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Abstract: Cellular heterogeneity is of significance in cell-based assays for life science, biomedicine and
clinical diagnostics. Electrical impedance sensing technology has become a powerful tool, allowing for
rapid, non-invasive, and label-free acquisition of electrical parameters of single cells. These electrical
parameters, i.e., equivalent cell resistance, membrane capacitance and cytoplasm conductivity, are
closely related to cellular biophysical properties and dynamic activities, such as size, morphology,
membrane intactness, growth state, and proliferation. This review summarizes basic principles,
analytical models and design concepts of single-cell impedance sensing devices, including impedance
flow cytometry (IFC) to detect flow-through single cells and electrical impedance spectroscopy (EIS)
to monitor immobilized single cells. Then, recent advances of both electrical impedance sensing
systems applied in cell recognition, cell counting, viability detection, phenotypic assay, cell screening,
and other cell detection are presented. Finally, prospects of impedance sensing technology in single-
cell analysis are discussed.

Keywords: electrical impedance spectroscopy; impedance flow cytometry; single cell analysis;
microfluidics

1. Introduction

Cellular biophysical properties provide signals for abnormalities in tissues and or-
gans [1,2]. Due to the heterogeneity presented in any isogeneic cell population, conven-
tional population-averaged approaches neglect differences among individuals in gene
expression and cell processes, leading to the loss of significant information [3,4]. Studies
of cellular heterogeneity allow for exploring the cause, diagnosis and targeted therapy of
diseases and the discovery of drugs [5,6].

Microfluidics, which provides manipulation and analytical methods at single-cell level,
has emerged as a powerful tool for single-cell analysis [7,8]. Microfluidic devices have the
advantages of miniaturization, low cost, comparable geometric dimension to cell sizes and
flexible structural design [9–11]. Various single-cell manipulation strategies have been de-
veloped and introduced in microfluidic devices for cell-based studies [12]. These strategies
to manipulate cells could be active, such as dielectrophoresis [13], acoustophoresis [14]
and optical tweezers [15], or passive, such as microwells [16], hydrodynamic traps [17] and
inertial focusing in curved channels [18]. To characterize the diverse biophysical properties
of single cells, analytical methods integrated with microfluidic devices have been widely
expanded, such as spectroscopy [19], fluorometry [20], mass spectroscopy [21] and elec-
trochemical probes [22]. To study cellular heterogeneity, optical characterization methods,
such as optical flow cytometry and laser confocal microscopy, are most widely used to ac-
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quire biological information in single-cell resolution [20]. However, these methods require
fluorescent labels in cells to characterize cell and subcellular structures.

Electrical impedance properties of single cells could be used as biophysical mark-
ers that provide important information to uncover the complex physiological states of
cells [23–25]. Biosensors based on single-cell electrical impedance measurements have the
advantage of probing multiple biological parameters without fluorescent labeling. The
electrical impedance at different frequency ranges refers multiple properties of cells: size
information at a low frequency (from 100 kHz to 1 MHz), membrane capacitance at a
higher frequency (about a few MHz), and intracellular organelles, such as the conductiv-
ity of cytoplasm, at even higher frequencies [26,27]. In addition, the non-invasive and
label-free impedance sensing techniques are easy to be integrated into microfluidic devices
for quantitative and real-time detection of single cells. Due to the advantages mentioned
above, electrical impedance integrated microfluidic devices have been widely utilized for
cell-based assays in single-cell resolution.

This review first presents a brief overview of basic principles, analytical models and
design concepts of electrical impedance sensing devices for single-cell analysis. Next,
applications of two essential microfluidic systems for single-cell impedance measurement
are focused: impedance flow cytometry for mobile cell detection, such as cell counting,
identification, and classification, and electrical impedance spectroscopy for immobilized
cell monitoring, such as cell differentiation, division, and proliferation. In the end, advances
and prospects on electrical impedance sensing technology for single-cell analysis are
discussed.

2. Theory and Modeling

In electrical impedance sensing, a frequency-dependent excitation signal in the form
of an alternating current (AC) voltage Ũ(jω) is applied to a pair of electrodes and the
response current Ĩ(jω) is measured. Impedance of the measured object is defined as the
ratio between excitation voltage and response current:

Z̃(jω) =
Ũ(jω)

Ĩ(jω)
= ZRE + jZIM (1)

where Z̃(jω) is the complex impedance. ZRE and ZIM are the real and imaginary part of
the complex impedance, respectively. j2 is −1 and ω is the angular frequency (ω = 2πf ).
The absolute value and phase shift of the complex impedance are given by:∣∣∣Z̃∣∣∣ = √(ZRE)

2 + (ZIM)2 (2)

θ = arctan
(

ZIM
ZRE

)
(3)

The common theory and model of cell impedance sensing is the electrical model of a
spherical cell in an aqueous medium. The complex impedance of cell-medium system is
given by:

Z̃mix =
1

jωC̃mix
(4)

where C̃mix is the complex capacitance of the system and is determined by ε̃mix:

C̃mix = ε̃mix
S

4πkd
(5)
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The well-known Maxwell’s mixture theory (MMT) [26,28] is widely used to derive the
complex permittivity of mixture of cell and medium as:

ε̃mix = ε̃m
1 + 2ϕ f̃CM

1− ϕ f̃CM
(6)

In this equation, ε̃mix, ε̃m and ε̃c represent the complex permittivity of the medium-cell
mixture, suspending medium and the cell, respectively. ϕ represents the volume fraction
of the cell to the suspending medium and f̃CM represents the Clausius-Mossotti factor:

f̃CM =
ε̃c − ε̃m

ε̃c + 2ε̃m
(7)

Because MMT only works well in a uniform field with low volume fractions, the
volume fraction should be replaced with a corrected value in the cases of high volume
fraction (usually >40%) and non-uniform field [27]. Besides, the derivation of MMT is
only applicable under homogenous external electric fields and depends on configuration
mode of electrodes in specific devices. Considering the geometric parameters of electrode
configurations, the impedance of a mixture system can be described as:

Z̃mix =
1

jωε̃mixG f
(8)

where Gf is a geometrical constant. Calculation methods of Gf under typical electrode
configurations were proposed in previous literatures [28–30].

