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Background: Maternal prenatal exposure to air pollution has been 
associated with adverse birth outcomes. However, previous studies 
focused on a priori time intervals such as trimesters reported incon-
sistent associations.
Objectives: We investigated time-varying vulnerability of birth 
weight to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) 
using flexible time intervals.
Methods: We analyzed 1,300 live, full-term births from Maternal–
Infant Research on Environmental Chemicals, a Canadian prospec-
tive pregnancy cohort spanning 10 cities (2008–2011). Daily PM2.5 
and NO2 concentrations were estimated from ground-level monitor-
ing, satellite models, and land-use regression, and assigned to partic-
ipants from pre-pregnancy through delivery. We developed a flexible 
two-stage modeling method—using a Bayesian Metropolis–Hastings 
algorithm and empirical density threshold—to identify time-depen-
dent vulnerability to air pollution without specifying exposure 
periods a priori. This approach identified critical windows with vary-
ing lengths (2–363 days) and critical windows that fell within, or 

straddled, predetermined time periods (i.e., trimesters). We adjusted 
the models for detailed infant and maternal covariates.
Results: Critical windows associated with reduced birth weight were 
identified during mid- to late-pregnancy for both PM2.5 and NO2: 
–6 g (95% credible interval: –11, –1 g) and –5 g (–10, –0.1 g) per µg/
m3 PM2.5 during gestational days 91–139 and 249–272, respectively;  
and –3 g (–5, –1 g) per ppb NO2 during days 55–145.
Discussion: We used a novel, flexible selection method to identify 
critical windows when maternal exposures to air pollution were asso-
ciated with decrements in birth weight. Our results suggest that air 
pollution impacts on fetal development may not be adequately cap-
tured by trimester-based analyses.

Keywords: Air pollution; Birth weight; Critical time interval; 
Fine particulate matter; Maternal exposures; Metropolis-Hastings 
method; Nitrogen dioxide; Pregnancy cohort
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Exposure to ambient air pollution has been associated with a 
variety of adverse birth outcomes including preterm birth, 

decreased and low birth weight, growth restriction, and neo-
natal mortality.1–7 Adverse birth outcomes have consistently 
ranked in the top ten global causes for disability-adjusted life 
years,8–10 with low birth weight, small for gestational age, and 
preterm birth linked to increased risk of infant mortality as 
well as developmental, cardiovascular, and respiratory health 
problems in childhood and adulthood.4,11–14

Time-dependent vulnerability to air pollution persists 
as a critical research priority that needs to be addressed to 
elucidate the full impact of air pollution on fetal development 
and birth outcomes.1,3,6,15–20 Literature reviews have cited 
the need for examining progressively smaller critical time 
windows during pregnancy for air pollution exposure.7,21  
Most previous studies have examined relatively large, prede-
termined exposure periods—for example, total-pregnancy, 
trimester-specific, or first and last month of pregnancy aver-
age.7,21 The primary limitation with a priori selection of crit-
ical time periods is that this approach may not identify true 
critical exposure windows that straddle two predetermined 
periods selected for analysis. Trimester-based or weekly 
analyses also assume that all critical windows are the same 
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duration. Finally, comparing trimester averages can lead to 
biased estimates; for example, when estimating the associa-
tion between a trimester average exposure and the outcome 
without controlling for other trimesters, seasonal variations 
in air pollution can act as unmeasured confounders.22

Recent studies linking air pollution with birth outcomes 
have used distributed lag nonlinear models to examine smaller 
time intervals. This method addresses some of the limitations 
associated with trimester average exposures,22 assuming a 
nonlinear shape via. smoothing over the lags. However, the 
models are highly sensitive to the specification of lag distri-
bution—specifically, degrees of freedom (df) and smoothing 
function23,24—and selection of df and smoothing method can 
introduce bias due to mis-specification.25

To address these issues, we developed a novel two-stage 
modeling method26—using a Bayesian Metropolis–Hastings 
(M-H) algorithm coupled with an empirical density thresh-
old—to identify critical time windows without relying on pre-
determined time intervals (e.g., trimesters) or distributional 
assumptions (e.g., distributed lag nonlinear model time lags). 
This approach allowed us to identify critical periods with 
varying lengths (i.e., 2 or 200 days) and critical periods that 
fell within, or straddled, predetermined time periods such as 
trimesters. We applied this flexible method to identify critical 
windows from pre-pregnancy through delivery when maternal 
exposures to ambient air pollution (PM2.5, NO2) disproportion-
ately affected fetal growth and development (birth weight) in 
a Canadian prospective pregnancy cohort spanning 10 cities.

