration: components’ microscopic fragments 
should be undetectable (< 2  mm) at least within 
2 months under controlled composting conditions.

Bioplastics (both biodegradable and nonbiodegrada-
ble) can then be classified into 4 main groups: directly 
extracted from biomass, synthesized from a biobased 
monomer, synthesized from petrochemicals, and produced 
by microorganisms (Figure 1). They comprise a whole 
family of materials with different properties and applica-
tions and are nowadays ecological alternatives for many 
conventional plastics. The latest market data compiled 
by European Bioplastics in cooperation with the nova-
Institute reported that the global bioplastics production 
capacities are set to increase from 2.11 million tons to 
approximately 2.87 million tons between 2020 and 2025, 
of which biodegradable and biobased bioplastics accounts 
for over 50% of the market [6]. In agreement with Siakeng 
et al. [26]: the biodegradable character creates a positive 
impact in society and also attracts researchers and indus-
tries. Therefore, this work focuses on those bioplastics that 
are essentially biodegradable and extracted directly from 
biomass or obtained by microbial fermentation of biomass.

2.1.1  Biopolymers from biomass

Polysaccharides are the most abundant macromolecules 
in nature, being many of them suitable raw materials for 
bioplastics. They are nontoxic and widely available since 
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they can be obtained from many different sources such as 
plants, microorganisms, algae, and animals. Due to their 
physicochemical properties, many of them are susceptible 
to physical and chemical modifications leading to enhanced 
properties with various applications as biomaterials [27].

In particular, cellulose is a widely available polysaccha-
ride derived from renewable resources [28]. It is generally 
synthesized by plants, but it is also produced by some bac-
teria. Plant-derived cellulose is usually found mixed with 
hemicellulose, lignin, pectin, and other substances, while 
bacterial cellulose is quite pure and has much higher water 
content and tensile strength owing to its longer polymer 
chains. The most used cellulose derivatives are methyl-
cellulose (MC), hydroxypropyl methylcellulose (HPMC), 
and carboxymethyl cellulose (CMC) [29]. Above all, CMC 
has been reported to have excellent film-forming proper-
ties by thermal gelatinization with water-soluble polymers 
[30]. Moreover, nanocellulose or nanocrystalline cellulose 
is a versatile material with great mechanical and chemical 
resistance that is becoming increasingly valued for several 
applications, from packaging to electronics, yet limited by 
availability and cost [31–33].

Most plants produce starch as energy storage; thus, this 
polysaccharide can be extracted from rice, cassava, corn, 
wheat, and potatoes, among others. Starch is a carbohydrate 

that contains a great amount of glucose units combined 
through glycosidic links, however functional and structural 
dissimilarities are present among different botanical species 
[34]. Starch differ in type and content of two constitutive 
D-glucose macromolecules: amylose, linear, and helicoidal 
polymer; and amylopectin, with a branched structure [35]. 
The amylose content may vary from 20 to 25% in cereal 
starches, 15 to 30% in roots and tuber starches, and up to 
40% in fruit starches, while the amylopectin content varies 
from 75 to 80% by weight. Even though starch has proven 
thermoplastic properties, its efficiency as a raw material for 
bioplastics depends upon its specific structure and compo-
sition [36]. Thermoplastic starch is obtained by the starch 
granule disruption in the presence of plasticizers. Extrusion 
processing employing low moisture content, high tempera-
ture, and pressure melts the starch granules into a single 
continuous phase component that can later be mixed with 
other components to form a film [25].

Pectin is an important natural polymer with diverse indus-
trial applications. It is present in various fruits and vegeta-
bles such as berries, apples, and oranges and is extracted 
mainly from the processing residues of these agricultural 
products [37, 38]. Pectin has attracted great interest because 
of its distinctive characteristics: it has the ability to freeze 
in the presence of acids and sugars, presents high viscosity 

Fig. 1  Bioplastics classification 
according to production process 
and origin with some examples
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and aqueous-absorbent gel properties, and it is easily soluble 
in water but is insoluble in ethanol [39]. Therefore, it shows 
great potential for the development of biobased membranes, 
films, and edible coatings in the food packaging field [40, 
41]. Pectin films are effective in the protection of low mois-
ture food [42], while pectin coating are used to preserve 
fresh fruits and vegetables [38]. Moreover, cross-linking 
of pectin films with polyvalent cations, such as calcium, 
enhance their mechanical properties [43].

Likewise, being the second-most abundant biopolymer in 
the world (after cellulose), chitin is a promising raw mate-
rial for bioplastics. It is the main structural component of 
the fungi cell wall and can be also found in shells of ocean-
dwelling crustaceans such as crab and shrimp. Chitosan is 
obtained from the chemical modification of chitin, extracted 
from fungi and shells, after numerous chemical treatments. 
Soluble in weak acid solutions, chitosan can be dried to a 
solid plastic film and strengthened by soaking in alkaline 
solutions with promising uses for packaging and medical 
applications [44–49]. In addition, near 150,000 tons of chi-
tin-rich waste is annually produced by the seafood industry 
worldwide [50]. These residues have a high environmen-
tal impact, little commercial uses, and high waste-disposal 
cost, thus extracting a high-added-value bioplastic from this 
waste creates an excellent cost-effective and more sustain-
able opportunity for the seafood industry.

Regarding marine origin biopolymers, carrageenan and 
alginate are worth mentioning as anionic polysaccharides 
found in the outer cell wall of red and brown algae. Algi-
nates have been used for encapsulation of chemical and 
biological compounds with a wide range of applications in 
agriculture, food technologies, pharmaceutical cosmetics, 
chemical engineering, environmental engineering, paper and 
textile industry, and many others due to their nontoxicity, 
biocompatibility, and the ability to cross-link with cations 
[51–55].

Furthermore, many proteins from vegetable and animal 
sources can be used as the raw material for developing bio-
plastics materials. Wheat gluten, for instance, a by-product 
from the bio-ethanol industry, is relatively inexpensive, 
abundant, and basically used as animal feed but is ther-
moplastic in nature and presents interesting film formation 
capacity, gas barrier, mechanical and biodegradation prop-
erties that have risen the interest in its use in the packaging 
industry [56]. Wheat gluten-based biocomposites and nano-
composites with improved barrier and mechanical properties 
particularly suitable for packaging have been reported [57, 
58].

2.1.2  Polymers from microorganisms

Microorganisms are a source of biopolymers using agri-
cultural wastes as growth media. Although currently more 

expensive, bacteria have the potential of yielding bioplastics 
having properties comparable to those of conventional poly-
mers that can be further modified by changing the growing 
medium and conditions of the bacteria. Bioplastics from the 
microbial production process have been optimized with a 
wide range of end products showing diverse properties [25]. 
Numerous of these microbiologically synthesize biopoly-
mers have gained acceptability in food and other industrial 
applications among which polyhydroxyalkanoates (PHAs) 
have attracted particular interest. PHAs are polyesters of 
hydroxy acids naturally synthesized by bacteria as carbon 
reserves. These biopolymers are accumulated as cytoplas-
mic inclusions in certain bacteria during unbalanced growth 
conditions, usually characterized by an excess in feed supply 
and the lack of one or more essential nutrients [59]. PHAs 
are synthesized by different groups of bacteria from cheap 
renewable resources, yet in order to effectively exploit the 
commercial production of these biopolymers, it is important 
to select a bacterial strain having the highest PHAs yields 
growing on inexpensive carbon sources with efficient fer-
mentation and requiring simple recovery processes.

More than 150 different PHA monomers have been 
identified, which renders them the largest group of natu-
ral polyesters [60]. For instance, poly(3‐hydroxybutyrate) 
(PHB), poly(3‐hydroxyvalerate) (PHV), and their copolymer 
poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) are 
typical examples of short‐chain‐length PHAs. Particularly, 
PHB is the most popular and promising PHA as an alterna-
tive biomaterial, since it has similar properties to conven-
tional polyesters such as PE and polypropylene (PP) [61]. 
Its application includes packaging materials, bags, contain-
ers, sutures, targeted tissue repair, and regeneration devices, 
cardiovascular stents, polymer-based depots for controlled 
drug release or implants, and disposable items like single-
use cups and diapers [62]. Despite its biobased nature, bio-
degradability, and versatility, the high production cost of 
PHB is the main obstacle for its commercialization, being 
this at least three times higher than the conventional plastics 
such as PP and PE and similar to biopolymers like PLA [14]. 
Such high costs are mainly attributed to expensive substrates 
and processing [63]. Therefore, the use of cheaper feedstocks 
is a key factor towards reducing PHB production costs. Food 
wastes [64], wastes from beer breweries [65], cheese whey 
[66], olive mill wastewater [67], and hydrolyzed corn starch 
[68] are some resources that have been investigated for sus-
tainable PHB production.

In the last decades, bacterial nanocellulose (BNC) has 
gained increasing interest because of its remarkable physical 
and chemical properties, including green technology pro-
cessing, low production costs, elevated mechanical proper-
ties, hydrophilicity, and excellent biocompatibility and bio-
degradability [69]. Certain gram-negative non-pathogenic 
bacteria genera were reported to produce nanocellulose 
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extracellularly [70]. It should be noted that despite sharing 
a common backbone there are marked differences between 
plant and bacterial cellulose. Plant fibers are composed of 
lignin, hemicelluloses, pectin, and only 40–70% of cellulose 
[71]. In contrast, bacterial cellulose is made up of pure cel-
lulose nanofibers, displaying high purity and strength, with-
out requiring subsequent refining treatments. BNC ultrafine 
structure presents higher crystallinity and polymerization 
degree, greater liquid absorption capacity, larger specific 
surface area, and better mechanical properties making it a 
superior choice to plant-sourced cellulose in many appli-
cations, especially in packaging [72] and biotechnological 
industry [73].

2.1.3  Polymers synthesized for monomers derived 
from biomass

Among bioplastics biobased nonbiodegradable polymers as 
bio-PP or bio-PE account for 41.8% of the current global 
bioplastics production [6]. Meanwhile, along with starch-
based bioplastics, PLA is one of the most largely produced 
biodegradable biobased polymers (18.7% of the total annual 
bioplastic production in 2020). This versatile compostable 
biopolymer is synthesized from lactic acid, a naturally 
occurring organic acid easily produced by chemical syn-
thesis or fermentation. Similar to other bioplastics, one of 
the main obstacles in PLA commercial use is their cost, 
thus the use of blends with cheaper biodegradable biobased 
polymers (i.e., starch) and its biocomposites with low-cost 
natural fillers has been studied and reported [74, 75]. PLA-
based packaging can now be purchased almost everywhere, 
from food containers, disposable cutlery to suture thread and 
3D printing filaments. Consequently, research on enhanced 
PLA biocomposite for such applications is still under study 
[74, 76–81]. Due to its biocompatibility, biodegradability, 
nontoxicity, and high strength, it has been studied for inno-
vative biomedical and pharmaceutical applications, as drug 
delivery systems, wound dressing, and scaffolds for cellular 
growth [82, 83].

