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Abstract

In prevalent cohort design, subjects who have experienced an initial event but not the failure event

are preferentially enrolled and the observed failure times are often length-biased. Moreover, the

prospective follow-up may not be continuously monitored and failure times are subject to interval

censoring. We study the nonparametric maximum likelihood estimation for the proportional

hazards model with length-biased interval-censored data. Direct maximization of likelihood

function is intractable, thus we develop a computationally simple and stable expectation-

maximization algorithm through introducing two layers of data augmentation. We establish the

strong consistency, asymptotic normality and efficiency of the proposed estimator and provide an

inferential procedure through profile likelihood. We assess the performance of the proposed

methods through extensive simulations and apply the proposed methods to the Massachusetts

Health Care Panel Study.
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1 | INTRODUCTION

Interval-censored data arise when a failure time is not recorded precisely but is rather known

to lie within a time interval. Such data are encountered in prospective follow-up studies,

where the ascertainment of the event of interest is made over a series of examination times.

Regression analysis of unbiased interval-censored survival data has been extensively studied.

In particular, nonparametric maximum likelihood estimation for the proportional hazards

and transformation models have been studied by Huang (1996) and Zeng et al. (2016),

respectively. Due to intractable likelihood, sieve estimation is also proposed for the

proportional hazards model by Huang and Rossini (1997) and Cai and Betensky (2003),

among others. A comprehensive review is given in Sun (2007).
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Although sampling incident cases in a follow-up study is common, it may require a long

follow-up period to observe enough failure events for meaningful analysis. Alternatively, a

prevalent cohort design samples individuals who have experienced an initial event but not

the failure event at enrollment, and is often considered as a more focused and economical

design (Brookmeyer and Gail, 1987). However, subjects with a longer survival time are

preferentially sampled in a prevalent cohort. When the incidence of the initial event is

stationary over time, a prevalent cohort collects length-biased data (Wang, 1991; Shen et al.,

2009), where the probability of observing the failure time is proportional to its value.

Prospective follow-up of a prevalent cohort can be subject to interval censoring. An example

is the Massachusetts Health Care Panel Study (Chappell, 1991), where the time to loss of

active life for elderly individuals were assessed approximately 1.25, 6, and 10 years after

study recruitment. Since only functionally independent individuals were enrolled, subjects

with a longer time to loss of active life were more likely to be sampled. Although a prevalent

cohort is a biased sample that requires special methods for analysis, it may provide

information that is otherwise unavailable in an incident cohort. For example, in an incident

sampling design, the right tail of survival distribution may not be identified because of

limited study duration. Using prevalent sampling design, the identifiable region for the

survival distribution and marked variables that are observed only at the event occurrence

could be enlarged (Chan and Wang, 2010). In the Massachusetts Health Care Panel Study

data, even though the last monitoring time is 10 years after study recruitment, we can

identify a survival distribution that ranges over 30 years (see Section 3.2), because

individuals are event-free for a period before enrollment. An added advantage for interval-

censored data is that, even when the monitoring time has a discrete distribution, we can

identify the continuous survival distribution of the failure event because the event-free

period before enrollment is typically continuous. For incident sampling with discrete

monitoring time, in contrast, we can only identify a discrete survival distribution.

Statistical methodology for regression modeling of length-biased data are mostly proposed

for uncensored and right-censored data. Wang (1996) and Chen (2010) considered

uncensored data. For right-censored data, Qin and Shen (2010) proposed inverse weighted

estimating equation and Huang and Qin (2012) proposed a composite likelihood approach

for the proportional hazards model. Qin et al. (2011) considered the nonparametric

maximum likelihood estimator and derived an expectation-maximization (EM) algorithm for

computation, and showed that the estimator is efficient.

Even though there has been limited literature on length-biased interval-censored data,

several methods were proposed for left-truncated interval-censored data without the length-

biased assumption for the truncation time. In particular, Pan and Chappell (1998) considered

the proportional hazards model and applied a gradient projection-based method for non-

parametric maximum likelihood estimation, where the baseline survival function may be

underestimated. Pan and Chappell (2002) considered the same model and suggested a

marginal likelihood approach that avoids estimating the baseline hazards function and a

monotone maximum likelihood approach assuming that the baseline distribution has a

nondecreasing hazard function. Kim (2003) studied the special case of left-truncated current

status data, where there is only one examination time, and established the asymptotic

Gao and Chan Page 2

Biometrics. Author manuscript; available in PMC 2021 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



properties of the nonparametric maximum likelihood estimators. Recently, Wang et al.

(2015) studied the additive hazard model with left-truncated interval-censored data and

proposed a sieve estimation method.

In this paper, we study the nonparametric maximum likelihood estimation for the

proportional hazards model with length-biased interval-censored data. Through introducing

pseudo-truncated data and latent Poisson random variables, we develop a simple and

computational stable EM algorithm. We establish the strong consistency and asymptotic

normality of the proposed estimators and provide inference through a profile likelihood

approach. We assess the performance of the proposed estimator and inferential procedures

through extensive simulations and apply the proposed methods to the Massachusetts Health

Care Panel Study data.