MATERIALS AND METHODS

Study Population
The Maternal–Infant Research on Environmental 

Chemicals (MIREC) Study,27 a Canadian prospective pregnancy 
cohort, provided data for women in 10 cities from 2008 to 2011. 
Participants were recruited during the first trimester of preg-
nancy and provided information on: demographics, socioeco-
nomic status, behavior, residential location, reproductive history, 
and maternal/infant clinical data. We obtained approval to con-
duct the research from Research Ethics Boards at Health Canada 
and Hospital Sainte Justine, as well as the MIREC biobank.

Starting with 1983 MIREC participants, analyses were 
restricted to live, singleton, full-term births because still-
birth (n = 80), nonsingleton (n = 49), and preterm (n = 116) 
births are strongly associated with low birth weight. To reduce 
potential exposure misclassification in temporal data, partici-
pants with >25% of their daily concentrations missing dur-
ing the study period were excluded from PM2.5 (n = 184) and 
NO2 (n = 228) analyses. We also excluded participants with 
missing residential (n = 50), BMI (n = 64), income (n = 62), 
education (n = 2), infant sex (n = 1), and alcohol consumption 
during pregnancy (n = 1) data. Finally, to reduce spatial expo-
sure misclassification, we excluded participants living in large 
(>20 × 20 km) forward sortation areas (see the section on Air 

Pollution) from PM2.5 (n = 40) and NO2 (n = 38) analyses. 
A total of 1,334 and 1,305 mother-baby pairs were analyzed 
for PM2.5 and NO2, respectively. Exclusions are illustrated in 
eFigure A1 in eAppendix; http://links.lww.com/EDE/B865.

We applied an advanced method to impute missing daily 
air pollution concentrations. We did not apply imputation to 
the small number of missing covariates due to the nature of 
the missing data—specifically, daily air pollution data have 
periodic structure characterized by a weekly pattern, while the 
other covariates were socioeconomic or health-related vari-
ables without specific patterns.

Birth Weight
The objective of this study was to identify specific peri-

ods when maternal exposures to ambient air pollution may 
disproportionately affect birth weight; therefore, we modeled 
birth weight as a continuous variable rather than a binary vari-
able based on low birth weight.

Air Pollution
For each participant, we generated air pollution concen-

trations for each day spanning from pre-pregnancy (day –90)  
through delivery. We estimated the beginning of preg-
nancy (day 0) based on last menstrual period and early 
ultrasound (see eAppendix; http://links.lww.com/EDE/
B865 for details). We estimated daily concentrations 
of PM2.5 and NO2 by applying the relative daily varia-
tion observed at ground-level monitoring sites under 
Canada’s National Air Pollution Surveillance (NAPS) 
program to long-term, spatially refined concentrations 
from land-use regression28 and satellite-derived models.29  
This hybrid approach30 combined the enhanced spatial scale 
of land-use regression and satellite-derived data with daily 
temporal resolution provided by NAPS measurements. 
Estimation of daily and long-term PM2.5 and NO2 data is 
described in eAppendix (eFigure A2 and A3; http://links.
lww.com/EDE/B865).

Daily concentrations were missing for 1.5% (PM2.5) and 
1.2% (NO2) of the study period, mainly due to missing hourly 
NAPS data (Table 1). We imputed missing daily values using 
a multistage approach that combined classical prediction tech-
niques with phase- and frequency-fitting tools via. the multitaper 
method; see eAppendix for further details (eFigure A4 (a) and 
(b); http://links.lww.com/EDE/B865).31,32 We limited imputa-
tion to participants with at least 75% of daily air pollution data 
during the study period (pre-pregnancy through pregnancy). We 
excluded participants with less than 75% of daily data.

We linked daily PM2.5 and NO2 concentrations to each 
participant based on residential location (forward sortation 
area) at birth. Forward sortation areas consist of the first three 
characters of the Canadian postal code and can range from 
small sizes in urban areas (<2 × 2 km), to large sizes in rural 
areas (>40 × 40 km). We excluded participants living in large 
forward sortation areas (>20 × 20 km) from the analyses to 
reduce potential exposure misclassification (eTable A1; http://

http://links.lww.com/EDE/B865
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links.lww.com/EDE/B865). See eAppendix; http://links.lww.
com/EDE/B865 for further description.