The simplest electrical model of a biological cell is the “single-shell model”, which
consists of an insulating shell (i.e., plasma membrane) and a conducting sphere (i.e.,
cytosol, assumed to be homogeneous) [23,27,28]. In addition, plant cells, Gram-negative
bacteria like Escherichia coli (E. coli), and fungi like Saccharomyces cerevisiae (S. cerevisiae) have
outer cell walls. The electrical model of these cells could be represented by “multi-shell
model” [31]. Based on MMT, these electrical models could be simplified step by step until
it becomes a homogeneous sphere according to following equation:

ε̃ei = ε̃i+1

(
Ri+1

Ri

)3
+ 2× ε̃i−ε̃i+1

ε̃i+2ε̃i+1(
Ri+1

Ri

)3
− ε̃i−ε̃i+1

ε̃i+2ε̃i+1

(9)

where Ri (i = 1, 2, 3, 4) and ε̃i (i = 1, 2, 3, 4) are the radius and the complex permittivity
of each shell. ε̃ei (i = 1, 2, 3) stands for the complex permittivity of the homogeneous
sphere after i-th simplification (Figure 1A). After the third simplification, the multi-shell
model becomes homogeneous and its complex permittivity (ε̃e3) could be substituted into
Equation (7) as the complex permittivity of the cell (ε̃c).

Typically, a single cell in liquid culture is in either of two conditions: suspended in
medium or adhered to the substrate/electrode. Cells in a flow system and cells captured
in a fixed position are classified as suspended cells. The ECMs of impedance sensing
system with suspended and adherent cells have been provided for theoretically analysis
(Figure 1B) [24,26]. In ECMs, cell and medium are simply equivalent to resistors and
capacitors in series and parallel according to their electrical parameters. Besides, the
electrical double layers (EDLs), formed by the contract between metal electrodes and
electrolyte solutions, are modelled as capacitors (Cdl). Ignoring the double layer, the
impedance of a mixture system can be described as [24]:

Z̃mix =
Rm(1 + jωRcCmem)

jωRmCmem + (1 + jωRcCmem)(1 + jωRmCm)
(10)
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where Rm and Rc are the resistance of medium and cytosol, respectively. Cm, Cmem are
the capacitance of medium and cell membrane, respectively. Optimizing the dielectric
properties of suspension medium can improve the dominance of cell impedance in complex
impedance of the mixture. The PBS solution, which has the best conductivity while
maintaining the activity of biological cells, is therefore widely used in cell impedance
sensing applications.
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Figure 1. Electrical model and equivalent circuit models (ECMs) of a single cell. (A) Multi-shell model of a single cell
simplified into a homogeneous sphere based on MMT. (B) ECMs of a cell suspended between a pair of sensing electrodes
and a cell adhered on a sensing electrode. (C) Simulation results of cell impedance sensing using an ECM model, which
presented various frequency domains corresponding to different biophysical parameters. Reproduced from [32] with the
permission from Royal Society of Chemistry.

The frequency range of cell impedance spectra is from 1 Hz to 10 GHz and could be
distinguished into three distinct dispersions (or relaxations), which are the well-known
α, β and γ dispersions [28]. The α-dispersion, occurs below several kHz, is attributed
to the polarization of cell membrane. However, it is difficult to measure due to the
domination of impedance by EDLs at low frequencies. At higher frequencies (more than
few tens of kHz), the β-dispersion exhibits characteristic sub-dispersions dominated by
double layer capacitance, cell size, cell membrane and cytoplasm. Therefore, it is the most
widely applied in the electrical impedance sensing of biological samples. The frequency
ranges corresponding each sub-dispersion has been given by simulation result using
ECMs (Figure 1C) [26]. In GHz range, the γ-dispersion arises from reorientation of water
molecules.

3. Device Designs for Sensing Single-Cell Impedance

In this section, common designs of single-cell impedance sensing devices are reviewed
first, including impedance flow cytometry to sense flowing cells and electrical impedance
spectroscopy to sense immobilized cells. Then, instruments and portable platforms to
implement impedance sensing are summarized. In the end, complementary metal-oxide-
semiconductor (CMOS) based electrical impedance devices are described.
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3.1. Impedance Flow Cytometry (IFC)

Impedance flow cytometry is a high-throughput methedology for single-cell analysis,
analogous to micro Coulter particle counter (µCPC) [32]. Compared with the µCPC, IFC
excels in miniaturization, less requirement for peripherals, and flexible integration of inter-
rogation units [33]. IFC measures the variation of response current caused by single cells
passing over patterned electrodes in a microfluidic channel. The sensitivity of IFC devices
is mainly dependent on the distribution of AC electric field in the channel. Therefore, elec-
trode configurations, namely the geometric setting of electrode pairs, must be considered
in particular [34]. Besides, the consistency of detection results can be enhanced by utilizing
particle positioning methods to ensure that suspension samples roughly pass through the
same cross-sectional position of the sensing region [35,36]. Following subsections will
describe several designs of IFC devices, as well as exemplify optimized systems reported
recently.

3.1.1. Electrode Configurations

Coplanar electrodes. In 2001, Gawad et al. proposed the first microfluidic IFC device
used for high-throughput single-cell impedance measurement at multiple frequencies [32].
As shown in Figure 2A, the basic detection unit in coplanar electrode configurations
consists of two or three electrodes positioned in the bottom of microchannel. The absolute
measurement scheme facilitates two electrodes to measure the impedance changes in
the detection space of the microfluidic channel, which has been discussed in detail in
Section 2. The current pulse caused by the passage of a flowing cell is recorded. This
scheme is typically applicable for cell counting which has no requirement of detecting
small signal changes [37]. In a differential measurement scheme, which has three electrodes,
excitation signal was applied to the intermediate electrodes and the differential current was
measured at the electrodes on both sides to provide a higher signal to noise ratio (SNR) [32].
Such a configuration enabled automatically switching between the measurement and
reference electrode pairs when a single cell passing through the sensing region. The
signal waveform of the differential current was a symmetric bipolar Gaussian shape and
gave the information about cell size and electric parameters upon frequencies. Compared
to the absolute measurement scheme, differential measurement is widely used since it
corrects uneven drift of electrode properties and enables the calculation of the flow rate of
cells [38–40]. The devices with coplanar electrodes can be easily fabricated with tiny
deviations due to the single-step alignment between the channel and metal [32].
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Figure 2. Different designs of IFC devices. (A) Schematics of absolute and differential measurement schemes of coplanar
electrode configuration. IRes refers to response current and IDiff refers to differential current. (B) Coplanar electrodes
with larger electrode area exposed to the medium. Reproduced from [39] with the permission from MDPI. (C) Coplanar
electrodes with two extra floating electrodes. Reproduced from [41] with the permission from Royal Society of Chemistry.
(D) Liquid electrodes. Reproduced from [42] with the permission from Royal Society of Chemistry. (E) Asymmetrical liquid
electrodes with the constriction channel for cell flowing [43]. (F) Schematics of absolute and differential measurement
schemes of facing electrode configuration. (G) Facing electrodes with asymmetric wiring scheme. Reproduced from [44]
with the permission from Elsevier. (H) Five pairs of facing electrodes. Reproduced from [45] with the permission from
Royal Society of Chemistry.