2 | THE PROPOSED METHODOLOGY

2.1 | Model and data

For individuals in the target population, let T be the time to a failure event and Z be a p-

vector of covariates. We assume that T follows a proportional hazards model with a

cumulative hazard function

Λ(t ∣ Z) = Λ(t)exp βTZ ,

where β is a p-vector of unknown regression parameters, and Λ(·) is an arbitrary increasing

function with Λ(0) = 0.

For length-biased sampling, it is common to assume that the incidence rate of the initial

event is constant over calendar time and A, the truncation time, is uniformly distributed in [0,

τ], where τ is the maximum support of T (Wang, 1991; Qin et al., 2011). In a prevalent

cohort study, a subject is included only if the failure time does not occur before the

truncation time, that is, T ≥ A. We let T, A, and Z be the failure time, truncation time and

covariates, respectively, in the prevalent cohort. Then, (T, A, Z) has the same joint

distribution as (T , A, Z) conditional on T ≥ A. Suppose that the occurrence of the failure is not

exactly observed but only determined at a sequence of examination times, denoted as

A < U1⋯ < UM ≤ τ. The failure time is then known to lie in the interval (L, R), where

L = max Um:Um < T , m = 0, …, M , R = min Um:Um ≥ T, m = 1, …, M + 1}, U0 = A, and

UM + 1 = ∞. In particular, if the failure occurs before the first examination time, then (L, R)

= (A, U1); if the failure has not occurred at the last examination time, then (L, R) = UM, ∞ .

Let Vm = Um − A for m = 0, …, M, so that V0 = 0.

We assume the following non-informative sampling time condition, that M and

Vm:m = 1, …, M  are independent of (T, A) conditional on Z. For a length-biased sample of

n subjects, the observed data are 𝒪i: i = 1, …, n , where 𝒪i = Li, Ri, Ai, Zi . The observed-

data likelihood is then given by
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Ln(β, Λ) = ∏
i = 1

n exp −Λ Li exp βTZi − I Ri < ∞ exp −Λ Ri exp βTZi

∫ 0
τ exp −Λ(a)exp βTZi da/τ

. (1)

The likelihood function Ln(β, Λ) involves τ, which is a constant related to study design but

not a parameter of interest. In the E-step of the proposed EM algorithm, however, it is

required to redistribute mass on [0, τ], and an approximation of τ is required. Let

0 = t0 < t1 < ⋯ < tk < ∞ be the ordered sequence of all Li and RiI Ri < ∞ . Following Qin et

al. (2011), we approximate τ by tk, which converges to τ at a rate faster than n1/2, and

therefore does not alter subsequent results.

2.2 | Nonparametric maximum likelihood estimation

We adopt the nonparametric maximum likelihood estimation approach, where the estimator

for Λ is a step function with nonnegative finite jumps at the ends of the intervals that bracket

the failure times. Specifically, we let λ0, λ1,…, λk be the respective jump sizes at t0, t1,

…,tk, where λ0 = 0. Write λ = λ1, …, λk . We maximize the objective function

ln(β, λ) ≡ ∑
i = 1

n
log exp − ∑

t j ≤ Li

λ jexp βTZi

−I Ri < ∞ exp − ∑
t j ≤ Ri

λ jexp βTZi

−log∫0
τ 1

τ exp − ∑
t j ≤ a

λ jexp βTZi da .

Direct maximization of ln(β, λ) is difficult due to a lack of analytical expressions. We

introduce two layers of data augmentation and propose an EM algorithm to facilitate

computation. First, to handle left truncation, we introduce pseudo-truncated data, which is

also referred to as “ghost data” (Turnbull, 1976). In particular, let

𝒪i
∗ ≡ T im

∗ , Aim
∗ , Zi :T im

∗ <Aim
∗ , m = 1, …, ni  denote the pseudo-truncated samples

corresponding to subject i, where T i1
∗ , Ai1

∗ , …, T i, ni
∗ , Ai, ni

∗  are independent and identically

distributed given Zi. Since the estimator for Λ only takes jump at t j( j = 1, …, n), the failure

time T im
∗  can only take values from t1, …, tk . The number of truncated samples ni follows a

negative binomial distribution with parameter

πi = P Tim
∗ < Aim

∗ ∣ Zi = ∑
j = 0

k
P Tim

∗ = t j, Aim
∗ > t j ∣ Zi

= ∑
j = 1

k
1 − t j/τ λ jexp βTZi exp − ∑

l = 1

j
λlexp βTZi ,
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such that E ni ∣ 𝒪i = πi/ 1 − πi . Let ni j = ∑m = 1
ni I T im

∗ =t j . Given the total number

ni, ni1, …, nik  follows a multinomial distribution with probabilities pi1, …, pik , where

pi j = P T im
∗ = t j ∣ T im

∗ < Aim
∗ , Zi

=
1 − t j/τ λ jexp βTZi exp −∑l = 1

j λlexp βTZi
πi

.
(2)

By the missing information principle (Lai and Ying, 1994), the maximization of ln(β, λ) is

equivalent to maximizing the conditional expectation of the log-likelihood function of the

“complete-data” 𝒪i, 𝒪i
∗ : i = 1, …, n  given the observed data. The “complete-data” log-

likelihood function is given by

l n
C(β, λ) ≡ ∑

i = 1

n
log exp − ∑

t j ≤ Li

λ jexp βTZi

−I Ri < ∞ exp − ∑
t j ≤ Ri

λ jexp βTZi

+ ∑
j = 1

k
ni jlog λ jexp βTZi

× exp − ∑
l = 1

j
λlexp βTZi .