2.2  Reinforcing materials

In spite of their renewable and biodegradable character, the 
mechanical resistance, permeability and thermal stability 
of biopolymers tend to be relatively low for some applica-
tions [84–86]. Consequently, the best approach to improve 
their properties and commercial importance is to incorporate 
reinforcing agents [86–90]. The resulting materials known 
as environment-friendly polymer composites, biopolymer 
composites, or biocomposites, have a wide range of next-
generation applications in medicine, electronics, construc-
tion, packaging, and automotive sectors [91]. Composites 
can be defined as materials that are formed by two or more 

constituents which have separate phases and compositions 
conforming to micro- or nano-structures. The composite 
properties are strongly dependent on the matrix (continuous 
phase) and filler (discontinuous phase) interfacial adhesion, 
as well as the reinforcement composition, size, shape, and 
content [90]. The smaller the filler particle size, the greater 
the efficiency for the formation of composites [89]. Biopoly-
mer composites are synthesized using numerous methods, 
being in-situ reaction, solution casting method, and melt 
mixing technique the most employed. Diverse types of fill-
ers can be used that, as suggested by Kumar et al. [92], can 
be divided following several criteria as shown in Figure 2.

In this work, the first classification according to fill-
ers’ origin and composition was considered. Distinctively, 
organic fillers derive from living organisms and are usu-
ally carbon-based compounds, while inorganic fillers are 
salt, metal, and elemental compound obtained from inert 
things. A further description of nanosized fillers (<100 nm) 
obtained by sustainable technology was included due to their 
key importance in high-performance eco-friendly biocom-
posite applications.

2.2.1  Organic fillers

Most of the organic fillers used in green composites (both 
biobased and non-biobased) are derived from renewable 
sources and are generally cellulose-rich materials. Natu-
ral cellulosic fibers, such as hemp, sisal, jute, kenaf, flax, 
and bamboo, among other plant tissue fibers, have been 
extensively used as filler of polymer composite materials 
as substitutes for glass-fiber mainly due to their lower den-
sity and cost, their renewable character and because they 
are less abrasive to processing equipment [85, 93]. Green 
composite materials have been extensively studied and 
applied in the transport and construction industries, from 
windows frames and insulation panels to railroad sleep-
ers and automotive parts, and various other low-cost and 
mild-mechanical-demanding applications such as garden-
ing items, agriculture mulch, and packaging [22, 94–99]. 
Therefore, interest in renewable and biodegradable fillers has 
grown as new sustainable materials are sought, specifically 
since these organic fillers can be obtained from agro-indus-
trial or wood byproducts and residues [23, 88, 98, 100–102]. 
In this regard, fillers with diverse mechanical and surface 
properties, chemical composition, size, and form have been 
studied. Besides, conventional fibers from plant leaves and 
stems that are cultivated for their fibers, other such as wheat 
husk [103], rice straw [104], sugarcane bagasse [105], malt 
bagasse [106], banana leaves, and peel fibers [17, 77, 107] 
are by-products of agri-food production that, among others, 
have been studied as biocomposite fillers [18, 108–110]. 
Furthermore, starch from roots and tubers bagasse and peel 
have also been reported [19, 98, 101, 111–113], as well 
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as algae, microalgae, and their byproducts [83, 114–117]. 
Recently, grasses such as Sabai grass (Eulaliopsis binata), 
an undervalued abundant grass in Asia [118], Cogon grass 
(Imperata cylindrica), one of the ten most aggressive weeds 
in the world [119], and Napier (Pennisetum purpureum 
schum) grass [120] have been considered as composite fill-
ers with promising results. Novel green biocomposites have 
been lately developed from coffee silverskin and starch-rich 
potato washing slurries [121] or tea leaves from tea brew-
ing wastes [122]. Oil industry by-products, as for instance 
sesame, rapeseed, peanut, and sunflower oil cakes have also 
been investigated as fillers for biocomposite films and foams 
[21, 123–127].

Increasing fiber contents tend to promote stiffer materials 
with higher impact strength yet diminishing their flexibility. 
Nevertheless, properties are dependent on filler source and 
content, surface treatments, particle size distribution, and 
processing conditions [88, 100, 101, 128–130]. In general, 
plant tissue fibers are composed of cellulose, hemicellulose, 
and lignin and their reinforcing efficiency depend on the 
cellulose nature and crystallinity and its alignment in the 
cell walls: high cellulose content and low microfibril angle 
(MFA, defined as the angle microfibrils make with respect 
to the fiber axis) are desirable [131, 132]. Yet, natural fib-
ers have low thermal stability (approximately up to 200 °C) 
which limits the processing conditions and the recyclability 
of biocomposites [85]. Nonetheless, as reported by Rama-
moorthy et al. [133] and Chaitanya et al. [74], fiber ther-
mal stability can be enhanced in composite materials as the 
polymer matrix protects the fiber from degrading. Chemi-
cal, physical, and biological pretreatments of the fibers have 
been firstly proposed to improve filler-polymer interaction 

in hydrophobic polymer matrices, though such treatments 
also result in cleaner surfaces, higher moisture content, and 
thermal stability [134–140]. Notwithstanding, various fac-
tors should be assessed in choosing fillers treatments as for 
enhancing biocomposites properties without compromising 
their sustainable character: energy and resources consump-
tion and processing cost (especially in the case of complex 
techniques that result impractical for industrial applications), 
effluents characteristics and volume generated, reagents tox-
icity in long term exposures (for work safety) and life cycle 
environmental impact of the process. Still, one of the major 
problems in the use of plant-based fillers is their properties 
fluctuation with botanical source, cultivation region (with 
different climate conditions and soil composition), and 
harvest season, which can be somewhat tackled by mixing 
batches of sources or types of fibers [131].

Other organic fillers are extracted from wastes. Figure 3 
illustrates the main sources of organic fillers with some 
examples for each. Cellulose micro and nanofibers have been 
isolated by a series of alkali, acid, and mechanical treat-
ments that breakdown the original plant tissue from various 
sources: soybean hulls [141], sugarcane and cassava bagasse 
[142–145], and corncob and pinewood [146], among others 
[120, 147, 148]. Similarly, lignin can be extracted for lig-
nocellulose byproducts and waste [149]. Keratin and chitin, 
which are extracted from animal feed waste such as chicken 
wings or shrimp shells are also employed as composites fill-
ers [22, 150–153]. Furthermore, biochar or activated car-
bon can be obtained from various biomass sources through 
pyrolytic processes [154, 155]. Both present high adsorp-
tion capacity, resulting in special interest in water and air 
decontamination.

Fig. 2  Biopolymer fillers sort-
ing according to three different 
criteria with some examples
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2.2.2  Inorganic fillers

Mineral or metallic fillers are considered inorganic fillers: 
clay and nanoclay, silver nanoparticles (AgNPs), and cal-
cium carbonate  (CaCO3) are among the most common inor-
ganic reinforcement agents of biocomposites.

Due to its great natural abundance, clay is the most fre-
quently used inorganic filler in the composite field. These are 
phyllosilicate minerals usually obtained from the chemical 
weathering of other silicate minerals on earth [156, 157]. 
Clay has a good intercalation property and can swell with 
the absorption of water [158]. Clay can be classified into a 
variety of groups including kaolinite, montmorillonite, illite, 
chlorite, and fibrous silicate [90]. Bentonites consist mainly 
of montmorillonite and can be used as adsorbents, ion 
exchangers, wine clarification agents, and catalysts. Besides 
due to their eco-friendly character, availability, and reusabil-
ity have also been studied as reinforcing agents of polymeric 
matrices [159, 160]. For their applications, the pillaring pro-
cess is commonly used to modify the structural, thermal, 
and surface properties of bentonites. In this regard, Ninago 
et al. [161] proposed an environmentally friendly method 
to obtain Al-pillared clays by using microwave irradiation.

Among minerals, calcium carbonate  (CaCO3) is a widely 
inorganic material used as a viscosity modifier in many 
industries, which is normally obtained from carbonatite-
lava, stalactites, stalagmites, skeletons, or shells of some 
animals. It is an inorganic filler with various potential appli-
cations owing to its low-cost, abundance, and safe character 
[162]. Meanwhile, talc also qualifies as a good reinforcement 
agent because of its platy nature, presenting micron-sized 
length and width and nanometric thicknesses, as well as a 
high aspect ratio (particle diameter/thickness 20:1)[163].

Moreover, granite sand (GS) is an industrial waste derived 
from the granite polishing industry that can cause health 
problems and air pollution due to its powder form. There-
fore, it is highly desirable to find uses in an effective man-
ner to minimize these damages, reducing as well the need 
for new dump lands for these wastes [164]. Granite sand 
is a mixture of different minerals composed of muscovite, 
orthoclase, quartz, and biotite, among others. Particularly, 
muscovite is a laminar silicate of the micas-clays family and 
its structure facilitates the intercalation of organic-inorganic 
species between mineral slabs, which makes muscovite an 
excellent filler for polymeric materials [165]. Passaretti et al. 
[166] employed GS particles as fillers of thermoplastic corn 

Fig. 3  Organic fillers main sources and some examples for each
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starch films, demonstrating the potentiality of this mineral 
for this application.

Figure 4 shows a schematic representation of the pro-
cessing of biocomposite materials with inorganic fillers as 
well as some examples of SEM micrographs of different 
inorganic fillers.

2.2.3  Nanoparticles: green synthesis

Nano-sized particles are characterized by their high surface-
to-volume ratio, which confers exceptional features on them. 
They are synthesized through physical, chemical, or biologi-
cal methods, that are classified into top-down and bottom-up 
synthesis regarding whether the reagents are inorganic or 
are generated from the break-down of a macroscopic mate-
rial by some external agent (Figure 5). Several physical 
and chemical methods like hydrothermal, sol-gel synthesis, 
laser ablation, or lithography, among others, require special 
equipment and skilled labor [167–169]. In addition, some of 
these techniques involve the use of toxic reagents that pose 
health and environmental hazards [168, 170]. For instance, 
silver nanoparticles (AgNPs) can be obtained by the reduc-
tion of a silver salt using strong reducers such as sodium 

borohydride, which is an extremely irritant and corrosive 
agent with high flammability risk [171]. Nowadays, green 
chemistry aims at the total or partial elimination of chemical 
waste and the implementation of nontoxic reagents, envi-
ronmentally acceptable solvents and renewable materials, 
obtaining products with high thermal stability, low volatility, 
and cost-effective production [172–176]. Not only do these 
eco-friendly techniques reduce the use of hazardous sub-
stances, but also employ natural renewable compounds like 
polysaccharides, proteins, or those derived from vegetable 
extracts (mainly leaves, roots, and flowers) and microorgan-
isms like bacteria, fungi, and algae, as reducing or capping 
agents [177–180]. Therefore, the three main concepts of 
nanoparticles green synthesis are the choice of the solvent 
(preferably water); the use of an ecological reducing agent, 
GRAS (substances generally recognized as safe), or natural 
reagents; and a nontoxic material for nanoparticles stabili-
zation (i.e., biopolymers). Products of natural origin con-
tain in their structure phenolic compounds, reducing sugar 
and nitrogen compounds that can reduce metal cations to 
generate nanoparticles and, in certain cases, can also act as 
stabilizers (Figure 5). In turn, the implementation of these 
compounds is also advantageous from the economic point 

Fig. 4  Schematic representation 
of the processing of biocom-
posite materials with inorganic 
fillers as well as some examples 
of SEM micrographs of differ-
ent inorganic fillers
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of view since they do not require high temperatures condi-
tions and reduce energy consumption. Table 1 summarizes 
common metal and metal oxide nanoparticles obtained by 
green synthesis techniques.