We estimated associations between air pollution and 
birth weight based on average exposure for each randomly 
selected time interval (the selection method is described fur-
ther in the next section). We generated daily concentrations 
during each time interval using a log-normal distribution 
based on the estimated daily concentrations and number of 
days within the interval. This approach is more appropriate for 
assigning average exposure to intervals with varying lengths 
and is more robust to missing data, because the variance of 
the exposure depends on the number of nonmissing days.26  
Briefly, the average exposure for a time interval with a small num-
ber of days has a larger variance than that of a wider interval with 
a greater number of days. Using a log-normal distribution rather 
than calculating the average exposure as the mean or median con-
centration for the nonmissing days addresses this issue.

Statistical Analyses
We employed a data-driven time interval selection 

method which examined flexible (versus predetermined) 
exposure periods. eFigure A5; http://links.lww.com/EDE/
B865 outlines the selection process in five steps, which are 
described in detail below. All statistical analyses and computa-
tions were conducted using R 3.5.333 and SAS 9.4.34

(1)	 Generate random time intervals: We labeled each 
day based on the beginning of pregnancy (day 0).  
Time intervals were identified through random selection 
of start-end day pairs between day –90 (90 days before 
pregnancy) and delivery, using a Bayesian Metropolis-
Hastings (M-H) algorithm.25 Three chains with 100,000 
iterations and a burn-in of 1,000 iterations returned 
300,000 intervals, which comprised the randomly gen-
erated start-end day pairs selected through the compari-
sons in step 2. This approach facilitated identification of 

multiple critical periods if more than one interval met 
the inclusion threshold and was not limited to uniform-
length time intervals; specifically, time intervals ranged 
from 2 to 363 days.

(2)	 Select time intervals with better fit: For each time interval 
(the random start–end day pairs generated in step 1), we 
estimated the likelihood for a multiple linear regression 
model [1] relating birth weight with air pollution expo-
sure during the selected time interval. We then compared 
each interval with subsequent time intervals based on 
their estimated likelihoods. Time intervals with better 
likelihood were retained, and those with lower likeli-
hood were discarded. This process was repeated until we 
obtained the 300,000 intervals summarized in step 1.

[Model 1] birth weight ~ exposure (average 
exposure during the selected time interval) + gesta-
tional age at birth (days) + infant sex + smoking + edu-
cation + marital status + income + parity + ethnicity + 
alcohol use + season of birth + maternal age + maternal 
pre-pregnancy BMI + error (where the error term has a 
normal distribution with mean zero).

Covariate specification is described in a directed 
acyclic graph for the direct effect of ambient air pollu-
tion exposure on birth weight (eFigure A6; http://links.
lww.com/EDE/B865). There were 10 potential con-
founders and  ancestors of the outcome (gestational age 
and infant sex), which were causally linked with the out-
come but not the exposure. Air pollution exposure was 
the only time-varying variable; the 12 covariates were 
fixed across exposure intervals.

(3)	 Calculate empirical density based on selected time inter-
vals: The M-H algorithm35 in steps 1 to 2 allowed for the 
selection of overlapping time intervals. Therefore, we 
proposed a new approach to identify potential critical 

TABLE 1.  Descriptive Statistics for Daily PM2.5 and NO2

  

PM2.5 (µg/m3) NO2 (ppb)

All Daily Values  
(n = 1,334 

Participants)

Unimputed Only  
(n = 1,324 

Participants)

All Daily Values  
(n = 1,305 

Participants)

Unimputed Only  
(n = 1,096 

Participants)

Nonmissing daily concentrations: N (%)a 481,450 (99%) 473,289 (99%) 471,682 (100%) 392,913 (99%)

Missing daily concentrations: n (% missing)b 2,792 (1%) 7,323 (2%) 2,033 (0%) 4,935 (1%)