However, IFC devices with coplanar electrodes are sensitive to the vertical position of
samples because of the non-uniform distribution of electric field. Hence, several optimiza-
tions of coplanar electrode configurations were proposed to improve the sensing sensitivity.
As shown in Figure 2B, Clausen et al. proposed an optimized chip with larger electrode
area exposed to the medium [39]. This design allowed for more current and greater current
density between the electrodes, and thus attained an improved SNR. Xie et al. adopted
a similar design and their IFC device thus had a higher SNR (23.5–32.6 dB) [46]. Besides,
they proposed that this design scheme enabled lower amplitude of excitation signal to
reduce the potential damage to cells. Rather than seeking ways to increase current intensity
or local electric intensity, De Ninno et al. proposed a five-electrode design combining a
conventional chip layout with compensation strategy which enabled accurate size mea-
surement of particles without the need for focusing methods [41]. In this device, one
floating electrode was placed between each pair of the detection electrodes to obtain more
information with respect to the height of the particles (Figure 2C). As a result, the proposed
compensation procedure made the “electric” diameters (the estimated diameter of particle)
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closer to the actual data. Liquid electrodes proposed by Demierre et al. were designed to
address the non-uniform electric field in conventional coplanar electrode configuration
(Figure 2D) [42,47]. In these devices, electrodes were located at both ends of short channels
perpendicular to the main channel. The electrodes were far enough to generate almost
homogeneous electric field over the channel height. However, this design reduces the
sensitivity due to the larger detection volume. Besides, the liquid electrode designs are also
used for focusing particle stream based on the principle of dielectrophoresis [48,49].

In order to compare the performance of different coplanar electrode designs, Cottet
et al. evaluated the vertical and lateral sensitivity of four typical layouts [50]. As a result,
the design with a longer constriction channel was considered as the best candidate since
it was relatively insensitive to the particle height or longitudinal misalignment in the
fabrication process.

Facing electrodes. Facing electrode design was firstly proposed by Cheung et al. [51].
In this configuration, the electrodes are positioned at the top and bottom of the channel
and thus eliminate the electric field non-uniformity to some extent (Figure 2F). As the
electric field is limited to smaller volume, this design has improved sensitivity largely.
Absolute measurement schemes are usually used for simple cell counting and there-
fore require less sensitivity. Thus, absolute measurement schemes are rarely used in
practical applications, while differential measurement scheme is widely used in many
prototypes [52–54]. However, the fabrication process of facing electrode design needs accu-
rate alignment of electrodes patterned at different substrates, leading to higher fabrication
difficulty.

In order to obtain impedance information related to the vertical height of the single
cells, Caselli et al. proposed an asymmetric wiring scheme (Figure 2G) [44]. This solution
can improve the precision level of particle diameter measurement to a certain extent and
simply compensate the signal impedance of eccentric particles. Besides, in order to obtain
impedance data with high accuracy, Spencer et al. proposed a new design of multiple
pairs of facing electrodes with an impedance signal processing algorithm, minimizing the
influence of the vertical height of the particle on the impedance signal (Figure 2H) [45].

3.1.2. Particle Positioning

The relative position of particles passing through the detection area between electrode
pairs has great effects on the detection stability and repeatability, especially in coplanar
electrode design [37,55,56]. Except for reducing the cross-sectional area of the channel,
constriction channels and various methods of focusing particles have been proposed in
order to obtain higher impedance signal quality.

Constriction channel. Due to the lack of close contact between cells and electrodes
when cell passing through the detection area, the electric current tends to bypass the
cells by flowing through the surrounding medium. In order to solve this problem, Chen
et al. applied the constriction channel design in a µCPC device [57]. In this design,
cells were pressed and elongated when flowing into the constriction channel. Constriction
channel allows for more accurate detection of specific membrane capacitance and cytoplasm
conductivity, thus increasing the classification success rate of different cell populations [58].
Hence, it has been used for screening various types of single cells, such as blood cells [59],
tumor cells [43,58] and plant cells [60]. Due to the cross-sectional area of the constriction
channel must be smaller than the size of the interested cells, this design has higher risk of
channel blockage and lower throughput. To this end, Zhao et al. proposed the crossing
constriction channel design with bypass outlet, which allowed large particles passing
through to address the possible blockage of the constriction channel [58]. Furthermore, in
order to improve the accuracy of cell classification, they introduced asymmetrical liquid
electrodes to obtain cell diameter (Figure 2E) [43]. In this method, the measured impedance
is proportional to the elongated length of the cell, so that the relative volume of the cell can
be calculated. The passage time for cells to pass through the constriction channel is related
to cellular mechanical properties. In order to obtain the passage time, Han et al. introduced
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a pairs of coplanar electrodes at the inlet and outlet of the constriction channel [60]. The
time point when a cell passes through each sensing unit is recorded, and then the passage
time can be calculated according to the time interval for a cell from a sensing unit to another.

Particle focusing. Although particle focusing system sometimes increases the device
complexity, it is commonly integrated in IFC devices for eliminating the influence of sec-
tional position on impedance signals. Various particle focusing systems based on different
technologies have been reported such as hydrodynamic focusing [37,61,62], acoustophoretic
focusing [63–65], dielectrophoretic focusing [66,67] and inertial focusing [68]. Hydrody-
namic focusing enables the sample flow to be coated by sheath flow and focused into
a narrow stream either horizontally or vertically. This conventional method minimized
the potential for two or more particles to enter the detection region simultaneously and
ensures a uniform particles velocity. Acoustophoretic focusing methods are based on
either traveling surface acoustic waves (TSAWs) [64] or standing surface acoustic waves
(SSAWs) [65] to manipulate particles. The principle of dielectrophoresis (DEP) focusing is
that a neutral but polarizable particle is subjected to DEP force in a nonuniform electric
field. Since the DEP forces depend on the size and dielectric properties of the particles,
it can also be used for single-cell trapping and separating. Inertial focusing, as a passive
focusing method, depends on special channel structure and high particle flow velocity.

3.2. Electrical Impedance Spectroscopy (EIS) Sensing Devices

EIS sensing is suitable for real-time monitoring and tracking of a limited number
of cells simultaneously. For in-situ EIS measurements, frequency sweeping takes several
seconds every time, which requires the stable capture of single cells as a prerequisite [24].
Therefore, various trapping methods have been proposed for positioning single cells in
microfluidic channel. Alternatively, single cells can be directly adhered onto the electrode
or substrate for electric cell-substrate impedance sensing. Additional progress has been
also made to increase the throughput of EIS devices.