While we may propose an EM algorithm based on l n
C(β, λ), its maximization step is still

difficult to obtain, since β and λ cannot be separated in the complete-data log-likelihood

function due to the interval censoring structure.

Therefore, we further introduce data augmentation based on independent Poisson random

variables W i j(i = 1, …, n; j = 1, …, k, t j ≤ Ri
∗  with means λ jexp βTZi , where

Ri
∗ = LiI Ri = ∞ + RiI Ri < ∞ . The joint density function for W i j j = 1, …, k, t j ≤ Ri

∗  is given

by

∏
j = 1, t j ≤ Ri

∗

k λ jexp βTZi

Wi j

Wi j!
exp −λ jexp βTZi .

Let Ni1 = ∑t j ≤ Li
W i j and Ni2 = I Ri < ∞ ∑Li < t j ≤ Ri

W i j. Suppose that we observe Ni1 = 0

and Ni2 > 0. The observed-data likelihood for 𝒪i ≡ Ni1 = 0, Ni2 > 0  is equal to
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Pr Ni1 = 0, Ni2 > 0

= Pr ∑
t j ≤ Li

Wi j = 0 1 − I Ri < ∞ Pr ∑
Li < t j ≤ Ri

Wi j = 0

= exp − ∑
t j ≤ Li

λ jexp βTZi

− I Ri < ∞ exp − ∑
t j ≤ Ri

λ jexp βTZi .

Therefore, l n
C(β, λ) can be viewed as the observed log-likelihood function for

𝒪 ≡ 𝒪i, 𝒪i
∗ ; i = 1, …, n  with W i j i = 1, …, n; j = 1, …, k, j ≤ Ri

∗  and ni j(i = 1, …, n; j = 1, …, k)

as latent variables. In particular, the complete-data log-likelihood function based on W i j, ni j

is given by

∑
i = 1

n
∑

j = 1

k
I t j ≤ Ri

∗ −log Wi j!

+Wi j logλ j + βTZi − λ jexp βTZi

+ ∑
i = 1

n
∑

j = 1

k
ni j log 1 − t j/τ

+logλ j + βTZi − ∑
l = 1

j
λlexp βTZi .

Based on this formulation, we propose the following EM algorithm. In the E-step, we

evaluate the conditional expectations of Wij and nij given the observed data. In particular, we

have

E Wi j = I Li < t j ≤ Ri, Ri < ∞

×
λ jexp βTZi

1 − exp −∑Li < tl ≤ Ri
λlexp βTZi

,

and

E ni j =
1 − t j/τ λ jexp βTZi exp −∑l = 1

j λlexp βTZi
1 − πi

,

Gao and Chan Page 6

Biometrics. Author manuscript; available in PMC 2021 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where E( ⋅ ) denote the conditional expectation with respect to the observed data 𝒪. In the M-

step, we maximize the expected complete-data log-likelihood function. We update λj by

λ j =
∑i = 1

n I t j ≤ Ri
∗ E Wi j + E ni j

∑i = 1
n I t j ≤ Ri

∗ + ∑l = j
k E nil exp βTZi

and update β by solving

∑i = 1
n ∑ j = 1

k I t j ≤ Ri
∗ E Wi j + E ni j

× Zi −
∑i′ = 1

n I t j ≤ Ri′
∗ + ∑l = j

k E ni′, l exp βTZi′ Zi′
∑i′ = 1

n I t j ≤ Ri′
∗ + ∑l = j

k E ni′, l exp βTZi′
= 0 .

We iterate between the E-step and M-step until convergence. We denote the final estimators

for β and λ as β and λ.

In summary, through introducing two layers of latent random variables, we proposed a stable

computing algorithm to obtain the estimators that maximize the nonparametric likelihood

function. The latent truncated “ghost data” were introduced to deal with the complications

that arise from left truncation and the latent Poisson random variables were introduced to

deal with the incomplete data caused by interval-censoring.

2.3 | Asymptotic properties

In this section, we establish the strong consistency and asymptotic normality of the proposed

estimators. We assume the following regularity conditions.

Condition 1. The true value of β, denoted by β0, belongs to the interior of a known compact

set ℬ ⊂ ℝp.

Condition 2. The true value Λ0(·) of Λ(·) is strictly increasing and continuously

differentiable in [0, τ] with Λ0(0) = 0.

Condition 3. The covariate Z has bounded support and is not concentrated on any proper

subspace of ℝp.