The electrical conductivity, high stability, and especially 
the antimicrobial activity of AgNPs have prompted numer-
ous investigations [212, 213]. They can be synthesized by 
chemical reduction [212, 214, 215], laser ablation [211, 216, 
217], electrical and photochemical reduction[218]. Chemical 
reduction of a silver salt, mostly with organic reagents, is 
the most widely used and profitable method for large-scale 
synthesis [219]. Besides, nanoparticles morphology and size 
can be controlled by chemical synthesis depending on the 
capping agent and stabilizer. Several authors have reported 
that spherical and small AgNPs obtained by a completely 
green chemical process show good antimicrobial properties 
even when they were used in low concentrations [212, 214, 
215, 220]. Ortega et al. [221] have successfully coupled the 
AgNPs synthesis with cornstarch-based filmogenic suspen-
sions to develop nanocomposite films. Thus, a simple and 
nontoxic method was proposed to obtain silver nanoparti-
cles where maltose is used a reducing agent, corn starch 
as a stabilizer, and ultrapure water as a solvent. Proposing 
the use of corn starch as stabilizers allows the synthesis of 
AgNPs to be coupled to the filmogenic suspension and thus 
obtain nanocomposite films in just a few steps, optimizing 
both processing time and energy, and reagents consumption. 
Processes coupling requires a prior fine-tuning of the reagent 
concentrations and reaction times to obtain the AgNPs in the 

filmogenic suspension [185, 186]. The AgNPs formation is 
evidenced by the characteristic surface plasmon resonance 
(SPR) between 420 and 445 nm [222]. Several authors have 
synthesized AgNPs with lemon juice, which was spherical 
with diameters around 20 nm as observed by high-resolution 
transmission electron microscopy (HR-TEM), exhibiting 
negative charge considering their Z potential measurements 
[185, 213, 218, 223].

Likewise, ZnO nanoparticles have arisen great interest 
in sensing applications, since they exhibit high electron 
mobility, large exciton binding energy, wide bandgap, and 
high optical transmittance [168]. They can be synthesized 
with different morphologies, such as spheres, discs, ribbons, 
flowers, or bars [224]. ZnO nanorods stand out as reinforce-
ment of active packaging materials due to their excellent 
mechanical performance and their marked antimicrobial 
activity [225]. They can be prepared by different methods, 
being the chemical reactions in solution preferred in terms of 
costs, simplicity, efficiency, and energy consumption [226]. 
Hydrothermal growth in aqueous solution is a widely used 
methodology in the literature for obtaining ZnO nanorods. 
This method uses an aqueous solution of Zn(NO3)2 contain-
ing hexamethylenetetramine (HMTA) which hydrolyzes and 
produces a basic environment necessary for the formation of 
Zn(OH)2 and stabilizes  Zn+2. In general, seeds of ZnO are 
incorporated for the hydrothermal growth of ZnO nanorods 
to improve the morphology and orientation of the bars 
[227]. The ZnO seeds are synthesized through a simple and 
low-cost sol-gel process in a nonaqueous solution of zinc 

Fig. 5  Nanoparticles top-down and bottom-up synthesis
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acetate as a precursor. The precursor hydrolyzes by heat-
ing and forms acetate and Zn ion that binds to the hydroxyl 
groups (-OH) present in the solution resulting in ZnO for-
mation [228]. At this point, the concentration of hydroxyl 
groups in the solution determines the size of the nanoparti-
cles obtained and, in general, is adjusted by incorporating 
NaOH or KOH [229]. Similarly, the chemical reduction of 
Zn solution using natural compounds derived from different 
plant extracts has been reported [168].

Several other nanoparticles with exciting and innovative 
applications like sensors, biomedical, energy storage, and 
packaging applications have been studied and synthesized 
by green technologies as shown in Table 1.

The mechanisms involved in the synthesis of nanopar-
ticles have been extensively reviewed by Polte et al. [230]. 
Ortega et al. [186] synthesized silver nanoparticles using 
the active compounds of lemon juice  (AgNPL) and proposed 
a four-step growth mechanism for this process. First, the 
chemical reduction of the Ag salt occurs by the reducers 
present in lemon juice (mainly ascorbic acid and citric acid, 
in addition to other components such as reducing sugars, 
polyphenols, and flavonoids). Polydisperse particles smaller 
than 1 nm are then formed by coalescence. The third step, 
which can last between 5 and 60 min depending on the syn-
thesis temperature, corresponds to a metastable state where 
the particles reach a mean radius of 1 nm. Finally, the coa-
lescence of the formed particles occurs until colloidal stabil-
ity is sufficient to prevent aggregation. Ortega et al. [186] 
reported that the optimized conditions for the synthesis of 
 AgNPL were 30 min at 90 °C, leading to a 5.5 nm nano-
particle with associated stability (ζ = −29.5 mV) that was 
maintained for up to 90 days. Yet studies on the stability 
of nanoparticles during storage are scarce and are strongly 
recommended for future research in the field [171, 231].

3  Films and foams from biobased 
composites

3.1  Biocomposite films

Biocomposite films are based on different biopolymer matri-
ces and fillers and can be obtained by diverse processing 
methods. As an example of the enormous amount of biocom-
posite films that have been studied to date some of the most 
relevant developments in the last 10 years from different 
biopolymers will be mentioned.

Cellulose is the most abundant biopolymer, and it is 
widely employed for sustainable biocomposite materials 
because of its renewable character, biodegradability, and 
other specific properties. It can be converted to different 
structures with a variety of physical properties, depending 
on the origin of the cellulose and the method of production 

[120]. Cellulose microfibers (CMFs) can be obtained by 
refining dilute cellulose suspensions under high-pressure. 
Nanofibrillated cellulose (NFC), on the other hand, result 
from cellulose fibers disintegration using high pressure 
homogenizers combined with chemical or enzymatic treat-
ments [232]. In addition, if the amorphous parts of the 
cellulose are removed, leaving single and well-defined 
crystals in a stable colloidal suspension, microcrystalline 
cellulose (MCC) can be obtained [233]. Thus, depend-
ing on cellulose structure and the desired properties of 
the final materials, this polysaccharide can be used as a 
biopolymeric matrix or biocomposite filler. In this respect, 
Kumar et al. [120] extracted cellulose fibrils (CFs) from 
Napier (Pennisetum purpureum schum) grass and used 
it as a filler of cellulose matrices. These cellulose-based 
composites obtained by casting, presented good thermal 
stability and higher tensile resistance than conventional 
HDPE and PP, deeming them appropriate for biodegrad-
able packaging, wrapping, and mulching applications. 
Likewise, Spence et al. [234] worked on microfibrillated 
cellulose (MFCs) composite films containing kaolin clay 
and calcium carbonate obtained by casting. Even though 
the authors demonstrated that the addition of mineral fill-
ers reduced films density and water vapor transmission 
rate (WVTR) and presented proper mechanical properties 
for packaging applications, their water barrier properties 
are low in comparison to petroleum-based plastics. Moreo-
ver, Trovatti et al. [235] studied the use of NFC as filler 
of bionanocomposite films with improved thermal and 
mechanical properties prepared by casting of water-based 
suspensions of pullulan: an extracellular homopolysaccha-
ride made up of 1,6-linked maltotriose residues, produced 
by certain strains of the polymorphic fungus Aureoba-
sidium pullulans. Thus, the authors assured that these 
novel bionanocomposites could be labeled as sustainable 
materials since they were prepared entirely from renew-
able resources and through a green approach. In another 
interesting work reported by Oun and Rhim [236], crystal-
line cellulose nanofibrils (CNF) were isolated from cot-
ton linter pulp using an acid hydrolysis method and later 
used as filler of sodium carboxymethyl cellulose (CMC) 
composite the film’s obtained by casting. It was demon-
strated that CNF is highly compatible with the CMC and 
the presence of this filler affected films mechanical and 
water vapor barrier properties. The CMC/CNF composite 
films have a high potential to be used as edible coating 
or packaging films for the shelf-life extension of fresh 
and minimally processed fruits and vegetables. CNFs 
have been also used as fillers of starch-based biocompos-
ite films [145, 237, 238]. The addition of CNFs obtained 
from different biomass sources resulted in increased ten-
sile strength and elastic modulus and led to the reduc-
tion of elongation at break, water vapor permeability, and, 
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in some cases, oxygen transmission rate. Furthermore, 
Farooq et al. [239] utilized a variety of softwood Kraft 
lignin morphologies to obtain strong and ductile CNF 
nanocomposite films with potential food packaging, water 
purification, and biomedical applications. In this work, 
two techniques were employed to obtain biocomposites: 
casting and thermocompression. The incorporation of 
lignin rendered tougher film structure, materials water-
proof while exhibiting complementary UV shielding and 
radical scavenging capability.

Starch-based materials offer a very attractive low-cost 
base for new biodegradable polymers due to their abun-
dance, annual renewability, and ability to be processed 
with conventional plastic processing equipment [22, 35, 
36]. The improvement of mechanical properties of starch-
based materials is an ongoing challenge due to their poor 
mechanical performance, particularly tensile strength 
[240]. Among the various alternatives to improve these 
mechanical properties, blends, and composites have been 
proposed [22, 241–246]. Correspondingly, Ali et al. [241] 
developed fully biodegradable starch-based films by cast-
ing method based on modified (hydroxypropyl) cornstarch 
and two kinds of commercially available polysaccharide-
based macro-crystals (cellulose and starch crystals). They 
demonstrated that the mechanical properties were modi-
fied by crystals addition, increasing the tensile strength 
and elastic modulus, and decreasing elongation at break. 
Besides, the biocomposites showed improved protection 
against UV radiation. Wang et al. [243] studied colla-
gen composites with three different maize starches: waxy 
maize starch, normal starch, and high amylose starch, 
showing higher tensile strength and lower solubility in 
water than collagen film, and increased thermal stabil-
ity and crystallinity. Noteworthily, Stasi et al. [246] sug-
gested a novel and cost-effective reutilization of carbon 
waste ashes as a reinforcing agent of biocomposite films 
based on thermoplastic starch for agricultural applica-
tions. Carbon-based ashes produced by pyrolysis of lig-
nocellulosic wastes were added to glycerol and maize 
native starch in different quantities, which were melt-
processed and molded. The authors reported that ash con-
tent decreased both moisture sorption and degradation of 
starch biocomposites. Moreover, Yin et al. [247] proposed 
to improve the functional properties of starch-based films 
incorporating chitin obtained from shrimp shell powder 
into corn starch matrix. Before blending, maleic anhy-
dride was introduced as a cross-linker and composite 
films were obtained by casting-evaporation. The obtained 
starch-based nano-biocomposite films presented superior 
mechanical properties, higher surface hydrophobicity, and 
enhanced barrier properties, in addition to antibacterial 
properties against Escherichia coli and Staphylococcus 
aureus.