Mean 8.8 8.8 16.4 18.5

Standard deviation (SD) 7.6 7.6 13.7 13.7

Median 6.6 6.7 12.6 15.9

Min <0.001 0.05 <0.001 <0.001

Max 226.3 226.3 119.4 118.1

Coefficient of variationc 0.86 0.86 0.84 0.74

aN = number of MIREC participants × sum of all nonmissing gestational + pre-pregnancy days for each participant (i.e., for PM2.5, N = 1,334 participants × a maximum of 363 
days per participant).

b% nonmissing = nonmissing values/maximum possible daily values × 100 (i.e., for PM2.5, the maximum % nonmissing = 481,450/484,242 × 100).
cCoefficient of variation (CV) = standard deviation/mean.

http://links.lww.com/EDE/B865
http://links.lww.com/EDE/B865
http://links.lww.com/EDE/B865
http://links.lww.com/EDE/B865
http://links.lww.com/EDE/B865
http://links.lww.com/EDE/B865
http://links.lww.com/EDE/B865
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periods. We calculated the selection density for each 
day within the study period based on the frequency with 
which that day occurred in the time intervals selected 
in steps 1 and 2. Higher frequency resulted in higher 
density, indicating critical exposure timing. This new 
approach for generating an empirical density for the 
study period is a simplification of the bivariate normal 
distribution assumption for the start-end intervals.26

(4)	 Identify potential critical exposure periods: Each day during 
the study period was ranked from the lowest to highest based 
on the density calculated in step 3. Those days with higher 
density demonstrated better fit for model 1, and thus higher 
rank, while those days with low density reflected poorer 
fit and lower rank. We introduced thresholds to determine 
which days appeared frequently enough to be considered 
important. We identified days that fell in the 75th percentile 
(i.e., the top 25%) as critical exposure periods.

(5)	 Estimate associations between air pollution and birth 
weight: We fit model [1] using noninformative priors 
(mean zero and variance 100) to estimate the change 
in birth weight per unit change in air pollution expo-
sure during the critical time periods identified in step 4.  
We set up three chains with 10,000 samples for each 
chain, which resulted in 30,000 samples for the poste-
rior distribution of each parameter. We reported 95% 
credible intervals in this article.

Sensitivity Analyses
We conducted sensitivity analyses to (1) examine the 

implications of using alternative thresholds (90th and 50th per-
centiles of selection density) to identify critical exposure peri-
ods; (2) examine the influence of imputed concentrations on 
identification of critical exposure periods; (3) compare asso-
ciations between air pollution and birth weight for randomly 
selected versus predetermined exposure periods including 
pre-pregnancy (T0), individual trimesters (T1, T2, T3), total-
pregnancy (T4, T1–T3), and pregnancy plus pre-pregnancy (T5, 
T0–T3); (4) compare our flexible selection method with dis-
tributed lag nonlinear models; and (5) examine the influence 
of excluding large forward sortation areas. See eAppendix; 
http://links.lww.com/EDE/B865 for additional details.

RESULTS

Selected Participants and Study Time Span
As described earlier, our analyses included 1,334 par-

ticipants for PM2.5 and 1,305 for NO2. Because the number of 
women delivering after day 272 was limited, we examined the 
period from day –90 to 272 to maintain at least 1,000 partici-
pants for each day.

Maternal and Infant Characteristics
Table 2 summarizes maternal and infant characteristics 

for participants included in PM2.5 and NO2 analyses, versus 
all participants with live, singleton births. Most participants 

were married or in long-term partnerships (>1 year), and were 
highly educated, with high household incomes. Few partici-
pants smoked (4.3%) or consumed alcohol (20.2%) during 
pregnancy. However, 42% of pregnant women in this study 
were ≥35 years old, compared with 19.4% of pregnant women 
≥35 years in the general population.36

Maternal and infant characteristics were comparable 
for participants included in PM2.5 and NO2 analyses (Table 1). 
Birth weight had a symmetric distribution with mean 3,511 g 
and SD 458 g among participants (n = 1,541) without miss-
ing air pollution data (not shown). The mean birth weight was 
slightly higher for participants included in PM2.5 and NO2 
analyses compared with the full cohort due to the exclusion 
of nonsingleton and preterm birth, but similar among partici-
pants in the PM2.5 and NO2 analyses. Other maternal and infant 
characteristics were similar between participants included and 
excluded from the analyses, providing assurance that differen-
tial exclusion based on data availability introduced little bias.