3.2.1. Trapping of Suspended Single Cells

The methods to trap suspended single cells include hydrodynamic traps [69–73],
negative pressure traps [74–76], DEP trapping [77–80] and optical manipulation [81]. Hy-
drodynamic traps are the most common design to position single cells in microfluidic
devices, and usually consist of simple microstructures (such as U-shaped or three-pillar
traps [69,71,73]) or special fluid channels (such as µ-fluidic traps [70,72]) to dock numerous
single cells synchronously in a short time. Di Carlo et al. captured approximately 100 iso-
lated HeLa cells by a U-shaped trap array and achieved the cell maintenance over 85% after
24 h [69]. Tang et al. applied the µ-fluidic microstructures to achieve a high cell-trapping
rate of 95% (Figure 3A) [82]. In negative pressure trapping system, one or more suction
channels are connected to the side or bottom of the cell-perfusion channel [74–76]. By
applying negative pressure to the suction channel, single cells could be trapped in vias
or slits which are the connection points of cell-perfusion channel and suction channels.
Although such devices are complex in design and fabrication, negative pressure traps
allow for selective capture and release of redundant or unwanted cells [76]. Han et al.
demonstrated a system with backside suction channels to capture HeLa cells in cavity
pores [75]. Since the diameter of the pore is between that of HeLa cells and blood cells,
most of the HeLa cells could be separated from the spiked blood samples. DEP trapping
could be used to perform accurate and selective capture of specific samples, as the DEP
force depends on the dielectric properties of single cells and the frequency of applied
electric field [79]. Besides, DEP force was also used to release redundant cells to achieve
a uniform single-cell trapping [83]. Electrode configuration schemes for DEP trapping
include quadrupole electrode array [77,78], microwells [79,80], and ‘ring-dot’ electrode
structures [84]. As a representative, the quadrupole electrode array, proposed by Heida
et al., could generate DEP force to repel cells away from electrodes and towards the array
center (Figure 3B) [78]. Optical methods were used to manipulate single cells with a high
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precision. The liquid resin containing target cells could be rapidly polymerized under
laser exposure and formed traps of specific shape. As such, Xu et al. performed real-time
two-photon-lithography to capture single cells and achieved a high capture efficiency of
100% on a one-bead-to-one-trap basis [81].
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Schematics of single-cell impedance sensing system with lock-in amplifier.

3.2.2. Electrical Cell-Substrate Impedance Sensing (ECIS)

ECIS is a well-established technology developed to assess cellular behavior or re-
sponses to drug candidates by measuring the impedance of live cells adhered on the
electrode surface [87,88]. As cells proliferate and spread on the surface of sensing elec-
trodes, electrical current is interfered immediately and thus resulting in a drastic change in
the measured impedance. Besides, ECIS could combine with a variety of single-cell manipu-
lation techniques to perform single-cell impedance measurement [85,89–92]. Tsai et al. [91]
used micro pillars to trap single HeLa cells in a microfluidic system and monitor their ad-
hesion and spreading Zhang et al. applied DEP trapping to HeLa cells and monitored their
adhesion, response to drugs, steady growth and differentiation by ECIS [92]. In addition,
surface modification could be used to promote cell adhesion on metal electrodes rather
than glass or plastic substrate [87,93]. Shah et al. modified the surface of the SU-8 substrate
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sequentially with mNH2 linked PEG (Amino functionalized methoxyl polyethylene glycol)
to avoid any nonspecific cell adhesion near the sensing electrode and, thus, eliminate the
unnecessary cell crosstalk [93]. Nguyen et al. proposed a microfluidic chip with remov-
able PDMS cover lid which enabled building up a two-dimensional or three-dimensional
microenvironment for investigating single cancer cell migration (Figure 3C) [85].

3.2.3. Advanced Design to Increase the Throughput of EIS Devices

Typically, conventional EIS devices can monitor less than 20 cells simultaneously [94,95].
Although simple devices are useful for low-cost assays, they result in tedious repetition of
experiments and reduced data reliability in applications, which usually require long-term
monitoring of a large population of samples. In these devices, on-chip impedance sensors
are connected with respective bond pads for external interconnection [83,85], where the
dimension of sensors is limited by the chip margin. To solve this problem, individually
addressable microelectrode arrays (MEAs) are proposed to be incorporated into EIS sensing
devices [86,96]. In these devices, two sets of n microelectrode bars are arranged orthogo-
nally to form a sensing array of n × n sites with only 2n bond pads (Figure 3D) [86]. Each
sensing unit at the crossing position can be addressed individually by external multiplexers.
Guo et al. reported a microarray chip integrated with two MEAs for cell positioning and
impedance monitoring, respectively [96]. Geng et al. proposed the design of a MEA chip
to measure the replicative lifespan (RLS) of budding yeasts and assessed the influence
of neighbor samples upon the site-specific impedance measurement [86]. Alternatively,
CMOS integrated circuit could be utilized to overcome the limitation of the number of EIS
sensing units by integrating electrodes and addressing circuit (see Section 3.4).

3.3. Instruments and Portable Platforms for Electrical Impedance Sensing Technology

Impedance converter and lock-in amplifier (LIA) are commonly used to measure the
impedance of single cells. The impedance converter is an AC self-balancing bridge, which
consists of a simple op-amplifier and a feedback resistor (Figure 3E) [97]. In this approach,
an AC excitation signal Vin is input to one port of the device under test (DUT), and the
feedback resistor Rf shares the same current flowing through the DUT. Ideally, without
any phase shift of the op-amplifier, the current flowing through the DUT is proportional to
the voltage on Rf. Then the DUT complex impedance can be calculated from the output
voltage Vout. LIA, also known as the phase-sensitive detector, is capable of extracting
weak signals from noisy background (Figure 3E) [98]. The output voltage Vout, termed
as signal under test (SUT), is multiplied by in-phase and quadrature carrier signal Vc,
whose frequency is the same as that of Vin. Then, the amplitude and phase of SUT are
extracted with correlative demodulation by carrier signal at the same reference frequency.
Benchtop instruments, including several versions of LIAs developed by Stanford Research
Systems Inc. (Sunnyvale, CA, USA), Zurich Instruments AG (Zurich, Switzerland), NF corp.
(Yokohama, Japan), SBT instruments (Copenhagen, Denmark), Sine Scientific Instruments
(Guangzhou, China) and Liquid Instruments (Lyneham, Australia), respectively, are usually
interconnected directly or through custom printed circuit boards (PCBs) to the microfluidic
devices [99–104]. Here, PCBs are typically functionalized with control modules such as
multiplexers to activate target sensing electrodes on the devices.