Soy protein isolate (SPI) is another biobased polymer 
with good film-forming ability that can be produced by cast-
ing, extrusion, or injection molding [248–251]. Since SPI 
films have low strength and absorb a high amount of mois-
ture which limits their applications, reinforcing filler has 
been proposed [252–255]. Accordingly, Martelli-Tosi et al. 
[254] investigated the potential use of soybean straw as rein-
forcing filler in SPI films. Both raw soybean straw and sam-
ples treated with alkali (NaOH 5 and 17.5%) and bleached 
with hydrogen peroxide  (H2O2) or sodium hypochlorite 
(NaOCl) was studied. Films added with treated soybean 
straw presented higher mechanical resistance, lower elon-
gation at break, and lower solubility in water; while the addi-
tion of non-treated soybean straw had no significant effect on 
SPI film properties. Alternatively, Zhao et al. [255] devel-
oped a series of epichlorohydrin-crosslinked hydroxypropyl 
chitosan/SPI films with different soy protein contents. The 
authors demonstrated that these materials were tunable in 
terms of their surface structure and mechanical properties 
by changing the SPI content. Biocomposites exhibited good 
cytocompatibility and hemocompatibility, improved wound 
contraction rates, and showed great promotion of granula-
tion tissue regeneration and collagen deposition, which are 
excellent results for skin tissue engineering.

Among the biodegradable polymers, PHB is the principal 
and the most widely used type of the PHA, with high poten-
tiality for replacing fossil-based synthetic packaging [256]. 
Even though this biopolymer displays thermophysical and 
mechanical characteristics similar to polystyrene and isotac-
tic polypropylene, it presents a narrow processing window 
which limits its applicability [257]. Therefore, the develop-
ment of PHB composites has been proposed as a solution. 
PHB biocomposites employing a wide range of fillers, such 
as cellulose nanocrystals [258], graphene [259], agave fiber 
[260], chitosan, and catechin [110] have been developed over 
the last few years. An interesting work carried out by Araque 
et al. [261] focused on the development of PHB and hol-
low glass microspheres and composite films. These materi-
als were obtained through melt intercalation, an innovative 
technique with low environmental impact because it does 
not require solvents use. Besides, Seggiani et al. [116] stud-
ied PHAs based biocomposites with fibers from Posidonia 
oceanica (PO) to assess their processability by extrusion, 
mechanical properties, and potential biodegradability in a 
natural marine environment. These composites provide an 
interesting valorization route for PO fibrous wastes largely 
accumulated on coastal beaches and can be suitable to manu-
facture items usable in marine environments, such as in natu-
ral engineering interventions for restoration or protection of 
coastal habitats.

The processing methods strongly affect the properties of 
the biocomposite materials [262], thus a description of the 
most widely used methods to obtain biopolymeric films are 
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given, mentioning the advantages and disadvantages of each 
of them:

Solution casting: this is the simplest and most frequently 
used method at a laboratory scale for biocomposite films. 
The casting technique consists in spreading a film-form-
ing solution or suspension on small plexiglass or plates, 
in which the film thickness is controlled by the mass 
of suspension poured onto the plate [263]. The drying 
process of these films usually takes place at room tem-
perature or in an oven with air circulation [45, 120, 264]. 
Polymers that are soluble in water are mostly treated with 
this technique and, as stressed by Bondeson and Oksman 
[265], the differences in hydrophobicity or the hydrophi-
licity of the filler and that of the matrix require the use 
of a suitable solvent. Besides, the solvent concentration 
can be decided according to the required characteristics 
and viscosity of the solution. The biopolymers compos-
ites obtained through this technique usually show good 
properties, though constituents distribution throughout 
the film is strongly dependent on the biopolymer and 
filler ratio in the solution [266]. Finally, even though this 
method has been extensively used for research on films 
based on starch and protein, the difficulty in scaling up 
production volumes and the long drying times, make this 
technique impracticable on an industrial scale [267].

Tape-casting: films and coatings can also be prepared 
by the tape-casting technique at a larger scale than those 
usually reported by literature using the classical casting 
technique. In the tape-casting process, a suspension is 
placed in a reservoir with a blade, which height can be 
adjusted with micrometric screws [268]. The suspension 
is later dried on the same support, resulting in a film that 
can be removed from the surface. Depending on the film’s 
characteristics, it can be rolled, cut, drilled, stamped, or 
laminated. The spreading of the film-forming solution 
(or suspension) can be done on larger supports or on a 
continuous carrier tape. The formed film is dried on the 
support, by heat conduction, circulation of hot air (heat 
convection), and infrared heating, resulting in a reduction 
of its thickness.

Extrusion: melt compounding or extrusion, is a con-
ventional method widely used in the polymer industry 
and compound composites where the material is shaped 
through a die. Using extrusion to produce biopolymer-
based composites could reduce manufacturing costs and 
render them more cost-competitive [265]. Extruders can 
be categorized on the number of screws in single, twin, 
and multiple screw extruders, further on the rotation 
mode of the screws can be classified in a single direction 
or in the opposite direction (corotating or counterrotating) 

or a mixture of both for a multiple screw extruder [262]. 
It is important to highlight that biopolymers processing 
by extrusion requires the use of additives, such as plasti-
cizers and antioxidants to thermo-plasticize the polymer 
mix and avoid its degradation. However, it is well-known 
that extrusion processing these kinds of materials is not 
simple; hence optimization of the operating conditions 
(screw speed, configuration, and processing temperature) 
for each composite is necessary.

Blowing: blowing is a process that involves using air 
or nitrogen to inflate a tube of the melt as it comes out 
from the die. The blown film usually grows in a vertically 
upward direction. The die most often has a circular (annu-
lar) geometry, which is the simplest and most convenient 
solution even though the resulting film is less homoge-
neous. The thin bubble is then drawn by a series of nip 
rollers, flattened, and wound up in a reel. Both drawing 
and blowing orient the polymer molecular chains in a pre-
ferred manner. Depending on whether drawing or blowing 
prevailed the final film will be stronger in the longitudinal 
or transverse direction, respectively [269].

The inherent properties of biocomposite films are relevant 
for their applications. As it was stressed by Haniffa et al. 
[270], mechanical and thermal properties are regarded as 
the most relevant properties of biocomposite films. However, 
the physical and chemical characteristics of the main com-
ponents can significantly alter these properties. The thermal, 
mechanical, barrier, and other relevant properties of diverse 
biocomposite films are included in Table 2. As it can be 
observed, the properties of these materials depend on many 
factors, being the most relevant: the type of polymer matrix, 
the filler type and concentration, and the selected process-
ing method and conditions. Consequently, when comparing 
properties and characteristics of different films based on the 
same biopolymer and filler, it is necessary to consider the 
filler concentration and size, as well as processing technique 
and conditions.

3.2  Active biobased composite 
and nanocomposites

Active containers, usually used in food packaging, are those 
containing some substance capable of preserving the organo-
leptic or sensory characteristics of a product to ensure its 
quality. Of special interest are those active packages that 
contain natural antioxidants and antimicrobials that not only 
extend the shelf-life of packaged products by preventing ran-
cidity reactions but also prevent the growth of foodborne 
pathogens [278]. Biodegradable and biobased polymers are 
preferred in the development of active materials for single 
used food packaging due to their low environmental impact 
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1 3

[221, 275, 279, 280]. Among the available natural poly-
mers and compounds, some can be obtained from agri-food 
industrial waste and their use would add value to these resi-
dues and keep them in circulation, one of the premises of 
circular economy. A clear example is the use of chitosan, 
a biodegradable polymer derived from chitin with antimi-
crobial activity that is obtained from the fishing industry 
waste such as crustacean exoskeletons [281]. Likewise, by-
products and wastes from fruit and vegetables processing are 
an important source of compounds with high nutritional and 
functional value such as vitamins, minerals, antioxidants, 
and antimicrobial compounds, though are often discarded 
or derived for animal feed [282]. Essential oils (EOs) that 
can be obtained from these sources have been widely studied 
as additives for the development of active food packaging, 
mainly due to their antioxidant and antimicrobial capacity 
and their GRAS (Generally Recognized As Safe) character 
[283, 284]. Therefore, the use of active compounds derived 
from agricultural by-products not only contributes to the 
recovery of these compounds with specific activities but also 
generates added value for them. EOs are mainly phenolic 
compounds derived from plant secondary metabolites with 
antimicrobial capacity and several therapeutic and health-
promoting attributes. Several authors have reported that the 
addition of EOs can significantly affect the microstructure, 
mechanical and barrier properties of the material depend-
ing on how they are incorporated into the polymeric matrix 
[284–287]. The most commonly reported EOs incorporated 
in biodegradable matrices are rosemary, tea tree, cinnamon, 
oregano, clove, and thyme [86, 288–292]. For instance, Bof 
et al. [16] have developed and characterized active biode-
gradable films based on corn starch and chitosan (CS:CH) 
with the addition of lemon essential oil (LEO) and grape-
fruit seed extracts (GSE). The inclusion of these active com-
pounds, which are by-products of residues derived from cit-
rus processing, did not affect the mechanical properties of 
the material and provided antimicrobial capacity by contact. 
Similarly, Kanmani and Rhim [293] developed antimicrobial 
active films with GSE on carrageenan matrix, with addi-
tional UV barrier capacity, particularly important for UV-
sensitive food packaging. Further interesting biocomposites 
materials with EOs were reviewed in Table 3.

On the other hand, several investigations in recent 
years have focused on studying the effects of the incor-
poration of metal or metal oxides nanoparticles in biode-
gradable matrices [304, 305]. Starch-based and nanoclay 
biocomposites have been the most studied [212, 220, 
306–308], although other biopolymer matrices have been 
used, such as chitosan [309], agar [310, 311], proteins 
[312, 313], or their combination [298, 314]. Usually, this 
strategy manages to improve the mechanical properties 
and susceptibility to the water of the system and, if the 
nanoparticles have antimicrobial activity the composite 

material also acquires this property. For instance, Abreu 
et al. [220] incorporated silver nanoparticles into wheat 
starch films obtained by solvent evaporation (casting). 
The materials obtained presented lower hydrophilicity and 
bacteriostatic activity against Staphylococcus aureus and 
Escherichia coli. Likewise, Ortega et al. [221] showed 
that the incorporation of AgNPs in cornstarch-based films 
decreased the solubility of the material and improved the 
mechanical properties by increasing Young’s modulus and 
tensile stress values without decreasing deformation at 
the break. Similar effects have been reported by Mala-
thi and Singh [315] by  TiO2 nanoparticles addition into 
rice starch films. In this case, the authors showed that the 
nanocomposite material presented a better water vapor 
barrier, enhanced mechanical properties, and bacterio-
static activity against Escherichia coli. The incorporation 
of ZnO nanoparticles has also proven to be an interesting 
strategy for improving the properties and adding bacteri-
cidal activity to starch films. In this regard, Mirjalili et al. 
[316] showed that starch-based films containing ZnO 
nanoparticles have better mechanical properties and anti-
microbial activity against Escherichia coli and Staphylo-
coccus aureus. Likewise, Nafchi et al. [225] reported that 
the incorporation of ZnO nanobars reduces hydrophilicity, 
improves mechanical properties, and provides antimicro-
bial activity against Escherichia coli to sago starch films. 
Yet, Guz et al. [210] demonstrated that the properties of 
starch films containing ZnO nanobars depend strongly 
on their size.