Air Pollution Concentrations
Table 1 summarizes daily ambient PM2.5 and NO2 con-

centrations. Mean daily concentrations were 8.8 µg/m3 (SD = 
7.6) for PM2.5 and 16.4 ppb (SD = 13.7) for NO2. The distri-
bution of daily concentrations was similar for PM2.5, with or 
without imputed data, whereas mean concentrations without 
imputed data were lower, with slightly less variation for NO2 
(based on the coefficient of variation, a ratio of SD to mean). 
This suggests that imputed data provided more daily variation, 
which could better support the detection of critical exposure 
periods. Graphical summaries are provided for daily concen-
trations for T0–T3 (eFigures A7 to A10; http://links.lww.com/
EDE/B865).

Critical Exposure Periods
We identified three critical periods for PM2.5 based on 

the 75th percentile of the selection density (Figure  1) dur-
ing: pre-pregnancy (days –90 to –75), mid-pregnancy (days 
91–139), and late-pregnancy (days 249–272). For NO2,  
we identified only one critical period during mid-pregnancy (days 
55–145) (Figure 2).

Associations Between Air Pollution and Birth 
Weight

Maternal exposures to air pollution were associated 
with decreased birth weight (Figure 3A,B; eTables A2 to A3; 
http://links.lww.com/EDE/B865). PM2.5 was associated with 
reductions in birth weight of –6 g (–11 g, –1 g) and –5 g (–10 g, 
–0.1 g) per 1 µg/m3 increase in PM2.5 during mid-pregnancy 
(days 91–139) and late-pregnancy (days 249–272), respec-
tively. NO2 during mid-pregnancy (days 55–145) was associ-
ated with –3 g (–5 g, –1 g) reduction in birth weight per 1 ppb 
increase in NO2.

Figure 4 shows a timeline of critical exposure periods 
for PM2.5 and NO2 by gestational age, with corresponding 
milestones in fetal development. Associations between the 

http://links.lww.com/EDE/B865
http://links.lww.com/EDE/B865
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12 covariates and birth weight are summarized in eTable A4; 
http://links.lww.com/EDE/B865.

Sensitivity Analysis Results

(1)	 Selection thresholds: Critical periods identified for 
PM2.5 were more robust to selection threshold—i.e., 
50th or 90th versus 75th percentile—compared with 
NO2 (Figures 1 and 2, eTables A2 to A3; http://links.
lww.com/EDE/B865). The analyses identified several 
time-varying critical periods for PM2.5, which were 
similar across selection thresholds, whereas NO2 had 
just one critical period, which was narrower when we 
applied more conservative selection thresholds.

(2)	 Imputed data: Inclusion of imputed data had minimal 
influence on associations between air pollution and 
birth weight for both PM2.5 and NO2 (eFigures A11 to 
A12; http://links.lww.com/EDE/B865). Associations 
between PM2.5 and birth weight were nearly identical 
for models including and excluding imputed data. For 
NO2, associations were similar but slightly weaker 
in magnitude for models excluding imputed data, 
because there were 209 fewer participants and less 

variation in NO2 concentrations when imputed data 
were excluded.

(3)	 Randomly selected versus predetermined exposure peri-
ods: Estimates of association for PM2.5 and NO2 during 
critical periods identified in this study were compa-
rable in magnitude with effect estimates for predeter-
mined time periods, specifically, T1–T5 (Figure 6A,B). 
However, the critical periods identified by the flexible 
selection method did not align with the fixed trimesters; 
specifically, the mid-pregnancy critical period for PM2.5 
(days 91–139) did not align perfectly with T2 (days 
91–174). For NO2, exposures across predetermined time 
periods were consistently associated with reduced birth 
weight, while the random selection method identified a 
single critical period from late-T1 to mid-T2.

(4)	 Bayesian random selection method versus distributed-
lag nonlinear models: For distributed lag models, 
we defined lag0 as the first day of the study period  
(day –90) and used Akaike information criterion 
to choose the best fit. Among the 19 values (df = 2 
to 20), df = 4 was optimal for PM2.5 and df = 2 for 
NO2 (eTable A5; http://links.lww.com/EDE/B865).  