Condition 4. The examination times have finite support 𝒱 with the least upper bound τ. The

number of potential examination times M is positive with E(M) < ∞. There exists a positive

constant η such that Pr Um + 1 − Um ≥ η ∣ M, Z = 1. In addition, there exists a probability

measure μ in 𝒱 such that the bivariate distribution function of (Um, Um+1) conditional on

(M, Z) is dominated by μ × μ and its Radon-Nikodym derivative, denoted by f m(u, v; M, Z),

can be expanded to a positive and twice-continuously differentiable function in the set

(u, v):0 ≤ u ≤ τ, 0 ≤ v ≤ τ, v − u ≥ η .
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Conditions 1, 2, and 3 are standard conditions for failure time regression. Condition 4

pertains to the joint distribution of examination times. It requires that two adjacent

examination times are separated by at least η; otherwise, the data may contain exact

observations, which require a different theoretical treatment. The dominating measure μ is

chosen as the Lebesgue measure if the examination times are continuous random variables

and as the counting measure if the examinations occur only at a finite number of time points.

The number of potential examination times M can be fixed or random, is possibly different

among study subjects, and is allowed to depend on covariates.

We state the strong consistency of (β, λ) and the weak convergence of β in two theorems.

Theorem 1.—Under Conditions 1–4, ‖β − β0‖ a.s. 0, and ‖Λ − Λ0‖
l∞(𝒱) a.s. 0, where

∥ ⋅ ∥l∞(𝒱) denotes the supremum norm on 𝒱, and Λ(t) = ∑t j ≤ t λ j.

Theorem 2.—Under Conditions 1–4, n1/2 β − β0  converges weakly to a p-dimensional

zero-mean normal random vector with a covariance matrix that attains the semiparametric
efficiency bound.

The proofs of both theorems are provided in Appendix A.

2.4 | Variance estimation

We estimate the covariance matrix of β by a profile likelihood approach. Let

Λβ = argmaxlogΛ ∈ 𝒞Ln(β, Λ), where 𝒞 is the set of bounded step functions with non-negative

jumps at tl (l = 1,…, m). The maximizer Λβ can be obtained using the EM algorithm of

Section 2.2 if we fix β and only update λ in the M-step. The profile log-likelihood function

is defined as

pln(β) = max
Λ ∈ 𝒞

logLn(β, Λ) = logLn β, Λβ .

Let pli(β) be the ith subject’s contribution to pln(β). We estimate the covariance matrix of β

by the inverse of

∑
i = 1

n

pli β + hne1 − pli(β)

hn
⋮

pli β + hnep − pli(β)
hn

⊗ 2

,

where ej is the jth canonical vector in ℝp, a ⊗ 2 = aaT, and hn is a constant of order n−1/2. In

the numerical studies, we used hn = 5n−1/2 as suggested by Zeng et al. (2016).
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The above profile likelihood approach is different from that of Murphy and Vaart (2000).

They estimate the covariance matrix of β by the negative inverse of the Hessian matrix of

pln(β) at β, which is obtained by second order numerical differences. The estimated matrix

may not be positive semidefinite, especially in small samples. Here, we estimate the

covariance matrix by the inverse of the empirical covariance matrix of the gradient of pli(β)

using the first-order numerical differences, similar to Zeng et al. (2017). The calculation is

quicker than the approach requiring second-order numerical differences, and the estimated

covariance matrix is guaranteed to be positive semidefinite.

3 | NUMERICAL STUDIES

3.1 | Simulation

We conducted simulation studies to evaluate the performance of the proposed methods. We

considered two covariates Z1 ∼ Bernoulli(0.5) and z2 ∼ Uniform(−0.5, 0.5). We set β = (0.5,

1)T, Λ(t) = 0.3t, and τ = 15. We generated the truncation time A from Uniform(0, τ) and

generated the sequence of potential examination times Um ∼ Um−1 + 0.1 + Uniform(0, 2)

with U0 = A. We set n = 100, 200, or 400 and examined 10000 replicates for each sample

size. We compared the proposed nonparametric maximum likelihood method with the

maximum conditional likelihood method of Pan and Chappell (1998), which is applicable to

left-truncated interval-censored data. For coherent comparisons, we compute both estimators

by EM algorithms, where the algorithm for the conditional likelihood estimator is an

adaption of the proposed algorithm and is given in Appendix B. We set the initial value of β
to 0 and the initial value of λl to 1/k.

Table 1 summarizes the simulation results on the estimation of β using the proposed and

conditional likelihood approaches. The biases for the proposed estimators are small and

decrease as sample size increases. The biases for the conditional likelihood estimators are

larger than those for the proposed estimators for all sample sizes, but decrease as sample size

increases. The variance estimators for β using both approaches are accurate and the

confidence intervals have proper coverage probabilities. As expected, the proposed estimator

shows substantial efficiency gain compared to the conditional likelihood estimator. Web

Figure S1 in the Supplementary Materials gives the estimated baseline survival functions.

The nonparametric maximum likelihood estimation gives unbiased estimates, while the

condition likelihood estimators tend to underestimate the true values, as indicated in Pan and

Chappell (1998).

