Skip to main content
. 2021 Nov 13;10(11):1174. doi: 10.3390/biology10111174

Table 5.

Model final parameters.

Model Batch Size Number of Epochs Hidden Layer Size Dropout Learning Rate Activation Optimizer Kernel Size
VGG16 150 200 8–96 neurons 0.1 0.00001 ReLu sigmoid Adam 2 × 2
VGG19 150 200 8–96 neurons 0.1 0. 0001 ReLu sigmoid RMSprop 2 × 2
InceptionV3 200 300 8–96 neurons 0.1 0.0001 ReLu sigmoid Nadam 2 × 2
ResNet50 100 200 8–96 neurons 0.1 0.001 ReLu sigmoid Adamax 2 × 2
ResNet101 250 300 8–96 neurons 0.1 0.0001 ReLu sigmoid Adam 2 × 2
GoogLeNet 50 150 8–96 neurons 0.1 0.0001 ReLu sigmoid SGD 2 × 2
MobileNetV2 250 300 8–96 neurons 0.1 0.01 ReLu sigmoid RMSprop 2 × 2
AlexNet 100 150 8–96 neurons 0.1 0.00001 ReLu sigmoid Adadelta 2 × 2
EfficientNet B7 200 300 8–96 neurons 0.1 0.000001 ReLu sigmoid Adamax 2 × 2
DenseNet121 200 350 8–96 neurons 0.1 0.00001 ReLu sigmoid Adagrad 2 × 2
NFNet 150 250 8–96 neurons 0.1 0.0001 ReLu sigmoid Adadelta 2 × 2
Modified MobileNetV2
(Proposed Method)
300 400 8–96 neurons 0.1 0.0000001 ReLu RMSprop 2 × 2