Skip to main content
. 2021 Oct 26;8(11):160. doi: 10.3390/bioengineering8110160
HPLC High Pressure Liquid Chromatography
CHO Chinese Hamster Ovary
MC Monte Carlo
FA Functional Analysis
Gln Glutamine
Lac Lactate
μ biomass-specific growth rate
qp biomass-specific product formation rate
qS biomass-specific substrate uptake rate
qi biomass-specific rate of component i
ci concentration of component i
X biomass
S substrate
P product
D dilution rate
cS,feed substrate concentration in the feed
FS feed rate
tk t of sample k
cS,t,meas measured concentration at t
X¯ true input
x¯ reconstructed input by regression
Y¯ measured output
y¯ predicted regression output
Wy weighting matrix of predictions
Wx weighting matrix of input variables
S weighted sum of squared error
σ standard deviation of measured output or true input
N number of Monte Carlo iterations
f arbitrary function converting input x¯ to output y¯
x¯sampled sampled input from Gaussian-distributed error
yk¯ calculation result of sampled input
y¯i,sampled sampled input from output i
σ¯i standard deviation after calculation step i
Pk(1:N) regression parameter for N Monte Carlo evaluations
covP parameter covariance
σ¯P parameter standard deviation
σ¯y^ standard deviation of regression output