We further assess the robustness of the nonparametric maximum likelihood estimator when

the uniform assumption for the truncation time does not hold. In particular, we considered

the same simulation setting but generated the truncation time A from Exp(0.1) such that the

stationary incidence assumption is violated. Table 2 shows the simulation results. The

nonparametric maximum likelihood estimators are slightly biased, while the coverages of

the 95% confidence intervals are acceptable. Even though the bias of the proposed estimator

is larger than the conditional likelihood estimator when sample size is large (n = 400) and

length-biased sampling is violated, the mean squared error of the proposed estimator is still

smaller.
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3.2 | Massachusetts health care panel study

We apply the proposed methods to the Massachusetts Health Care Panel Study, which has

been described and analyzed previously (Chappell, 1991; Pan and Chappell, 1998; Hudgens,

2005). The study aimed at assessing the risk at which elderly individuals lose active life,

which is defined as a continued ability to perform various activities of daily living such as

dressing and bathing. The study was first conducted in 1975 taking a baseline survey of

Massachusetts residents over the age of 65. Since only subjects who were active at baseline

were included, the time to loss of active life was subject to left truncation. Three follow-up

waves were then taken at 1.25, 6, and 10 years after baseline to determine if subjects are still

living actively, so the time to loss of active life was also interval-censored.

The data set includes 1286 subjects with enrollment age ranges from 65 to 97.3. Since the

study population were defined to be over age 65, we consider the failure time as age at loss

of active life minus 65. Since the subjects are active at the enrollment, the truncation time is

the age at enrollment minus 65. We applied the proposed methods to study the association

between loss of active life and gender.

Table 3 shows the estimation results for the regression parameter in the Massachusetts

Health Care Panel Study. The point estimates from the proposed approach and the

conditional likelihood approach are both positive, indicating that male subjects are

associated with a higher risk of losing active life than females. The standard error estimate

of the proposed nonparametric maximum likelihood estimator is smaller than that of the

conditional likelihood estimator, so that at a 5% significance level, the null hypothesis of no

association between gender and loss of active life is only rejected by the nonparametric

maximum likelihood approach.

Figure 1 shows the estimated survival probabilities for male and female subjects using the

two approaches. Even though they give similar estimates for the survival probabilities, the

nonparametric maximum likelihood approach gives an estimate with finer jumps, resulting

from the additional assumption on the truncation time. Using both approaches, the female

subjects have a higher survival probability than the male subjects.

If the length-biased sampling assumption does not hold, the regression coefficients of the

two methods would converge to different values. Therefore, we estimated the difference of

the estimators and construct a 95% confidence interval by bootstrapping with 1000

replications, to see if the stationary assumption for the truncation time holds. The differences

of the two estimators was 0.011 with a 95% confidence interval (−0.092, 0.107), indicating

that the length-biased assumption is possibly valid.

4 | DISCUSSION

In this paper, we adopt the nonparametric maximum likelihood estimation where the

estimator for Λ is a step function that is right-continuous which is usually considered in the

literature. As mentioned by a reviewer, if Λ is only restricted to be nondecreasing, then the

true maximizer of the likelihood should involve a left-continuous Λ, that is, Λ(t) = Λ(tj+1)

on (tj, tj+1] for j = 0, …, m − 1. The two versions are asymptotically equivalent since any two
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adjacent step points get closer as sample size increases. In Web Appendix A of the

Supplementary Materials, we implemented the version with left-continuous Λ and

demonstrated that the numerical difference between the two versions is ignorable.

The iterative convex minorant (ICM) algorithm (Pan, 1999) is an alternative algorithm for

the EM algorithm adopted in the paper to obtain the nonparametric maximum likelihood

estimators for interval-censored data. Even though it is generally faster than the EM

algorithm considered in the paper, it may become unstable for large datasets because it

attempts to update a large number of parameters simultaneously using a quasi-Newton

method (Zeng et al., 2016). Wang et al. (2016) also advocated the use of an EM algorithm by

comparing it with the R package intcox (Henschel and Mansmann, 2013) that adopts the

algorithm of Pan (1999). They found that ICM algorithm often exhibits larger biases,

indicating that it may not converge to the true maximizer of the likelihood function.

In this paper, we studied the nonparametric maximum likelihood estimation of the

proportional hazards model for length-biased interval-censored data. Although length-

biasedness requires a stationary incidence distribution for the initial event, the proposed

methods can be extended to situations when the incidence distribution follows a parametric

model (Huang et al., 2015). In that case, the denominator of the individual components in

Ln(β, Λ) need to be modified corresponding to the distribution of the truncation time, and

the proposed EM algorithm can be adjusted accordingly.

The efficiency gain of the proposed nonparametric maximum likelihood estimators over the

conditional likelihood estimators mainly comes from the information of the (uniform)

distributional assumption on the truncation time. Relatively, the conditional likelihood

estimators are more robust against the assumption. In practice, one need to carefully

ascertain the assumption to apply the proposed approach. For the right-censored left-

truncated data, graphical methods (Wang, 1991; Asgharian et al., 2006) and a goodness-of-

fit test (Mandel and Betensky, 2007) have been proposed to test the length-biasedness

assumption. In the numerical examples, we used a bootstrapped method to the difference of

the nonparametric maximum likelihood and conditional likelihood approaches as an indirect

test of length-biasedness. The diagnostic methods for right-censored data cannot be directly

extended to the interval-censoring case, since the estimator for the survival function

converges in a different, n1/3, rate. Formal tests for the length-biased assumption with

interval-censored data will be developed in the future.