Device integration leads to cost saving, while portable system serves for more situa-
tions. Motivated by this, researchers began to integrate impedance measuring circuit on
custom PCBs. As a representative, the integrated circuit chip AD5933, a low-cost impedance
analyzer system, has been introduced in embedded portable systems [105]. Notably, the
frequency range of this system is only up to 100 kHz, and its accuracy is lower than that
of benchtop instruments. Huang et al. developed a wide-band digital lock-in amplifier
(DLIA), which features a low input noise of 4.4 nV/

√
Hz, 120 dB dynamic reserve and a

phase deviation of less than 0.02◦ through the whole frequency range up to 65 MHz [106].
This portable EIS system has been demonstrated by impedance measurements of three sets
of micro beads with different diameters.
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3.4. CMOS-Based Impedance Sensing Devices

The miniaturization and portability of single-cell impedance sensing devices can be
achieved by harnessing CMOS integrated circuit (IC) technology. CMOS IC chips have been
reported as an alternative to measure biological impedance at single-cell level, showing
the trend of impedance sensing system in the integration level [107,108]. However, the alu-
minum (Al) microelectrodes fabricated by standard CMOS processes are not biocompatible
due to the biological toxicity and chemical activity of Al. Therefore, the microelectrodes
are covered with gold (Au) or platinum (Pt) layer to obtain better biocompatibility and
chemical inertness [107]. Since its substrate is replaced by large scale integrated circuits,
such devices enable tens of thousands of sensing units featuring individually addressable
microelectrodes. Chen et al. developed a high-throughput EIS sensing platform consisting
of a 96 × 96 microelectrode array for tumor cell counting and analysis [107]. This CMOS
chip was packaged with a PCB that contains multiplexers and the EIS measurement of
cells was implemented by a LCR meter. The size of microelectrodes approximates to the
scale of target cells for better sensitivity, resulting in a weak current of about 100 pA that is
easily submerged in the noise. To overcome this problem, Gamo et al. introduced a current
integrator acting as a I-V converter to effectively suppress noise and measure weak current
signals [108]. More efforts are required to achieve the complete integration of impedance
sensing circuitry on CMOS chip. Visvam et al. reported a high-density CMOS MEA system,
including a programmable waveform generator, 59,760 platinum microelectrodes and 32
on-chip lock-in amplifiers for impedance sensing [109]. This improved integration level
contributes to superior sensing and actuation capabilities and high signal quality.

4. Applications of Single-Cell Impedance Sensing Technology
4.1. IFC to Detect Flowing Single Cells

Recent IFC devices applied in single-cell analysis are summarized in Table 1. These
applications, discussed in this subsection, are simply classified according to cell species,
including blood cells [110–114], tumor cells [43,52,115–122], stem cells [123–127], plant
cells [60,128–132] and microbes [53,62,133–141]. In terms of blood cells, researchers focused
on the identification and counting of normal or diseased blood cells. Studies showed
the capability of IFC devices in recognition of different types of dissociated tumor cells
(DTCs) [43,118,120,121] or circulating tumor cells (CTCs) [52,115,119,122]. As for stem
cells, the main focus is the impedance measurement of their long-term differentiation
process. Studies of plant cells include the detection of pollen viability [128–132] and cell
screening [60]. Besides, impedance measurements of microbes are further classified and
discussed.

Table 1. Applications of IFC for single-cell analysis.

Category First Author
(Year)

Electrode and Fluidic
Layouts Frequency Target Cells Application Ref.

Blood
cells

Holmes (2010) 2 coplanar electrode pairs 503 kHz and
10 MHz CD4 T-cells Cell counting [112]

Du (2013) 1 coplanar electrode pair 2 MHz Red blood cells
Detection of

malaria-infected
cells

[113]

Hassan (2016) 2 coplanar electrode pairs 303 kHz and
1.7 MHz CD4 and CD8 T-cells Cell counting [111]

Liu (2018) 2 coplanar electrode pairs 156 kHz, 500 kHz
and 3 MHz Red blood cells Detection of sickle

cells [110]

Honrdo (2018) 2 facing electrode pairs,
fluorescence detection 2–8 MHz Red blood cells

Detection of
malaria-infected

cells
[114]
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Table 1. Cont.

Category First Author
(Year)

Electrode and Fluidic
Layouts Frequency Target Cells Application Ref.

Tumor
cells

Choi (2013) Two polyelectrolyte
gel electrodes DC OVCAR-3 cells Cell recognition [115]

Spencer (2014) 2 facing electrode pairs 0.5 MHz and 2 MHz MCF-7 cells Cell recognition [52]

Han (2015) 2 facing electrode pairs 500 kHz and
10 MHz DLD-1 cells Cell recognition [116]

Zhao (2016) µCPC with constriction
channel 1 kHz and 100 kHz A549 and H1299 cells Cell screening [117]

Desai (2019) 2 coplanar electrode pairs,
sheath flow focusing 250 kHz

Thyroid, breast, lung,
and ovarian cancer

cells
Cell recognition [118]

Ren (2019) 1 coplanar electrode pair,
2 constriction channels

1 kHz, 10 kHz,
100 kHz, and

1 MHz
MDA-MB-231 cells Cell recognition [119]

McGrath (2020) 5 facing electrode pairs 500 kHz–50 MHz
Six types of pancreatic

ductal
adenocarcinoma cell

Cell screening [120]

Ostermann (2020) 2 facing electrode pairs 6 MHz U937 cells Viability assay [121]

Zhang (2020)
1 coplanar electrode pair,
asymmetrical constriction

channel

100 kHz and
250 kHz

A549 and Hep G2
cells Cell screening [43]

Stem
cells

Song (2016) C-shaped arranged
coplanar electrodes 500 kHz and 3 MHz Mesenchymal stem

cells

Monitoring
differentiation

process
[125]

Xavier (2017) 2 facing electrode pairs,
fluorescence detection 500 Hz and 2MHz Skeletal stem cells

Monitoring
differentiation

process
[127]

Plant
cells

Heidmann (2016) 2 facing electrode pairs 500 Hz and 12 MHz Tobacco pollen Viability assay [128]

Heidmann (2017) 2 facing electrode pairs 500 kHz, 3 MHz
and 12 MHz

Tomato, pepper,
potato

and wind pollinators
pollen

Viability assay [129]

Impe (2019) 2 facing electrode pairs 1 MHz Wheat pollen Viability assay [130]
Ascari (2020) 2 facing electrode pairs 2 MHz and 8 MHz Hazelnut pollen Viability assay [131]

Canonge (2020) 2 facing electrode pairs 500 kHz and
12 MHz Wheat microspore

Monitoring
androgenesis

process
[132]

Han (2020) 2 coplanar electrode pairs,
constriction channel 500 kHz and 5 MHz

Herbaceous
Arabidopsis

thaliana and woody
Populus trichocarpa

Cell screening [60]

Microbes

Choi (2014)
2 polyelectrolytic gel

electrodes,
sheath focusing

DC F. tularensis and E. coli Cell recognition [62]

Mcgrath (2017) 2 facing electrode pairs 250 kHz, 18.3 MHz
and 50 MHz C. parvum Viability assay [136]

Guler (2018) 1 coplanar electrode pairs 2 MHz E. coli Cell recognition [135]