Nanoparticles and EOs biocomposites have also been 
studied with other innovative applications, such as wound 
dressing [45, 317]. Table 3 summarizes different types of 
nanoparticles included in nanocomposite formulations, 
being AgNPs the most commonly used for food packag-
ing applications since they effectively reinforce biopolymer 
matrices and provide antimicrobial capacity over a broad 
spectrum of bacteria, virus, and fungi [185, 186, 221, 318]. 
Although numerous nanocomposites or active systems have 
been studied, the available literature refers mainly to materi-
als manufactured with the solvent evaporation methodology, 
which is difficult to scale up. The development of biodegrad-
able nanocomposite materials through scalable technologies 
is essential for the industrial implementation of such sys-
tems. Even though extrusion is a continuous and scalable 
processing technology, the study of the effect of extrusion on 
nanoparticles or bioactive molecules is still required. In this 
regard, it is necessary to analyze the mixing and distribution 
of the components within the matrix, the resulting interac-
tions, and their effect on the material properties, as well as 
the possible degradation of the additives during the manu-
facturing process. Recent studies have successfully extruded 
biocomposites of thermoplastic starch with nanoparticles 
and EOs [294, 319].
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Particularly, since many biopolymers are hydrophilic, 
the naturally hydrophobic EOs must be compatibilized with 
the polymeric matrix generally by the addition of surfactant 
agents. The most widely used technique for this purpose 
includes the formation of an emulsion or a nanoemulsion to 
ensure the homogeneous distribution of the active compound 
in the matrix. Moreover, given the volatile nature of EOs, 
the processing conditions must be optimized to minimize 
activity loss. Consequently, when extrusion processing is 
desired EOs need to be protected from the drastic treatment 
conditions for which purpose encapsulation is a useful tool 
[320]. Alternatively, Li et al. [302] have efficiently encap-
sulated eugenol (83.4 to 92.7 g/100g) in PLA and gelatin 
nanofibers obtained by electrospinning. Electrospinning 
has also been used by Scaffaro et al. [321] to modulate EO 
migration from solvent casting films in a multilayer com-
posite material. Active laminates were formulated with a 
PLA film containing carvacrol (14%wt) obtained by solvent 
casting and one or two fibrous layers of PLA applied by 
electrospinning. These fibrous layers modulated the carvac-
rol release kinetics, which proved to progressively reduce 
the burst delivery at an early stage of immersion, therefore 
increasing the delivery device lifespan from 288 to 795 h.

Inactive and nanocomposite materials, the study of the 
microstructure helps to understand the interrelation of the 
structure with the properties that determine the performance 
of the material, in addition to being able to infer the effec-
tiveness of the filler inclusion within the matrix. In gen-
eral, when homogeneous surfaces without pores or cracks 
as well as compact cross-sections are visualized by SEM 
the included active compounds or nanoparticles are com-
patible with the polymeric matrix, which also leads to its 
reinforcement. These observations agree with the reported 
mechanical behavior of the nanoreinforced materials listed 
in Table 3. Correspondingly, Bof et al. [16] stressed that 
the presence of discontinuities in the matrix of cornstarch/
chitosan composite films with lemon EO (visualized as oil 
microdroplets by SEM) was indicative of the lack of mis-
cibility of the active compound with the polymer and lead 
to poor gas barrier properties. A similar trend was found by 
other authors working on biodegradable films containing 
different EOs such as orange peel, tea-tree, and ginger oil, 
among others [286, 287, 322]. Consequently, the compatibil-
ity of the active agent with the matrix determines how effi-
ciently the former is incorporated into the polymer network 
and therefore the film microstructure characteristics. In this 
regard, ATR-FTIR spectroscopy is a useful technique that 
has been widely employed to study the interaction among 
the composite constituents. In the same work, Bof et al. [16] 
found by FTIR analyses that hydrogen bonding occurs in the 
corn starch and chitosan blend films containing grapefruit 
seed extract as filler, leading to a more compact and denser 
film structure. Similarly, Sharifi and Pirsa [320] working on 

black mulberry fruit pulp pectin films studied the effect of 
both chlorophyll encapsulated with carboxymethylcellulose 
and silica nanoparticles addition. SEM analysis indicated 
that both active components act as fillers of the pectin struc-
ture. Moreover, their high compatibility was demonstrated 
through FTIR studies since spectra confirmed electrostatic 
interactions between pectin chains with encapsulated chlo-
rophylls and silica nanoparticles. Besides, thermogravimet-
ric analysis (TGA) results revealed that the simultaneous 
addition of these active compounds increases the thermal 
stability of the film [16, 46, 247].

Biodegradable films formulated with polymers derived 
from biomass are, in general, hydrophilic in nature due to 
the presence of a large number of hydroxyl groups in their 
structures. These biomaterials are susceptible to humidity: 
water causes a weakening of the intra- and intermolecular 
bonds (plasticizing effect) which leads to an increase in the 
WVP of this type of polymers [323]. Given the hydrophobic 
character of EOs, it is expected that their inclusion in a poly-
meric matrix formulated with biopolymers improves their 
water susceptibility, measured by WVP, water absorption 
capacity, swelling, contact angle, solubility, and moisture 
content. This trend has been widely reported in the literature 
and is summarized in Table 3. However, as already men-
tioned, the microstructure of the biocomposite is decisive, 
especially regarding barrier properties.

In general, the addition of nanoparticles exerts a rein-
forcement effect on biopolymeric matrices, which has been 
evidenced in the improved mechanical properties (enhance-
ment of mainly tensile strength and elastic modulus) as well 
as barrier properties (Table 3). Ortega et al. [221], for exam-
ple, stressed that AgNPs incorporation in cornstarch-based 
films maintained the material UV-barrier capacity while 
decreasing WVP with higher AgNPs concentration.

EOs incorporation usually confers both antioxidant and 
antimicrobial properties. In this regard, Varghese et al. [282] 
have reviewed the effect of EOs on the physical properties 
of biopolymer films highlighting the migration release of 
the active compounds to different food surfaces or simulant 
media as well as their action mechanisms. Their antioxi-
dant capacity can be evaluated by diverse complementary 
techniques such as DPPH, ABTS, FRAP, ORAC, and total 
phenolic compounds content. The addition of some nanopar-
ticles also provides antimicrobial properties to the materials, 
such as in the case of silver, zinc, copper, and chitin, among 
others. The antimicrobial capacity is evaluated over com-
mon foodborne microorganisms frequently by the agar disc 
diffusion method. It has been observed that, even though 
nanocomposite films generally exhibit inhibition by con-
tact, the observation of an inhibition halo depends on the 
nanoparticle concentration (Table 3). For instance, nano-
composite corn starch films containing AgNPs concentra-
tions greater than 71.5 ppm inhibit the growth of E. coli 
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ATCC and Salmonella spp. and exhibit the corresponding 
halo [221]. Several examples of different biopolymer matri-
ces containing different active compounds and processed 
by casting, thermocompression, extrusion, or spread-coating 
are included in Table 3, considering also the effect of dif-
ferent processing methodologies as well as the protection of 
these active compounds by encapsulation or electrospinning.

Several studies have been carried out on active com-
posites biodegradation kinetic though the comparison of 
results depends on the conditions of assay. Rech et al. [324] 
evaluated the biodegradation of eugenol-loaded PHB films 
obtained by casting and buried for 60 days in agricultural, 
sandy, and landfill soil. The soil acidity, phosphorus avail-
ability, moisture level, and polymer crystallinity were key 
factors in explaining the differences in microbial growth and 
biodegradation rates. PHB films buried in agricultural soil 
presented a higher rate of biodegradation, which may be 
associated with the high fungi load and higher soil-phos-
phorus availability. Likewise, Castro-Aguirre et al. [325] 
evaluated the effect of bioaugmentation on the biotic and 
abiotic degradation of PLA and PLA bionanocomposites 
(BNCs) in simulated composting conditions. Bioaugmenta-
tion with Geobacillus increased the evolution of  CO2 and 
accelerated the biodegradation phase of PLA and BNCs in 
compost environments. Finally, it is important to remark 
that the evaluation of the ecotoxicological impact on the 
composting soil is necessary. In this regard, Salehpour et al. 
[326] analyzed the effect of PVA films containing cellulose 
nanofibers on municipal solid waste composting quality after 
film biodegradation. An ecotoxicological test revealed that 
nanocomposite films did not generate any negative effects on 
germination or development of the studied vegetal species 
(cress and spinach).

3.3  Sustainable composite foams

Foam-like polymer materials, such as expanded polystyrene 
(EPS) and polyurethanes (PUs), are greatly desired for their 
lightweight and insulation properties. Due to their non-
renewable resource basis and high resistance to abiotic and 
biotic degradation, biobased alternatives are under study. In 
this regard, innovative more sustainable PU foams have been 
developed using biobased polyols and recycled polymers 
[327, 328], tannins extracted from lignocellulosic wood 
by-products [329–335], and other biopolyols obtained from 
agri-food waste and by-products such as crops straws [336] 
and citric peels [337]. Among fully biobased composite 
foams studied as an alternative to PU insulation materials, 
the alginate and orange peel biocomposite foams developed 
by Vincent et al. [338] also present fire-retardant properties, 
an important safety feature for building materials. Owing to 
their mechanical performance, easy confirmation and bio-
compatibility PUs are also attractive for tissue regenerating 

scaffolds. Yet, because of their heterogeneous structure and 
the nature of their building blocks PUs, are quite resistant 
to biodegradation even in the absence of stabilizing addi-
tives [339], therefore new fully biodegradable scaffolds have 
been developed for biomedical applications [340–343]. Dif-
ferent natural fillers are used as reinforcement of biobased 
PUs, some of which can be obtained from agri-food waste 
[344–346].

Expanded polystyrene (EPS), on the other hand, has been 
broadly used in packaging such as disposable food contain-
ers and protective packagings for products susceptible to 
mechanical damage, due to its low-density, moisture resist-
ance, thermal insulation, and low-cost. In addition, other 
characteristics such as high durability, acoustic insulation, 
and strength have proven EPS useful for building and con-
struction [347, 348]. In addition, compared to other conven-
tional food packaging materials, EPS shows 7–28% lower 
environmental impact than aluminum containers and 25% 
less than disposable polypropylene (PP) ones, even when 
reusable PP containers are considered [349]. Given its ver-
satility and performance, EPS demand has had a marked 
increase with the consequent increase in the amount of waste 
generated of this nonbiodegradable synthetic polymer [347]. 
Besides, EPS is difficult to collect inadequate conditions for 
recycling, since large plastic waste volumes are generated 
and washing water is needed. Moreover, even though closed-
loop recycling systems show better performance in green-
house gases emission (GGE) and energy consumption, as 
well as lower landfilling, optimized recycling technologies, 
and waste management systems are needed to reduce the 
large water volume consumption and scrap generation or 
sorted materials that cannot be reused [350, 351]. To reduce 
EPS waste accumulation, its use as composite filler or raw 
material for building and construction materials, such as 
bricks [352, 353], thermal or acoustic insulation materials 
[347, 354–356], and as an absorbent substrate for gaseous 
pollutants removal [357] has been studied.