TABLE 2.  Descriptive Statistics for Maternal and Infant Characteristics

 
PM2.5  

(n = 1,334)a

NO2  
(n = 1,305)a

MIREC Live, Singleton Births
(N = 1,854)b

Maternal characteristics

  Age (total N = 1,854) n % n % n %
    <20 2 0.1 2 0.2 51 3

    20–24 50 4 47 4 81 4

    25–29 243 18 220 17 341 18

    30–34 479 36 461 35 638 34

    ≥35 560 42 575 44 743 40

  Parity (previous live birth) (total N = 1,854) 728 55 732 56 1,045 56

  Alcohol during pregnancy (total N = 1,805) 269 20 258 20 343 19

  Smoked during pregnancy (total N = 1,805) 57 4 57  94 5

  Household income (>$50,000) (total N = 1,778) 1,152 86 1,086 83 1,466 82

  Education (university degree) (total N = 1,804) 1,234 93 1,203 92 1,647 91

  Married or long-term partner (total N = 1,854) 1,277 96 1,250 96 1,767 95

  Ethnicity (White) (total N = 1,854) 1,152 86 1,115 85 1,548 86

  Pre-pregnancy BMI  

    Underweight (total N = 1,716) 33 3 32 3 49 3

    Normal (total N = 1,716) 824 62 809 62 1,041 61

    Overweight (total N = 1,716) 289 22 282 22 369 22

    Obese (total N = 1,716) 188 14 182 14 257 1

  Infant characteristics

 n % n % n %
  Infant sex (girl) (total N = 1,853) 623 47 616 47 873 47

  Birth season (warm: April–September) (total N = 1,854) 694 52 697 53 960 52

 mean (SD) range mean (SD) Range mean (SD) Range
  Gestational age (weeks) (total N = 1,854) 39 (1.3) 37–42 39 (1.2) 37–42 39 (1.8) 21–42

  Birth weight (g) (total N = 1,852) 3,508 (453) 1,765–5,620 3,510 (452) 1,765–5,620 3,452 (532) 651–5,620

aPreterm excluded (n = 116).
bPreterm included.

http://links.lww.com/EDE/B865
http://links.lww.com/EDE/B865
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eFigure A13; http://links.lww.com/EDE/B865 dis-
plays the lag distributions along with the critical 
periods obtained by the Bayesian random selection 
method. For PM2.5 and NO2, distributed lag nonlin-
ear models and Bayesian methods returned consistent 

results on the number of inflection points (knots) but 
at different locations (lags).

(5)	 Large forward sortation areas: Due to the small number 
of participants living in large forward sortation areas, 
the inclusion of large forward sortation areas did not 
change the critical periods identified in the analyses, or 
the associations between birth weight and exposure dur-
ing those critical periods (eTable A6; http://links.lww.
com/EDE/B865, eFigures A14 to A15; http://links.lww.
com/EDE/B865; http://links.lww.com/EDE/B865).

DISCUSSION
We investigated time-varying vulnerability of birth 

weight to maternal air pollution exposure using a novel, 
flexible selection method to identify critical exposure peri-
ods. Maternal exposures to both PM2.5 and NO2 during 
pregnancy were associated with decreased birth weight in 
the MIREC cohort. PM2.5 displayed stronger time-depen-
dent variation compared with NO2 (Figure  4A,B), with 
two critical exposure periods during mid-pregnancy and 
late-pregnancy. NO2 associations varied less by the timing 
of exposure, with a single critical exposure period during 
mid-pregnancy.

Time-Dependent Associations Between  
Air Pollution and Birth Outcomes

Recent reviews and meta-analyses have examined criti-
cal exposure periods for air pollution and birth outcomes 
during pregnancy. However, results varied significantly 
between studies, possibly due to lack of consistency in meth-
ods—particularly exposure estimation, time periods, analyti-
cal approach, and model specification—as well as variation 
between pollutant species, regional PM composition, birth 
outcomes, and study populations.1,3,6,37,38 Despite differences 
in methodologies, overall associations and critical periods 
identified in the current study were generally consistent with 
previous research.