Clausen (2018) 2 coplanar electrode pairs
2 facing electrode pairs 200 kHz and 7 MHz E. coli Cell recognition [53]

Chawla (2018) 1 coplanar electrode pairs 1.12 MHz and
1.5 MHz S. cerevisiae cells Monitoring cell

growth rate [137]

Xie (2019) 1 coplanar electrode pairs 1 MHz S. cerevisiae cells
Reproductive
performance
assessment

[139]

Opitz (2019) 2 facing electrode pairs 0.5 MHz, 10 MHz
and 12 MHz S. cerevisiae cells Viability assay [138]

Bertelsen (2020) 2 facing electrode pairs 366 kHz and
6.9 MHz E. coli

Determination of
the viability of E.

coli
[140]

Spencer (2020) 4 facing electrode pairs 5 MHz and 40 MHz K. pneumoniae Antimicrobial
susceptibility tests [141]
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4.1.1. Blood Cells

Sickle cell disease (SCD), which causes sclerosis and membrane distortion in red
blood cells (RBCs), brings about variation in cellular electrical properties [142]. Liu et al.
combined on-chip oxygen control onto a single IFC chip for sickle cell disease diagnosis
and monitoring [110]. They measured the electrical impedance of normal cells and sick
cells at three different frequencies under normoxic and hypoxic conditions, respectively. As
shown in Figure 4A, normal RBCs and sickle cells were separated clearly according to the
measured impedance amplitude and phase value at 156 kHz under the normoxic condition.
The results suggested that electrical impedance could serve as a new parameter to diagnose
sickle cell disease. Parasite invasion can alter the dielectric properties of RBCs [113,143].
Du et al. demonstrated the discrimination of normal RBCs and P. falciparum-infected
RBCs through analyzing the changes in the impedance signal amplitude and phase [113].
Honrado et al. developed an IFC device integrated with fluorescence interrogation to
detect the dielectric properties of RBCs infected by malaria (Figure 4(Bi)) [114]. As a result,
for early-stage infection (6 h), infected cells and normal cells were not distinguishable
according to their impedance signals. However, as parasite growth progressed, the mem-
brane capacitance and cytoplasmic conductivity of infected RBCs increased and thus the
discrimination between two cell populations gradually became detectable (Figure 4(Bii)).
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Figure 4. Blood cell analysis using IFC devices. (A) Measurement of ∆|Z| vs. ∆θ for normal and sickle RBCs at 156 kHz.
Reproduced from [110] with the permission from Elsevier. (B) (i) Schematics of a IFC device integrated fluorescence
detection. (ii) Measurement of normalized phase (ΦZ5MHz) vs. amplitude (|Z5MHz|) at 6 h and 42 h after RBC infection.
u-RBCs and i-RBCs stand for uninfected and infected RBCs. Reproduced from [114] with the permission from Royal Society.
(C) (i) Photograph and layout of the differential immunocapture biochip. (ii) Pulse amplitudes of recorded impedance
signals showing the size distribution of cells. Lymphocytes and granulocytes + monocytes are two groups of distinct
populations of leukocytes. Reproduced from [111] with the permission from Springer Nature.

Holmes et al. discriminated and enumerated CD4 T-cells based on impedance cy-
tometry and immune capture [112,144]. In their study, CD4 T-cells were labeled with
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small antibody conjugated beads, which changed the electrical properties of target T-
cells. Hence, CD4 T-cells could be identified from their corresponding subpopulations
based on impedance opacity (|Z10MHz|/|Z503kHz|). Recently, Hassan et al. reported an
impedance biosensor based on differential immunocapture technology to perform cell
counting on CD4 and CD8 T-cells with high accuracy (Figure 4(Ci)) [111,145,146]. In this
device, antibodies specific to CD4 T-cells were initially adsorbed on a chamber between
two conventional IFC modules. As the leukocytes flowed into the chamber, CD4 T-cells
were captured and immobilized on the antibodies (Figure 4(Cii)). The cell number of each
population can be calculated according to the impedance pulses caused by the passage of
cells through the chamber. This protocol can be used to enumerate specific cell types with
their corresponding antibodies immobilized in the capture chamber.

4.1.2. Tumor Cells

Tumor diagnosis is underpinned by determining which cells are malignant in acquired
biopsy, leading to the need to accurately distinguish DTCs from normal cells in tissue [2].
Zhao et al. classified two tumor cell lines (A549 and H1299) based on different cellular
membrane capacitance (Cm) and cytoplasm conductivity (σp) [117]. Desai et al. separated
lung cancer DTCs (LC-DTCs) from RBCs, peripheral blood mononucleated cells (PBMCs)
and normal lung cells based on impedance amplitude [118]. When LC-DTCs pass through
the coplanar electrodes, impedance amplitude signal generates more significant pulse
compared to that of normal cells. They also determined five major cancer types (lung,
thyroid, breast, ovarian, and kidney cancers) from their corresponding counterpart target
cells. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer lacking specific
biomarkers. Aimed at this situation, McGrath et al. reported an IFC device to separate
single PDAC tumor cells against xenografts [120]. They found that the phase of impedance
signal of six PDAC cell types showed some correlations to specific gene expression, espe-
cially the KRAS mutations that led to higher phase variation. T188 and T738 are primary
stage tumors with unknown KRAS mutations showing lower impedance phase contrast
than other PDAC samples. Zhang et al. developed a microfluidic IFC platform with
asymmetrical constriction channel to better detect the dielectric properties and diameters
of different types of single tumor cells (Figure 2E) [43]. The classification accuracy between
two tumor cell lines, A459 and HEP G2 cells, could be significantly improved with the
combination of the individual intrinsic bioelectrical markers of membrane capacitance,
cytoplasm conductivity and cell diameter. Besides, Ostermann et al. reported that necrotic
and viable U937 human lymphoma cells could be clearly discriminated based on the phase
of impedance signals by using a commercial IFC device [121]. Dead and viable cells can be
discriminated by impedance signals at high frequency as the imaginary component of cell
impedance depends on the membrane integrity of the cell (Figure 5A).