Furthermore, biodegradable biobased foams are being 
investigated as substitutes for EPS, especially for dispos-
able packaging applications. In this regard, a study by Razza 
et al. [358] indicated that a 50% reduction in non-renewable 
energy resources consumption and 60% lower GGE could 
be achieved with starch-based prototype packaging mate-
rials obtained by microwave technology in comparison to 
benchmark EPS cushioning packing. Various bioplastics-
based foams from starch to PLA and their mixture have 
been reported [21, 79, 106, 126, 359–371]. These materi-
als should be cheap, lightweight to minimize transportation 
environmental impact as well as compressible, and strong 
enough to prevent physical damage to the product. In gen-
eral, foams based on biopolymers such as polysaccharides 
or proteins are susceptible to moisture sorption and its con-
sequent effect on permeability and mechanical properties. 
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Thus, biocomposites and nanocomposites are proposed to 
enhance their water and mechanical resistance [21, 79, 106, 
361, 362, 372, 373]. Most of the studied fillers are derived 
from agri-food waste and by-products, aiming to reduce 
materials cost and reinforce their sustainable character with-
out compromising their biodegradability. Bergel et al. [371] 
found that contents up to 20%wt. of the modified starches 
reduced water absorption and increased impact resistance. 
Similarly, Guan et al. developed composite acetylated starch-
based foams with corncob fiber and cellulose [374] or with 
PLA [375]. Crosslinked starch foams presented promising 
results, with higher thermal stability, and lower water sorp-
tion and improved flexion properties [368, 376]. A compos-
ite blend of starch with plant proteins, kraft fibers, palm oil, 
or chitosan studied by Kaisangsri et al. showed enhanced 
mechanical performances [366, 377]. Furthermore, biode-
gradable hydrophobic coatings have been also studied as a 
promising alternative to improve biocomposite foam’s water 
resistance [364, 369, 370, 378].

Several technologies have been studied to obtain biobased 
foams, from extrusion-cooking (a method commonly used in 
the food industry) for loose-fill cushioning materials [367] 
to thermoforming for containers production [126, 360, 363]. 
Soykeabkaew et al. [379] summarized a wide range of pro-
cessing techniques for starch-based foams, among which 
the most common are extrusion, baking (thermoforming), 
microwave, freeze-drying/solvent exchange, and supercriti-
cal fluid extrusion. The same process technologies are used 
for other biobased foams [373, 380–383].

During thermoforming, the porous structure of the foam 
is formed by insufflation of gas in the molten polymer blend, 
which expands as pressure is reduced, or by gas formation 
within the batter due to the use of chemical blowing agents 
that produce gas by thermal decomposition or chemical reac-
tion. Carbon dioxide is currently the most widely used gas 
for physical blowing of polymer foams as an eco-friendlier 
alternative to hydrochlorofluorocarbons (HCFCs), due to its 
low toxicity, high stability, and low-cost [384]. Some foams 
are obtained by air diffusion into the battery by whipping 
before curing [385]. Supercritical inert gases, like carbon 
dioxide and nitrogen, are used as more environmentally 
friendly alternatives to blowing foams [373, 381, 386–388]. 
Yet these blowing agents require specific and expensive 
equipment to work under high-pressure conditions, thus 
chemical blowing agents that are easily incorporated dur-
ing mixing in the polymer matrix are sometimes preferred 
[384]. The latter leads to highly diffusing gas molecules 
 (CO2,  N2, and  H2) resulting in open-cell structures that 
limit the foam’s fields of application. Sodium bicarbonate 
is another well-known low-cost chemical blowing agents, 
commonly used with citric acid being both safe for food 
contact usage [389]. Urea was also studied as a blowing 
agent in biocomposite starch foams considering both its 

plasticizing and cross-linking properties in starch matrices 
[126]. A vast variety of chemical blowing agents have been 
reviewed by Coste et al. [384], yet the authors highlighted 
that unreacted blowing agent and by-products can compro-
mise the material’s properties and toxicity due to migration 
throughout their life cycle. Consequently, various param-
eters and reaction conditions should be determined for each 
blowing agent/polymer system to meet the final material 
requirements with no side effects. As regards, biopolymeric 
composite foams water vapor is mainly used as a blowing 
agent [21, 24, 390]. Water-based polymer and filler batters 
are prepared and baked at 140–220 °C where water vapor-
izes inflating the batter as it dehydrates and solidifies form-
ing the foam’s cells.

In thermoforming processing, either thermoplastic poly-
mer pellets are used [365, 383, 391] or biopolymers water-
based batters are prepared and poured onto the preheated 
mold [21, 126, 359, 390, 392–394]. In this regard, molding 
time, temperature, and pressure must be optimized according 
to the batter formulation [126]. Additives such as magne-
sium stearate as a release agent, guar gum as solids suspen-
sion stabilizer and glycerol as plasticizer have been reported 
[106].

A key problem for natural biopolymers foams, mainly 
starch-based materials is their water susceptibility; there-
fore several strategies have been studied to overcome this 
limitation. Biocomposite foams with several fillers have 
been studied to reduce water uptake [21, 124, 140, 280, 
359, 361, 379, 395]. Moreover, despite of the increase in 
process complexity and cost, the use of coating with other 
biodegradable bioplastics, such as PLA, or natural waxes has 
also been reported as a promising alternative to enhance the 
water-resistance of starch-based biocomposite foams [78, 
364, 370, 393].

Biobased foams obtained by microwave from extruded 
biobased thermoplastic were studied by various authors 
[358, 383, 396–399]. Besides, Razza et al. [358] indicated 
that biodegradable and biobased foams expanded by micro-
wave technology resulted in more sustainable materials than 
EPS benchmark material. Alternatively, noteworthy starch 
and alginate with micro-fibrous clay composite foams with 
fire retardant properties were developed via lyophilization by 
Darder et al. [400]. Nonetheless, the industry-scale design of 
these processing technologies is needed for future research, 
with a particular focus on process energy consumption 
optimization.

Unlike biocomposite films, foam’s properties depend not 
only on its components (polymer, filler, plasticizer, and other 
additives) intrinsic characteristics and interaction within the 
composite structure but unequivocally due to the type, num-
ber, and size distribution of pores of the foam. Foam struc-
tures are cataloged as open or closed-cell types depending 
on whether pores are interconnected or isolated keeping the 
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gas or air trapped inside the foam, respectively. Therefore, 
open-cell systems are more permeable to gases and usually 
less rigid, resulting in less attractiveness for specific building 
and insulation and sound-canceling requirements. Generally, 
more homogenous and smaller cell size structures derive in 
higher density materials with higher compressive strength 
[362, 364, 383, 401].

Comparatively, mechanical resistance to compression and 
flexion is usually increased with filler content in biocompos-
ite foams as shown in Table 4, though optimal filler content 
depends on its nature and size. Water uptake, on the other 
hand, is strongly dependent on filler nature. For instance, 
Machado et al. [359] observed a marked increase in foams 
contact angle with peanut skin in starch-based foams, indi-
cating an increase in the material’s hydrophobicity. Similar 
results were shown by sesame oil cake residue on starch 
foams [21], yet others such as sunflower oil cake residual 
particles presented the opposite effect [126]. Similarly, the 
biodegradability of foam biocomposites tends to be favored 
by natural fillers content, some evidencing higher biodegra-
dation rates than others according to assay conditions [21, 
126, 395].

A wide range of biocomposite foams have been devel-
oped and studied over the last decades with diverse poten-
tial applications. Nevertheless, to reinforce their sustainable 
character further investigations on the use of renewable 
waste products as raw materials, cost-effective and low-
energy-consuming processing technologies and innocuous 
foaming agents are needed [85].

4  Applications of biobased composites

4.1  Active and intelligent food packaging

Active and intelligent packaging materials protect and pre-
serve food ensuring its microbiological, organoleptic, and 
nutritional quality until it reaches the final consumer. Unlike 
traditional materials, active and intelligent packaging is pol-
ymeric matrices that serve as vehicles for a wide variety of 
additives such as antimicrobials, antioxidants, gas absorbers, 
and pH indicators among others, depending on the primary 
mode of deterioration of the food that limits its shelf life 
(Figure 6). Intelligent food packaging systems are small, 
simple, and inexpensive real-time indicators of food quality 
or storage conditions. In this regard, Firouz et al. [407] have 
critically reviewed intelligent and active packaging in the 
food industry; meanwhile, Yang et al. [408] have summa-
rized the advanced applications of chitosan-based hydrogels 
as both, biosensors, and intelligent food packaging systems. 
Table 5 summarizes different types of intelligent systems 
and active packaging used in the food industry.

In the last 10 years, there has been an overwhelming 
advance in the development of nanocomposites, especially 
those with antimicrobial activity. These materials have 
been studied as active packaging for application in the food 
industry in order to eliminate or at least reduce the growth 
of pathogens responsible for foodborne diseases [304, 305, 
310]. The most common developments include formulations 
containing AgNPs and ZnO based on starch, chitosan, gela-
tin, PVA, and starch among others [48, 295, 318, 430].

Ortega et al. [221] studied the effectiveness of nanocom-
posite starch-based films containing 143 ppm of AgNPs 
synthesized within the filmogenic suspension as active film 
packaging for a dairy product. These active films were able 
to extend the shelf-life of fresh cheese samples for 21 days. 
Regarding nanocomposite materials in contact with food, 
studies are necessary to evaluate not only the cytotoxicity 
of the nanoparticles themselves but also their migration to 
the food matrix. In this regard, tests are performed using 
different food simulants. Abreu et al. [220] carried out a 
contact test to determine if the nanostructured starch films 
comply with current European regulations without detect-
ing a significant migration of Ag. Furthermore, Metak et al. 
[431], working on polyethylene containers with 1% AgNPs 
inclusion, did not detect Ag migration to the matrix or 
organoleptic changes in the packaged products. As regards 
the cytotoxicity of the silver nanoparticles, Bacchetta et al. 
[432] studied the effects of waterborne AgNPs on juvenile 
fish Piaractus mesopotamicus and analyzed toxicological 
endpoints such as metal burdens, oxidative stress, and gen-
otoxicity. DNA damage in fish erythrocytes was observed 
after 24 h exposition at 25 µg/l AgNP. Bidian et al. [433] 
demonstrated that if AgNPs (0.8–1.5 mg/kg) were admin-
istered to offspring rats during pregnancy, they could cross 
the placental and testicular barriers and induced oxidative 
stress, DNA damage, and autophagy as mechanisms of cell 
toxicity. However, more research is still needed on this topic.

On the other hand, no migration of montmorillonite 
(MMT) nanoparticles from soybean protein matrices towards 
tuna fish muscle was detected through atomic absorption 
spectroscopy but MMT presence enhance the antimicrobial 
capacity of clove EO included in the formulation [291].