In a meta-analysis of 32 studies, PM2.5 exposures in T2 
and T3 were associated with reduced birth weight and low birth 
weight,39 which was consistent with the mid- and late-preg-
nancy critical periods we observed for PM2.5. Other reviews 
and meta-analyses found that effect estimates relating air pollu-
tion in late-pregnancy with low birth weight and preterm birth 
were more precise than effect estimates for early-, mid- or total-
pregnancy.3,7 However, results from individual studies varied.2,7

While most studies focused on trimester-level exposure, 
a few examined shorter time intervals for PM2.5 and preterm 
birth. Warren et al.40 used a flexible model to identify critical 
periods in weeks 4–22. Rappazzo et al.41 found associations 
in early- and late-pregnancy. Acute PM2.5 exposure in late-
pregnancy was also associated with preterm birth.42,43 The lit-
erature for NO2 and birth outcomes is more limited, providing 
little basis for evaluating the mid-pregnancy critical period we 
observed for NO2.

FIGURE 1.  Critical periods for PM2.5 (n = 1,334) at selected 
density levels: (A) 50% (yellow): (–90, –72), (47, 181), 
and (246, 272); (B) 75% (blue): (–90, –75), (91, 139), and  
(249, 272); and (C) 90% (red): (–90, –84), (109, 128), and 
(253, 262). The vertical dotted lines indicate the start-end pair 
days of critical periods.

FIGURE 2.  Critical periods for NO2 (n = 1,305) at selected 
density levels: (A) 50% (yellow): (12, 192); (B) 75% (blue): 
(55, 145); and (C) 90% (red): (81, 117). The vertical dotted 
lines indicate the start-end pair days of critical periods.
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Mechanisms for Time-dependent Associations
Several mechanisms have been posited to explain air 

pollution-induced impacts on fetal growth and preterm birth, 
including oxidative stress, inflammation, blood viscosity/
coagulation, hemodynamic responses/endothelial function, 

and endocrine disruption.1,4,20,21,44–46 Through these mecha-
nisms, PM2.5 and NO2 can induce morphological changes 
that disrupt the flow of oxygen and nutrients across the pla-
centa, resulting in reduced fetal growth; or triggering preterm 
birth.1,4,21,42–46 Mechanistic studies of air pollution-induced 

A

B

FIGURE 3.  A, Associations between PM2.5 and birth weight with 95% credible intervals (per 1 µg/m3 PM2.5): six fixed time inter-
vals (left) and three critical time intervals identified by random selection method (right). Pre-pregnancy (T0); trimester 1 (T1); 
trimester 2 (T2); trimester 3 (T3); pregnancy (T1–T3); and Pregnancy + Pre-pregnancy (T0–T3). 

aThe Y-axis indicates the reduced 
birth weight in gram per 1 unit change in PM2.5. B, Associations between NO2 and birth weight with 95% credible intervals (per 1 
ppb NO2): six fixed time intervals (left) and one critical time interval identified by random selection method (right). Pre-pregnancy 
(T0); Trimester 1 (T1); Trimester 2 (T2); Trimester 3 (T3); Pregnancy (T1–T3); and Pregnancy + Pre-pregnancy (T0–T3). 

bThe Y-axis 
indicates the reduced birth weight in gram per 1 unit change in NO2.
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fetal impacts are limited with respect to timing of exposure. 
The critical exposure period we observed in late-pregnancy 
may be associated with decreased birth weight through induc-
tion of early delivery due to inflammation and oxidative stress, 
while the critical periods in early- to mid-pregnancy may be 
associated with placental disruption.

Pollutant-specific Associations

Critical exposure periods differed between PM2.5 and 
NO2 in this study. We identified two relatively narrow critical 
exposure periods for PM2.5 and one wider critical period for 
NO2. Associations between PM2.5 and birth weight were also 
slightly greater in magnitude compared with NO2.

The disparate critical periods identified for PM2.5 and 
NO2 may reflect differences in the chemical properties of the 
pollutants—for example, their relative oxidative potential 
and absorption—or different mechanisms of action. We also 
observed greater temporal variation in PM2.5, but greater spa-
tial heterogeneity in NO2, which could impact their critical 
exposure periods. Differences in exposure assessment meth-
odologies could also impact identification of critical windows. 
Previous studies have primarily relied on ground level moni-
toring data,47 which provides limited information regarding 
spatial variability, and may be poorly suited to characterizing 
variation in NO2 exposure. In contrast, we relied on a combi-
nation of temporally and spatially resolved air pollution data 
to estimate daily exposure.