Identification and characterization of CTCs in blood stream is key to monitor the
progression of cancer metastasis [122]. Choi et al. proposed a simple DC impedance
microcytometer for identifying CTCs according to the cell volume [115]. Ren et al. reported
an IFC device featuring parallel cyclic deformability channels and coplanar electrodes,
to collect both biomechanical and bioelectrical properties for tumor cell analysis [119].
The deformation and transition time of tumor cells could be obtained from the time
points when impedance amplitude changes abruptly (Figure 5B). In clinical application,
due to the very small amount of CTCs in a blood sample, it is necessary to pre-enrich
CTCs before measurement [52,116]. According to the different membrane capacitance
between tumor cells and normal PBMCs, Spencer et al. measured the dielectric properties
of MCF-7 cells (a representative of CTCs) at 500 kHz and 2 MHz and distinguished
them from leukocytes when mixed in the whole blood [52]. Compared with optical
approaches, electrical impedance measurement shows better performance in separating
MCF-7 cells from other blood cells (Figure 5C). Besides, Han et al. reported a microfluidic
system integrated with both enrichment and impedance detection units to discriminate
CTCs [116]. In this study, immunomagnetic nanobeads (MNBs) and highly-conductive
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graphene nanoplates (GNPs) were bonded to the surface of DLD-1 cells (a representative
colorectal cancer cell line). Compared with normal blood cells, the impedance signal
of DLD-1 cells coated with GNPs shows a phase shift of 100 degrees for identification
(Figure 5D), successfully.
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Figure 5. Tumor cell analysis using IFC devices. (A) Scatter plot of amplitude and phase values at 6 MHz for necrotic
and viable U937 human lymphoma cells and 10-µm beads. Reproduced from [121] with the permission from Springer
Nature. (B) Recording of the impedance variation when a breast cancer cell (MDA-MB-231) passing through the constriction
channel. Reproduced from [119] with the permission from American Institute of Physics. (C) Scatter plot of opacity
(|Z2MHz|/|Z500kHz|) and electric diameter (|Z500kHz|1/3) for MCF-7 cells and other blood cells. Reproduced from [52]
with the permission from AIP Publishing. (D) Scatter plot of impedance amplitude (|Z10MHz|) and phase (ΦZ500kHz) to
classify white blood cells, bare DLD-1 cells and DLD-1 cells coated by GNPs. Reproduced from [116] with the permission
from American Chemical Society.

4.1.3. Stem Cells

Hildebrandt et al. demonstrated that the osteogenic differentiation process of human
mesenchymal stem cells (hMSCs) could be monitored by tracking their impedance varia-
tion [123]. Song et al. was the first to propose a dual-micropore microfluidic IFC device
to monitor the same differentiation process (Figure 6(Ai)) [124,125]. In this device, when
MSCs or osteoblasts passed through micropores, a pulse in impedance amplitude was
recorded to determine the proportion of differentiated cells at each stage [125]. Moreover,
a support vector machine (SVM) algorithm was employed in data analysis to reach a
classification accuracy of 87%. It is notable that the training data set of SVM included
a total number of 1028 impedance signals combining both relative phase at 3 MHz and
impedance opacity (|Z2MHz|/|Z500kHz|). The optimal SVM-based model was also used
to characterize the differentiation process (from MSCs into osteoblasts), in which the pro-
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portion of osteoblasts was increasing while that of MSCs was decreasing (Figure 6(Aii)).
Zhao et al. reported that the intercellular electrical markers, such as specific membrane
capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm) of neural stem cells
could be used to evaluate their differentiation processes [126]. During different stages
of differentiation, the distribution difference of Cspecific membrane differs a lot from that of
σcytoplasm (Figure 6B). Besides, Xavier et al. developed an IFC device equipped with two
pairs of facing electrodes combined with confocal microscopic monitoring of the osteogenic
differentiation of skeletal stem cells (SSCs) (Figure 6(Ci)) [127]. The sample of human
bone marrow mononuclear cells (hBMMNCs) extracted from human bone marrow (BM)
were cultured in vitro and was injected into a microfluidic chip for impedance detection
every two weeks. Changes in the opacity (|Z2MHz|/|Z500kHz|) of impedance data could
characterize the osteoblast differentiation process of SSCs. (Figure 6(Cii)). In the first two
weeks (from BM to P0), the decreased opacity corresponded to the increased cell size and
membrane capacitance during SSCs osteogenic differentiation. After P0, there was no
significant change of opacity indicating the completion of osteogenic differentiation.
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Figure 6. Stem cell analysis using IFC devices. (A) (i) Schematics of a dual-micropore based IFC device consisting of
a main channel and two deputy channels through micropores. (ii) Scatter plot of signal phase at 3 MHz vs. opacity
(|Z3MHz|/|Z500kHz|) for hMSCs and osteoblasts at 7 days (on the left) and 14 days (on the right) after post-induction.
Reproduced from [125] with the permission from Royal Society of Chemistry. (B) Cspecific membrane and σcytoplasm variations
of rat neural stem cells within the differentiation process of 7 days. Reproduced from [126] with the permission from Public
Library of Science. (C) (i) Schematics of an IFC device integrated fluorescence detection. (ii) Changes of impedance signal
opacity (|Z2MHz|/|Z500kHz|) within 56 days SSCs differentiation process. Reproduced from [127] with the permission
from Royal Society.

4.1.4. Plant Cells

Qualifying pollen or spores, especially their viability and germination capacity, is
important for industrial production and plant breeding [128]. Heidmann et al. measured
the viability of pollen samples by using a commercial impedance device [128,129]. In one
of these studies, pollen samples were measured before and after heat treatment [128]. As
a result, larger phase of the impedance signal corresponding to viable samples was no
longer presented after heat-inactivation, which suggested that heat treatment inactivated
the pollen samples and destroyed the integrity of cell membrane. Furthermore, Heidmann
et al. predicted the germination rate of tomato pollen population by measuring the amount
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of viable and dead pollens [129]. Impe et al. [130] and Ascari et al. [131] assessed pollen
viability of hazelnut and wheat, and further identified various factors (sugar, H3BO3,
CaCl2·2H2O/Ca(NO3)2·2H2O concentration and pH) affecting pollen viability with the
same commercial device. Canonge et al. utilized the IFC device to track and characterize
the developmental process of wheat (Triticum aestivum L.) genotype Pavon microspores in
gametogenesis and anrogenesis [132]. According to this study, throughout all sporophytic
developmental stages, some of the viable microspores showed a continuous increase in
both impedance amplitude and phase. As a result, electrical impedance could serve as a
fast and reliable reactivity marker for tracking wheat microspores in androgenesis.

The biological and physiological properties of cell wall unique to plant cells offer
the potential to increase phenotyping resolution and identify nonanatomic markers [147].
Han et al. developed an IFC device to characterize the biophysical properties of two
model plant species, herbaceous Arabidopsis thaliana and woody Populus trichocarpa [60].
In the regeneration process of primary cell wall (PCW), plant cells are gradually covered
by the fibrillary network, which becomes thick and interlaced, resulting in the decrease
of capacitance of cell membrane and PCW [148]. Thus, the researchers found that the
Arabidopsis cells with regenerated PCW were less deformable and electrically conductive
than that without PCW.

4.1.5. Microbes

IFC devices have been utilized extensively in detection, separation and viability analysis
of unicellular microbes, including bacteria [53,62,133–135,140,141], protozoa [136,149] and
fungi [137–139].