4.2  Biobased composites as fertilizer delivery 
and their applications as agricultural inputs

Biodegradable plastic mulch films have been developed 
and studied to reduce plastic waste generated from plastic 
mulch films disposal after crop harvest. Since the recovered 
films are usually greatly contaminated with soil and organic 
residues, their recyclability is difficult and not cost-efficient 
[434, 435]. The main reason is that mulch, especially thin 
mulch, cannot be picked up completely and that recollection 
is highly time and manpower-consuming [435]. Moreover, 
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the different aging degrees of the recycled polymer films 
conversely affect the regenerated product properties [436]. 
Therefore, most collected films end up in landfills or are 
used for energy recovery, few countries, such as Germany, 
France, and Canada, have established recycling systems 
for plastic mulch waste [437]. In addition, large amounts 
of residual plastic waste may remain on the field leading to 
polluted soils with diminished porosity, moisture content, 
and increasing bulk density which affects quality, health, 
and fertility, as has been evidenced in Xinjiang Autonomous 
Region (China) where residual plastic films can reach 200 
kg/ha, known as “white pollution” [1, 435, 438]. Moreover, 
these plastic residues enter the soil ecosystem by different 
routes depending on water flow, insects’ ingestion and eges-
tion, root plant growth, and weathering in the soil leading 
to microplastic that can enter deep aquifers and hence the 
aquatic food chain [439]. Even though its long-term sustain-
ability is arguable, soil covering is an established agronomi-
cal technique intended to increase yield and quality of the 
production by conservation of soil temperature and moisture, 
as well as weed growth control [434, 440]. Consequently, 
as food demand increases, plastic films consumption grows 
annually, with an estimated 1.4 million ton global market 
used to cover around 80,000  km2 (equivalent to 0.6%) of the 
global arable land [1].

The latter has derived considerable research, development 
and commercialization of novel biodegradable, and biobased 
mulch films, that at the end of their lifetime degrade and 
mineralize in soil avoiding recollection and acting as in situ 
soil fertilizer [1, 246, 441, 442]. Various oil-based and 
biobased biodegradable polymer films and their blends and 
copolymers have been studied as mulch films [120, 435, 
443–445]. Field studies have also been performed on com-
mercial biodegradable bioplastics [434, 436], yet biodegra-
dation rate is clearly dependent not only on bioplastic nature 
but also on climate conditions and soil characteristics. The 
EN 17033:2018, a new European Norm concerning “Plastics 
- Biodegradable mulch films for use in agriculture and horti-
culture - Requirements and test methods”, sets the standard 
methods necessary to determine biodegradability, perfor-
mance, and environmental impact of biobased mulch films 
[1]. Additionally, additives liberation control and ecotoxicity 
testing after full biodegradation are also needed to ensure no 
further environmental impact [1, 446].

Biodegradable mulches can be obtained by thermo-plas-
ticizing, casting, or spraying using renewable and biode-
gradable biopolymers such as starch, cellulose, chitosan, 
alginate, and glucomannan [442]. A wide range of studies 
on this type of mulching system is listed in Table 5. Natu-
ral fillers from renewable sources were incorporated into 
composite mulching films and coating to improve their 
mechanical performance, decrease water sensitivity, and/or 
confer better UV-light barrier properties for soil temperature 

conservation [420, 442, 447, 448]. The most recent works 
focus on spraying water solutions onto soil forming a biode-
gradable mulching coating directly in the field, using mainly 
biopolymers obtained from marine and agricultural waste 
and byproducts [419, 420, 442, 447, 449–453].

Likewise, excessive fertilization and run-off are known 
to pollute surface and groundwaters leading to eutrophica-
tion of lakes and rivers that, in turn, result in the deteriora-
tion of aquatic ecosystems due to algae bloom, oxygen loss, 
aquatic wildlife mortality, and the consequent biodiversity 
loss [454]. These, among other serious environmental issues 
derived from current agriculture practices, generated interest 
in new methods using innovative technologies to ensure high 
yields and quality of agricultural products while minimiz-
ing agrochemicals use. On the one hand, the study, extrac-
tion, and use of natural pesticides and herbicides derived 
from renewable sources have been promoted [455, 456]. 
On the other hand, in view of cleaner and more sustainable 
agriculture practices, the use of biodegradable composite 
fertilizers controlled-release systems has been considered 
to achieve more efficient use of nutrients, for increased pro-
ductivity yields with lower cost and environmental impact. 
Many works have focused on urea dosage by its inclusion in 
biodegradable films and composites or encapsulation (see 
Table 5). Similarly, other elemental nutrients for crop pro-
duction could be encapsulated with bioplastics and intro-
duced as filler of biocomposite materials for fertilizers-con-
trolled release, though further investigations are needed in 
this respect.

4.3  Biomedical applications

Nowadays, biopolymer composites are widely employed 
in biomedical applications such as tissue engineering and 
wound healing. According to Al-Enizi et al. [457], polymer-
based nanofibrous materials are used in tissue engineering 

Fig. 6  Active and intelligent food packaging materials properties
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(bones, blood vessels, and oral tissues) and wound dressing. 
Synthetic biodegradable and natural polymers offer advan-
tages over the conventional materials employed for medical 
devices because of their biocompatibility, biodegradability, 
lower antigenicity, and renewability [458]. The development 
of biomaterials based on biodegradable polymers has driven 
a new generation of materials for tissue regeneration and 
wound healing, which is in line with nanotechnology-based 
engineering strategies. In this sense, Hamdan et al. [459] 
stressed that numerous engineered nanotechnologies have 
been proposed demonstrating unique properties and multi-
ple functions that address specific problems associated with 
wound repair mechanisms. The versatility of biopolymers 
enables to develop of diverse biomedical devices such as 
scaffold and wound dressings with high performance, bio-
mimetic properties, and several other tailored characteristics 
which offer multiple applications. Correspondingly, Sahana 
and Rekha [458] assure that the technological advances in 
material science, regenerative medicine, nanotechnology, 
and bioengineering aid to improve the functional and struc-
tural characteristics of biodegradable polymers to suit the 
current wound care demands such as tissue repair, restora-
tion of lost tissue integrity, and scarless healing.

Wound dressing protects the wound from microorganism 
deposition and dehydration and must improve the healing 
process by interacting with the wound through the release of 
bioactive molecules while maintaining the necessary favora-
ble conditions for the re-establishment of the skin integrity 
and homeostasis [460]. In addition, wound dressing must 
ensure complete skin recovery with the best functional and 
cosmetic results [461]. Biopolymer-based wound healing 
materials can absorb tissue exudates, prevent wound dehy-
dration and allow oxygen to permeate the wound, and can 
also be loaded with bioactive substances to be delivered into 
the wound [462]. As reported by Kalashnikova et al. [463], 
there are two main categories of biomaterials used in wound 
healing: materials that exhibit intrinsic properties beneficial 
for wound treatment, and materials employed as delivery 
vehicles for therapeutic agents. Various innovative biocom-
posites films and hydrogels with controlled drug or active 
compound release have been reported for wound dressing 
[47, 255, 424, 464, 465]. Collagen, cellulose, chitosan, 
alginate, hyaluronan, fucoidan, and carrageen are the most 
widely used biopolymers to develop wound dressing materi-
als. These present either antimicrobial, anti-inflammatory, 
water retention, proliferative, angiogenic, or other targeted 
actions on specific cells, hence playing a key role in the 
healing process [458]. A very interesting and comprehensive 
review of collagen and collagen-based wound dressings pub-
lished by Brett [466], remarks that wound dressings based 
on this biopolymer are cost-effective and present high water 
holding capacity, mechanical resistance, and flexibility. Col-
lagen-based wound dressings can be obtained for diverse Ta
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wound types and degrees, such as bedsores, minor burns, 
foot ulcers, large open cuts, chronic wounds, low to heavy 
exudation wounds, and surgical wounds. Likewise, Keshk 
[467] reviewed several industrial applications of bacterial 
cellulose, including wound healing. Wound dressings for 
burns, chronic wounds, plastic/reconstructive surgeries can 
be developed from this biopolymer due to its antibacterial 
capacity [458]. Alginate has been also widely studied in this 
regard, either alone or in combination with other bioma-
terials or biomolecules. In the review by Varaprasad et al. 
[462] about alginate-based composite materials for wound 
dressing application, the importance of alginates and the 
roles of their derivatives in wound dressing biomaterials, 
besides numerous studies on recent alginate-based wound 
dressing materials. Alginates and their derivatives present 
homeostatic character, which is relevant to treat draining 
wounds, pressure ulcers, dermal wounds, surgical incisions, 
or dehisced wounds, as well as infected and postoperative 
wounds. In the case of hyaluronate-based wound dressings, 
these are characterized for their flexibility, high biocom-
patibility, and bacteriostatic character [468]. This kind of 
biomedical devices is very useful to treat chronic wounds 
as well as partial and full-thickness wounds. Regarding 
chitosan, its antimicrobial capacity is the more relevant 
property to develop wound dressing for acute wounds and 
pressure ulcers as was reported by Dai et al. [469]. In addi-
tion to these widely studied and reported biopolymers, there 
are several similar biomolecules of therapeutic interest such 
as; fucoidan, carrageenan, and glucans that have been less 
explored [458].

The concept of tissue engineering aims to the self-regen-
eration of damaged tissues with the support of a scaffold 
that acts as a guide and support for new cell growth [470]. 
Biocompatible and biocomposite scaffolds aid the fast inte-
gration of tissues, their biocompatibility allows human cells 
to organize and grow around the polymer. Initially, the scaf-
fold was merely designed to give support to the cell, but 
nowadays scaffolds may be loaded with biological factors 
to facilitate cells growth [471]. Tissue engineering also 
contemplates the development of artificial tissues that are 
physiologically functional; hence technological advances 
in this area continuously occur. In this regard, Gauvin et al. 
[472] stressed that studies about cell-seeded scaffolds have 
accomplished novelty materials and processing methods 
leading to well-engineered biocompatible systems. Another 
technological advance in tissue engineering is the use of 
nanostructured biomaterials such as nanoparticles and nano-
composites, as well as organic–inorganic hybrid polymers 
to develop scaffolds for organs regeneration. According to 
Iqbal et al. [473] and Khan et al. [474], diverse synthetic 
and natural polymers and their composite materials have 
been used to fabricate scaffolds for bone tissue engineering, 
nerve regeneration, controlled drug release, tooth structure 

regeneration, guided tissue regeneration (GTR), reinforce-
ment of dental composite, bone and cartilage regeneration. 
Electrospinning, foaming, and 3D printing have been stud-
ied for biocomposites scaffolds, being PLA the most used 
bioplastic for these applications [80, 423, 475]. Regarding 
micro-fabrication technologies, Iqbal et al. [473] mentioned 
that lithography, bioprinting, micromolding, or photolithog-
raphy are now becoming more routine and are emerging 
as powerful tools for the manufacture of biomaterials and 
tissue-engineered constructs. These authors also stressed 
that the use of these micro and nanotechnologies not only 
replicates cell-scale complexities by providing the cells with 
a microenvironment that mimics the native structure but also 
allows obtaining 3D architectures.