The individuals in the MHCPS data may also be subject to the risk of a competing cause, for

example, death, such that the subjects who died before loss of active life were right-

censored. In addition, there may be selection effect such that only alive subjects were

included in the study. Therefore, the assumptions of conditional independent censoring and

truncation times may be questionable. However, the information on the cause of right

censoring is not available in MHCPS data, so we are not able to access the validity of the

assumptions. The regression analysis of competing risks interval-censored data has been

studied (Mao et al., 2017), however, no existing methods considered the scenario when the

competing risks interval-censored data are also subject to left truncation. Methods

incorporating such complications are important future research.
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Appendix A

Proof of asymptotic results

We use ℙn to denote the empirical measure from n independent subjects and ℙ to denote the

true probability measure. Write 𝔾n = n1/2 ℙn − ℙ . Let L(β, Λ) be the observed-data

likelihood for a single subject

L(β, Λ) =
∑m = 0

M Δm exp −Λ Um exp βTZ − exp −Λ Um + 1 exp βTZ

∫ 0
τ exp −Λ(a)exp βTZ da/τ

,

where Δm = I Um < T ≤ Um + 1 .

Write l(β, Λ) = logL(β, Λ). Let Λ be a step function that takes jumps only at t1, …, tk with

Λ t j = Λ0 t j  for j = 1,…, k. Let

m(β, Λ) = log
L(β, Λ) + L β0, Λ

2

and

ℳ = m(β, Λ): β ∈ ℬ, Λ ∈ DM ,

where DM = {Λ : Λ is increasing with Λ(0) = 0, Λ(τ) ≤ M}, and M < ∞. The proofs make

use of two lemmas, whose proofs are given in Web Appendix B.

Lemma 1.

Under Conditions 1–4, the classes of functions ℳ is ℙ-Donsker.

Lemma 2.

Under Conditions 1–4,
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E ∑
m = 0

M
Λ Um − Λ0 Um

2 = OP n−2/3 + O ‖β − β0‖2 .

Proof of Theorem 1

The jump points {t1,..., tk} depend on sample size n and for any ϵ > 0, ⋃jBϵ(tj) covers the

support 𝒱 as n → ∞, where Br(t) is the open ball around tj with radius r. By the continuity

of Λ0, Λ(t) converges uniformly to Λ0(t). It follows from Lemma 1 that the class ℳ is

Donsker. By the concavity of the log function,

ℙnm(β, Λ) ≥ 1
2 ℙnl(β, Λ) + ℙnl β0, Λ

≥ ℙnl β0, Λ = ℙnm β0, Λ .

Since ℬ is bounded, for any subsequence of β, we can find a further subsequence

converging to β∗ ∈ ℬ .. In addition, by Helly’s selection lemma, for any subsequence of Λ,

there exists a further subsequence that converges to some increasing function Λ*. We choose

the converging subsequences of β and Λ such that we can obtain without loss of generality

that β β∗ and Λ Λ∗ pointwise on any interior set of 𝒱. Therefore,

0 ≤ ℙnm(β, Λ) − ℙnm β0, Λ

= ℙlog
L(β, Λ) + L β0, Λ

2L β0, Λ
+ oP(1)

= ℙlog 1
2 +

L β∗, Λ∗
2L β0, Λ

+ oP(1),

such that the negative Kullback-Leibler information is positive. Therefore,

∑m = 0
M Δm exp −Λ∗ Um exp β∗

TZ − I(R < ∞)exp −Λ∗ Um + 1 exp β∗
TZ

∫ 0
τ exp −Λ∗(a)exp β∗

TZ da

=
∑m = 0

M Δm exp −Λ0 Um exp β0
TZ − I(R < ∞)exp −Λ0 Um + 1 exp β0

TZ

∫ 0
τ exp −Λ0(a)exp β0

TZ da

with probability 1. For any m ∈ {0,..., M}, we set Δm′ = 1 in the above equation m′ = m,...,

M and take the sum of the resulting equations to obtain
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exp −Λ∗ Um exp β∗
TZ

∫ 0
τ exp −Λ∗(a)exp β∗

TZ da
=

exp −Λ0 Um exp β0
TZ

∫ 0
τ exp −Λ0(a)exp β0

TZ da
.

Because m is arbitrary, we can replace Um in the above equation by any t ∈ 𝒱. We take the

logarithm and differentiate both sides with respect to t to find

Λ∗′ (t)exp β∗
TZ = Λ0′ (t)exp β0

TZ ,

such that β* = β0 and Λ∗′ (t) = Λ0′ (t) for t ∈ 𝒱. Hence, Λ*(t) = Λ0(t) for t ∈ 𝒱. We conclude

that ‖β − β0‖ 0 and Λ(t) − Λ0(t) 0 for any t ∈ 𝒱. Because Λ0 is continuous, Λ

converges uniformly to Λ0 on 𝒱.