Although methodologic differences limit direct com-
parison, pollutant-specific results in the current study are 
generally consistent with results of trimester-based analy-
ses. Previous studies of PM2.5 suggest stronger effects in 
early- and late-pregnancy, while exposure to NO2 at multiple 
stages during pregnancy have been linked to adverse birth out-
comes.1,20,48 Further, Klepac et al.7 reported that effect esti-
mates for air pollution and preterm birth were more consistent 
for exposures in T3 for PM2.5, and T2 for NO2.

Sensitivity Analyses
Our findings were robust to alternative thresholds for 

density selection, imputed exposure data, and the inclusion/
exclusion of large forward sortation areas. While our method 
identified critical exposure windows that did not directly align 
with predetermined exposure periods, the magnitudes of 
association estimated by flexible versus fixed exposure peri-
ods were comparable for both pollutants. This was expected, 
because our method is able to examine finer time periods.

We compared critical periods identified using our Bayesian 
random selection approach with distributed lag nonlinear mod-
els. Distributed lag nonlinear models returned comparable time 
periods for PM2.5 but not NO2 (see eAppendix; http://links.lww.
com/EDE/B865 for further discussion). For both pollutants, the 
flexible selection method identified narrower critical periods, 
while distributed lag nonlinear models suggested wider time 
periods smoothly changing over daily lags. Smoother changes 
in exposure timing may be more realistic than fluctuating 

FIGURE 4.  A timeline of critical periods for reduced birth weight associated with PM2.5 and NO2 during pregnancy.
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changes across pregnancy, but distributed lag nonlinear mod-
els are not as flexible as our method. Distributed lag nonlinear 
models need to specify a smoother, as well as the number and 
location of internal knots, a priori, which is problematic when 
no prior information is available. In contrast, our method pro-
vides a truly agnostic, flexible approach for identifying critical 
exposure windows, which is why our method returned narrower 
time windows than distributed lag nonlinear models.

Limitations
We classified exposure based on residential locations 

obtained at birth. The lack of detailed residential history during 
pregnancy could result in potential exposure misclassification; 
however, the moving rate was low (7.7%) in this study. Also, 
previous studies which compared exposure classification based 
on a single location versus detailed residential history reported 
that absence of residential history had a minimal impact on 
estimated associations between air pollution and birth out-
comes,47–49 even for short (weekly) exposure windows.50 We 
also linked air pollution estimates to participants using forward 
sortation areas, that vary in size, which may have introduced 
exposure misclassification despite our exclusion of partici-
pants residing in the largest forward sortation areas.

Our models accounted for detailed sociodemographic 
and behavioral factors associated with adverse birth out-
comes. However, there may be model misspecification, miss-
ing or mis-specified confounders, or unmeasured confounding 
due to historical or cumulative exposures, which could have 
resulted in unmeasured bias in our estimated associations.

The study population had, on average, higher income 
and education levels, but lower smoking rates compared with 
the general population, which may limit the generalizability 
of our results.

Future Work
We restricted analyses to live, full-term, singleton births, 

which may have underestimated time-dependent impacts of 
air pollution on fetal development by excluding the most vul-
nerable pregnancies. Future analyses are needed to identify 
critical windows for preterm birth and jointly examine asso-
ciations between air pollution, preterm birth, and fetal growth, 
as well as miscarriage and subfertility.

Multipollutant models would help to elucidate potential 
mechanisms and critical time periods for pollution-mediated 
decreases in birth weight. Improved accuracy and coverage 
of daily pollutant concentrations would support identifica-
tion of critical exposure periods. Replicating these results in a 
larger, population-based cohort would also be useful. Finally, 
this approach could be adapted to identify critical periods for 
childhood diseases such as asthma, autism, and attention-def-
icit hyperactivity disorder.

CONCLUSIONS
Our results highlight the importance of using flexible 

selection methods to identify critical exposure windows 

during gestation, and provide further evidence that expo-
sure to PM2.5 and NO2 during pregnancy is associated with 
decreased birth weight. Our method identified critical time 
periods during for PM2.5 and mid-pregnancy for NO2, when 
maternal exposure to air pollution was associated with 
decreased birth weight. In contrast with conventional meth-
ods, our approach was not limited to predetermined expo-
sure periods such as weeks, months, or trimesters, but rather 
was able to capture any critical time periods (≥2 days) within 
the prenatal period. Once replicated, these results could raise 
awareness of critical time windows for exposure to air pollu-
tion and support protective guidelines and interventions for 
pregnant women.
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