A few further examples of biomedical applications of bio-
composite with raw materials from agri-food by-products 
are shown in Table 5.

4.4  Other innovative biobased composites 
applications

Numerous novel and groundbreaking applications have 
been reported for biobased composites and nanocomposites 
using by-products from the agri-food industry and green 
synthesized nanoparticles. Various applications have been 
proposed for copper nanoparticles from the field of electron-
ics, catalysis, and industrial wastewater treatment [476]. Its 
use has also been proposed for cloth treatment since these 
nanoparticles have a high disinfectant capacity. In the con-
text of the COVID-19 pandemic, this property is more than 
relevant and would improve the safety of both health person-
nel and patients, considering personal and medical hygiene 
clothing. In this regard, an Argentine company jointly with 
CONICET has developed AtomProtect®, a chinstrap made 
with a cloth treated with a polymeric solution containing Cu 
and Ag nanoparticles, which retains its sanitizing properties 
even after 15 washes [477].

Moreover, several recent works have been reported on the 
use of biobased biocomposites and nanocomposites for water 
treatment and pollutants removal [54, 55, 239, 427, 429, 
478]. Such research is of primal importance to ensure clean 
water sustainability. For instance, Jayalakshmi and Jeyanthi 
[54] studied cobalt ferrite-alginate nanocomposite synthe-
sized for highly polluting dye removal from watercourses. In 
addition, Dasari et al. [427] developed a biocide PLA-based 
nanocomposite membrane for drinking water purification. 
With a different approach, Goldhahn et al. [479] developed 
wood and gelatin tunable biocomposite membranes for water 
decontamination from various pollutants. Furthermore, the 
use of nanomaterials in the fabrication of superhydrophobic 
membranes for water desalination via membrane distillation 
has been deeply revised by Gontarek-Castro et al. [480] and 
Castro-Muñoz [481].
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Over the last few decades, different biopolymers have 
been employed in membrane preparation for pervaporation 
(PV) applications that are currently used in the preparation 
of mixed matrix membranes (MMMs), a new-generation 
membrane for purification applications of great interest to 
chemical engineering processes. These MMS have been 
proved effective for ethanol recovery and dehydration [482, 
483], EOs and aroma compound recovery [484, 485], azeo-
tropic separation of organic mixtures [486], among others. 
In this respect, membranes based on chitosan, cellulose ace-
tate, sodium alginate, PLA, and PVA have served as support 
materials for membranes for pervaporation, alone or includ-
ing different types of nanoparticles such as Au, Cu, and Ag 
as well as zeolites and carbon nanotubes [482, 483, 487, 
488]. In addition, Castro-Muñoz and coworkers have exten-
sively reviewed the use of MMMs for PV, emphasizing that 
specific components transport and selectivity enhancement 
through the incorporation of inorganic materials into differ-
ent polymeric membranes, mentioning key principles that 
conditioned the filler selection for a synergistic effect [482].

Furthermore, biobased foam with natural fillers have 
proven thermal and acoustic insulation properties which 
are attractive for construction and building [331, 333, 338, 
391, 406, 489]. Several studies on biocomposites using by-
products and wastes were revised and detailed in Section 3.2. 
Besides, biomass by-products and waste have been studied 
for construction panels and materials. For example, sus-
tainable wood panels from wood industry by-products and 
ecofriendly adhesives from cassava starch were developed 
by Monroy et al. [490, 491] as an alternative to synthetic 
adhesives in medium-density fiberboard (MDF) manufac-
ture. Likewise, Guna et al. [105] studied sugarcane bagasse-
gluten composites as a potential substitute for gypsum based 
ceiling tiles.

Finally, biobased composites and nanocomposite materi-
als show promising use of inflexible and biodegradable elec-
tronics and energy storage systems [492–495]. In this regard, 
Thiangtham et al. [496] designed biocomposite membranes 
based on MCC extracted from sugarcane bagasse added into 
PLA/PBS matrices.

5  Life cycle assessment of single use 
biobased composites

Within the context of circular economy, aiming to preserve 
the value of products, materials, and resources for as long 
as possible minimizing or eliminating, if possible, their 
environmental impact, biobased materials have become key 
players, especially owing to their renewable character. Yet, 
despite their renewability, biobased composite materials 
sustainability is not granted and depends on various factors, 
from raw materials source to produced materials end of life. 

In general, life cycle assessments (LCAs) of biobased plas-
tic materials have indicated significantly lower greenhouse 
gases GHG emissions than the fossil oil counterparts [497]. 
Differences are mostly attributed to plants  CO2 absorption 
in photosynthesis before harvest or felling, considering that 
biobased materials are either composted or burned at the 
end of their life cycle resulting in  CO2 emission with a net-
zero carbon balance [498]. Besides, biobased materials use 
intrinsically implies a reduction in non-renewable energy 
resources due to the raw material source shift. Razza et al. 
[358] demonstrated that despite their greater density, starch-
based expanded packaging could have a 50% cut in fossil 
fuels use, a 60% decrease in greenhouse gas emission, a 90% 
reduction in volatile organic compounds (VOCs) emissions, 
and a 15% of landfilling, considering a current standard of 
40% of organic recycling rate compared to EPS packaging.

The major LCA-reported impact of biobased plastics is 
the source and production of the raw materials. Food crop 
feedstocks are land extensive, therefore large new land 
areas shall be destined to crop production exclusively for 
bioplastics purposes. Such land-use changes imply defor-
estation for agricultural production, as have the conver-
sion of rainforests to sugarcane plantations in Brazil or the 
Great Chaco (Argentina) deforestation for soy expansion, 
which comprise several direct and indirect environmen-
tal and social impacts within the raw materials produc-
tion regions [499, 500]. Furthermore, land-use change is 
one of the primary global causes of increasing greenhouse 
gases emissions and soil degradation, biodiversity loss, and 
fresh-water scarcity [501]. In this regard, the use of agri-
food waste and by-products for bioplastic and biocomposite 
production would decrease land-use requirements safeguard-
ing its negative impacts. For instance, seed oil cakes, are 
byproducts of vegetable oil industries, are known for their 
high fiber, polysaccharides, and proteins content that can 
be extracted and that may represent a renewable source to 
produce innovative biobased materials [15]. In addition, cur-
rent agricultural practices have a great impact on the LCA 
of biobased products, being sustainable practices needed to 
reduce eutrophication, prevent soil erosion, and protect bio-
diversity. Incidentally, an LCA study carried out by Vigil 
et al. [502] on active packaging for the fresh-cut vegetable 
industry, indicated that agricultural production of fresh let-
tuces is responsible for most impact factors, followed by 
packaging manufacturing. An alternative to tackle the latter, 
the use of fully renewably sourced electricity for packaging 
molding technology could reduce in over 50% the potential 
impact [358].

To close the loop in the plastic products industry, reusable 
product design and recycling systems have been established. 
Nonetheless, products that can be reuse is somehow limited 
and recycling is rarely total: mechanical recycling seldomly 
transforms products back into their original product system; 
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usually, the virgin polymer is needed for reprocessing; and a 
substantial volume of material is rejected and redirected to 
other waste management types, of which a percentage may 
even end up as ocean debris [503]. Biodegradable biobased 
plastics introduce another form of waste transformation 
intending to reduce plastic waste generation and increase 
the product’s circularity by aerobic and anaerobic degra-
dation. However, effective waste management systems are 
needed to prevent the incorrect disposal of bioplastic waste 
and its consequent accumulation in the environment as have 
been observed with conventional plastics use [1, 2]. Among 
biodegradable bioplastics, PHAs are both compostable and 
biodegradable in marine environments which may compa-
rably reduce their environmental impact [4].

Lastly, the sustainability of biobased nanocomposites is 
also questioned in terms of the unknown hazards and toxic-
ity [504]. Therefore, migration and cytotoxicity studies of 
nanofillers are currently being conducted [180, 432, 505, 
506]. Furthermore, the use of hazardous chemicals in some 
biopolymers and biobased filler treatments must also be con-
sidered and reevaluated aiming to find greener alternatives 
[507].

6  Final remarks on current limitations 
and future trends

Over the last decade, a shift in the design dynamics of 
new materials has been observed, having a more specific 
approach born from the application requirements up. In this 
regard, composite materials offer a major advantage since 
their final properties can be tailored by selecting polymer 
matrix and filler type, their content ratio, and filler size dis-
tribution and morphology. Besides, the limitation of fossil 
resources and their consequent environmental impact has 
driven the search for alternative biomass-based polymeric 
materials and composites. Over 7000 research articles on 
biocomposites have been reported during the last 10 years 
with a growing tendency, which highlights the novelty and 
potential of these materials.

In addition, bio-sourced and biodegradable materials are 
key players towards a circular or sustainable economy. In 
recent years, the focus has been set on those materials with 
optimized end-of-life cycles considering reusability, recy-
clability, and biodegradability. However, structural changes 
and improvements are needed both in waste management 
systems as in production and retail allocation and distribu-
tion to achieve fully sustainable products and processes. 
Therefore, a tendency towards fully integrated production 
systems (i.e., biorefineries) in which different products from 
raw materials, by-products, and residues are entangled and 
nearby so as to reduce waste generation, transportation costs, 
and emissions. Nonetheless, to fully understand the role 

that bioplastics and biocomposites could play in a global 
economy, further reliable information on their sustainability 
is needed. Providing a basis to guide future technological 
developments. Research towards developing more ecologi-
cally responsible biocomposites not only needs to focus on 
properties optimization according to the application of the 
materials but also aim to minimize resource use through the 
selection of the process technologies and to avoid (if possi-
ble) environmental and health hazardous chemical reagents. 
In this regard, biomass production is crucial to the sustain-
ability of these materials, thus the need for agricultural sys-
tems that are respectful for farmers, the environment, and 
the communities.

The major drawback of bioplastics and their products is 
that they are not economically competitive with commodity 
plastics. Therefore, as it was once for conventional plastic, 
the development of composite materials provides a lower-
cost alternative to pure components as well as providing 
enhanced and unique properties. Furthermore, fully renew-
able biobased composites materials can be produced from 
currently devalued raw materials, regarded as low-cost by-
products or wastes. This implies not only a potential drop in 
production cost of biobased material, but also a reduction in 
energy, water, and soil used in raw materials production and 
a further reduction in waste generation.

The numerous and innovative possible applications for 
biobased composites and nanocomposites that have been 
reviewed and reported demonstrate the potentiality of these 
materials. The nontoxic nature and biodegradability of 
these materials are key features for their use in active and 
intelligent food packaging that can be composted and func-
tionalized biodegradable mulching plastic and fertilizers-
controlled release aiming for more environmentally friendly 
agricultural systems. Their water affinity and retention 
capacity are relevant for absorption systems for pollutants 
retention and membrane development for water purification 
treatments. Furthermore, these properties along with the 
biocompatibility have triggered the development of wound 
dressing, drug-delivery systems, and scaffolds for tissue 
engineering. Several other investigations have been done 
in insulation construction materials and flexible electron-
ics and energy storage systems. The results shown are very 
promising, thus future research should examine strategically 
the scaled-up production and process optimization of these 
ecological materials to meet the market demands.
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