Proof of Theorem 2.

Let

Q1(t, u, v; β, Λ) = exp βTZ
I(t ≤ v)exp −Λ(v)exp βTZ − I(t ≤ u)exp −Λ(u)exp βTZ

exp −Λ(u)exp βTZ − exp −Λ(v)exp βTZ
,

Q2(t; β, Λ) = exp βTZ

×
∫ 0

τ I(t ≤ a)exp −Λ(a)exp βTZ da

∫ 0
τ exp −Λ(a)exp βTZ da

,

and Q(t; β, Λ) = ∑m = 0
M ΔmQ1 t, Um, Um + 1; β, Λ + Q2(t; β, Λ). The score equations for β is

given by

lβ(β, Λ) = Z∫ Q(t; β, Λ)dΛ(t) .

The score operator for Λ along the submodel dΛϵ,h = (1 + ϵh)dΛ for h ∈ L2(μ) is given by

lΛ(β, Λ)(h) = ∫ Q(t; β, Λ)h(t)dΛ(t) .

Clearly,
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𝔾n lβ(β, Λ) = − nℙ lβ(β, Λ) − lβ β0, Λ0 ,

and

𝔾n lΛ(β, Λ)(h) = − nℙ lΛ(β, Λ)(h) − lΛ β0, Λ0 (h) .

We apply the Taylor series expansions at (β0, Λ0) to the right sides of the above two

equations. In light of Lemma 2, the second-order terms are bounded by

OP n−1/6 + ∥β − β0 ∥2 . Therefore,

𝔾n lβ(β, Λ) = − nℙ lββ β − β0 + lβΛ Λ − Λ0
+ OP n−1/6 + ∥β − β0 ∥2 ,

and

𝔾n lΛ(β, Λ)(h) = − nℙ lΛβ(h) β − β0 + lΛΛ h, Λ − Λ0
+OP n−1/6 + ∥β − β0 ∥2 ,

dΛϵ,h, lΛβ(h) is the derivative of lΛ(h) with respect to β, and lΛΛ(h, Λ − Λ0) is the derivative

of lΛ(h) along the submodel dΛ0 + ϵd(Λ − Λ0). All derivatives are evaluated at (β0, Λ0).

If the least favorable direction exists, we denote it as h* ∈ L2(μ)p. We first show the

existence of h*, which is the solution of lΛ
∗ lΛ h∗ = lΛ

∗ lβ, where lΛ
∗  is the adjoint operator of

lΛ. We equip L2(μ) with an inner product defined as

< h(1), h(2) > = ∫ h(1)(t)h(2)(t)dμ(t) .

On the same space, we define

∥ h ∥ = ℙ lΛ β0, Λ0 (h)2 1/2

= ℙ ∫ Q t; β0, Λ0 h(t)dΛ(t)
2 1/2

.

It is easy to show that ∥·∥ is a seminorm on L2(μ). Furthermore, if ∥h∥ = 0, then

ℙ lΛ β0, Λ0 (h)2 = 0. Thus, with probability 1, lΛ β0, Λ0 (h) = 0. By the arguments in the

Lemma 2, h(t) = 0 for t ∈ 𝒱. Clearly, ∥h∥ ≤ c < h, h >1/2 for some constant c by the Cauchy-

Schwarz inequality. According to the bounded inverse theorem in Banach spaces, we have
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h, h 1/2 ≤ c ∥ h ∥ for another constant c. By the Lax-Milgram theorem (Zeidler, 1995), there

exists h∗ ∈ L2(μ)p that satisfies

∫0
τ
ℙ Q t; β0, Λ0 Q s; β0, Λ0 h∗(s)dΛ0(s) =

∫0
τ
ℙ ZQ t; β0, Λ0 Q s; β0, Λ0 dΛ0(s)

for t ∈ 𝒱. Differentiation of the integral equations with respect to t yields

q1(t)h∗(t) + ∫t

τ
q2(s, t)h∗(s)ds + ∫0

t
q3(s, t)h∗(s)ds = q4(t),

where q1(t) > 0, and qj (j = 1, 2, 3) and q4 are continuously differentiable functions. Thus, h*

can be expanded to be a continuously differentiable function in 𝒱 with bounded total

variations. It follows that

𝔾n lβ(β, Λ) − 𝔾n lΛ(β, Λ) h∗

= − nℙ lββ β − β0 + lβΛ Λ − Λ0

+ nℙ lΛβ h∗ β − β0 + lΛΛ h∗, Λ − Λ0

+ OP n−1/6 + n‖β − β0‖2

= nℙ lβ β0, Λ0 − lΛ β0, Λ0 h∗ ⊗ 2
β − β0

+OP n−1/6 + n‖β − β0‖2 .

Using the arguments in the proof of Lemma 1, we can show that lβ β0, Λ0 − lΛ β0, Λ0 h∗

belongs to a Donsker class. Next, we show that ℙ lβ − lΛ h∗ ⊗ 2
 is invertible. If the matrix

is singular, then there exists an vector v ∈ ℝp such that vTℙ lβ − lΛ h∗ ⊗ 2
v = 0. It follows

that, with probability 1, the score function along the submodel β0 +ϵv, Λ
ϵ, − vTh∗  is zero.

That is,

∑
m = 0

M
Δm∫ I t ≤ Um + 1 exp −Λ0 Um + 1 exp β0

TZ − I t ≤ Um exp −Λ0 Um exp β0
TZ

exp −Λ0 Um exp β0
TZ − exp −Λ0 Um + 1 exp β0

TZ

× vT Z − h∗(t) dΛ0(t) + ∫ ∫ 0
τ I(t ≤ a)exp −Λ0(a)exp β0

TZ da

∫ 0
τ exp −Λ0(a)exp β0

TZ da
vT Z − h∗(t) dΛ0(t) = 0.

For any m ∈ {0,…, M}, we sum over all possible Δm′ with m′ = m,…, M to obtain

Gao and Chan Page 16

Biometrics. Author manuscript; available in PMC 2021 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



−∫0

Um
vT Z − h∗(t) dΛ0(t)

+∫ ∫ 0
aexp −Λ0(a)exp β0

TZ da

∫ 0
τ exp −Λ0(a)exp β0

TZ da
vT

× Z − h∗(t) dΛ0(t) = 0.

Because m is arbitrary, we can replace Um in the above equation by t ∈ 𝒱. We differentiate

both sides with respect to t to obtain

vT Z − h∗(t) Λ0′ (t) = 0

for any t ∈ 𝒱. It then follows that υ = 0. Hence, the matrix ℙ lβ − lΛ h∗ ⊗ 2
 is invertible.

Then, β − β0 = OP n−1/2 , and

n β − β0 = ℙ lβ β0, Λ0 − lΛ β0, Λ0 h∗ ⊗ 2 −1

× 𝔾n lβ(β, Λ) − lΛ(β, Λ) h∗ + oP(1) .

The influence function for β is the efficient influence function, such that n β − β0
converges weakly to a zero-mean normal random vector whose covariance matrix attains the

semiparametric efficiency bound.

Appendix B

An EM algorithm for maximum conditional likelihood estimation

A nonparametric maximum conditional likelihood estimator is considered in Pan and

Chappell (1998) for the proportional hazards model with left-truncated interval-censored

data. A slight variation of the proposed EM algorithm can be used to compute their

estimator, and is used in the numerical comparisons.

The observed-data conditional likelihood given the truncation time is given by

∏
i = 1

n exp −Λ Li exp βTZi − I Ri < ∞ exp −Λ Ri exp βTZi

exp −Λ Ai exp βTZi
.
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We estimate Λ nonparametrically such that the estimator for Λ is a step function that jumps

only at t1,…, tk, which are the ordered sequence of all Li, Ri, and Ai. We maximize the

objective function

∑
i = 1

n
log exp − ∑

Ai ≤ t j ≤ Li

λ jexp βTZi

−I Ri < ∞ exp − ∑
Ai ≤ t j ≤ Ri

λ jexp βTZi ) .

We introduce a sequence of independent Poisson random variables

W i j i = 1, …, n; j = 1, …, k, Ai ≤ t j ≤ Ri
∗  with means λ jexp βTZi . Let Ni1 = ∑Ai ≤ t j ≤ Li

W i j,

and Ni2 = I Ri < ∞ ∑Li < t j ≤ Ri
W i j. The objective function can be viewed as the observed-

data log-likelihood for {Ni1 = 0, Ni2 > 0 : i = 1,…, n} with W i j j = 1, …, k, Ai ≤ t j ≤Ri
∗  as

latent variables. We propose an EM algorithm. In the E-step, we evaluate

E Wi j = I Li < t j ≤ Ri, Ri < ∞

×
λ jexp βTZi

1 − exp −∑Li < tl ≤ Ri
λlexp βTZi

.

In the M step, we update λj by

λ j =
∑i = 1

n I Ai ≤ t j ≤ Ri
∗ E Wi j

∑i = 1
n I Ai ≤ t j ≤ Ri

∗ exp βTZi

and update β by solving

∑
i = 1

n
∑

j = 1

k
I Ai ≤ t j ≤ Ri

∗ E Wi j

× Zi −
∑i′ = 1

n I Ai′ ≤ t j ≤ Ri′
∗ exp βTZi′ Zi′

∑i′ = 1
n I Ai′ ≤ t j ≤ Ri′

∗ exp βTZi′
= 0 .

We iterate between the E-step and M-step until convergence.
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FIGURE 1.
Estimated survival probabilities for subgroups of subjects in the Massachusetts Health Care

Panel Study. The solid and dashed curves pertain to the nonparametric maximum likelihood

and conditional likelihood estimation approaches, respectively.
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TABLE 3

Estimation results for the regression parameter in the Massachusetts Health Care Panel Study

NPMLE CLE

Covariate Estimate Std Err p-value Estimate Std Err p-value

Male 0.144 0.059 0.014 0.133 0.076 0.081

Note: NPMLE and CLE are the nonparametric maximum likelihood and conditional likelihood estimators.
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