Bernabini et al. demonstrated the feasibility to detect bacteria according to cell size
in an IFC device [133]. This device features small cross-sectional area of the flow channel
and narrow width of electrodes, since the size of bacteria is usually smaller than that of
mammalian cells. Without the measurement of signal phase, E. coli could be identified by
volume rather than membrane capacitance, and thus E. coli was indistinguishable from
particles in similar size [133]. To solve this problem, phase metric was introduced and thus
the viability and species of bacteria could be determined [134]. In order to precisely measure
the diameter of different bacterium, Choi reported an IFC device with position-adjustable
virtual wall [62]. The movement of virtual wall is modulated by adjusting the flow rate
of sample suspension focused by low conductive sheath flow. The cross-sectional area
of sample flow could be adjusted to approximate that of bacteria, making the impedance
changes caused by the bacteria passage more significant (Figure 7A). Recently, Guler et al.
merged the amplitude and phase information of impedance signals to achieve higher size
sensitivity and detection throughput of bacteria (Figure 7B) [135]. Besides, Clausen et al.
used two simple IFC devices with coplanar and facing electrodes, respectively, to detect
different types of bacteria [53]. These IFC devices could be used to accurately measure
any change in bacteria concentration and distinguish methicillin-sensitive Staphylococcus
aureus (MSSA) from E. coli according to the impedance phase signal at 8 MHz (Figure 7C).
Moreover, Bertelsen et al. detected and characterized E. coli inactivated by ethanol, heat
and autoclaving, respectively [140]. The population of ethanol-treated bacteria showed a
similar amplitude to 1.5-µm polystyrene beads, which was consistent with the hypothesis
of membrane disruption. Supported by the experimental data, ethanol treatment caused
membrane disruption while heat process did no obvious harm to cell membrane. In detail,
the loss of membrane integrity corresponded to changes in impedance signal amplitude and
phase (Figure 7D). Notably, Spencer et al. developed a method to optimize the prescription
of antibiotic by an impedance-based fast antimicrobial susceptibility test (iFAST) [141]. By
applying microfluidic impedance cytometry with differential electrode configuration, the
phenotype response (electrical opacity and electrical diameter) of Klebsiella pneumoniae (K.
pneumoniae) to specific antibiotic was accurately analyzed.
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Reproduced from [62] with the permission from Royal Society of Chemistry. (B) Scatter plots of impedance signal amplitude
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Reproduced from [53] with the permission from MDPI. (D) Scatter plots of impedance signal amplitude and phase at low
(366 kHz) and high frequencies (6.9 MHz) for E. coli with ethanol and heat treatment. Reproduced from [140] with the
permission from MDPI.

Besides, accurate recognition and viability analysis of protozoan pathogens have
advanced in parasitic diseases diagnosis of human and livestock [149]. To this end, Mcgrath
et al. detected single protozoan oocysts utilizing a continuous IFC system [136]. The heat
treatment performed on Cryptosporidium parvum (C. parvum) lowered the impedance signal
amplitude and phase especially at high frequency representing the internal properties of
the oocyst (50 MHz) (Figure 8(Ai)). The difference of viable and inactive populations can be
enhanced by increasing the conductivity of medium suspension. In addition, according to
the amplitude at 250 kHz and phase at 18.3 MHz, the major human-pathogenic species (C.
parvum, Cryptosporidium muris (C. muris) and Giardia Lamblia (G. lamblia)) were discriminated
from other parasite species that posed little or no risk to human health (Figure 8(Aii)).

Yeast cells, easily accessible and culturable, have been widely used as an important
model organism to study cell growth and division in cell cycle progression [94]. Xie et al.
optimized an IFC device with a constriction channel to detect the size of single budding
yeast (S. cerevisiae) cells and calculate the late-budding rates of populations [139]. As shown
in Figure 8B, due to the impact of velocity gradient near the constriction channel, rod
particles are aligned with the electric field lines, so that the length of rod particles could be
assessed by pulse width of impedance amplitude at 1 MHz. In this way, rod and spherical
particles could be clearly discriminated. Moreover, late-budding yeast, namely mother
cell with a daughter cell that is nearly mature, can be viewed as a rod-shaped cell, while
other yeast is approximately oval. Using the same principle, the shape of target cells as
well as the budding stages can be obtained. In another work, Chawla et al. developed a
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microfluidic platform allowing for long-term culturing and independent monitoring of
growth rate of budding yeast (Figure 8(Ci)) [137]. In this device, multiple cell populations
were anchored to pads and their daughter cells were then washed away, flowing through
the impedance sensing unit. By analyzing the impedance signal phase at 1.5 MHz, passages
of cells through electrodes were recorded. Then by counting the flowing cells in unit time,
the growth rate of cell population can be calculated. As shown in Figure 8(Cii), the phase
fluctuated drastically as the cell passes through the electrodes, and each phase pulse
corresponds to a single cell flowing through the sensing area. This device enabled culturing
and monitoring of various groups of budding yeast simultaneously. At the same time, cell
populations can be exposed to different medium solution and their growth rates can be
calculated indirectly from impedance signal phase. In addition, Opitz et al. focused on
monitoring and analyzing of yeast population under different culturing conditions [138].
In their study, impedance signals at 12 MHz were analyzed to characterize cell viability
in a three-day brewing process. On the first day, the high phase indicated that the cell
population had high viability and they began to breed by large numbers (Figure 8D). By
the end of the third day, the cell population showed lower viability. The cell loss could be
ascribed to the depletion of oxygen and the accumulated ethanol.

Biosensors 2021, 11, x FOR PEER REVIEW 19 of 29 
 

of the oocyst (50 MHz) (Figure 8(Ai)). The difference of viable and inactive populations 
can be enhanced by increasing the conductivity of medium suspension. In addition, ac-
cording to the amplitude at 250 kHz and phase at 18.3 MHz, the major human-pathogenic 
species (C. parvum, Cryptosporidium muris (C. muris) and Giardia Lamblia (G. lamblia)) were 
discriminated from other parasite species that posed little or no risk to human health (Fig-
ure 8(Aii)). 

 
Figure 8. Microbial analysis using IFC devices. (A) (i) Scatter plot of phase (ΦZ50 MHz) vs. amplitude (|Z50 MHz |) for heat-
inactivated and untreated C. parvum. (ii) Scatter plot of phase (ΦZ18.3 MHz) vs. amplitude (|Z250 kHz|) for C. parvum, C. muris 
and G. lamblia. Reproduced from [136] with the permission from Nature. (B) Histograms of particle counts in distribution 
of signal pulse width measured at 1 MHz. Width refers to the time that yeast cells take to pass through the sensing elec-
trodes. Reproduced from [139] with the permission from American Chemical Society. (C) (i) Schematics of an IFC device 
used for long-term budding yeast culturing and growth-rate measurement. (ii) Signal phase changes corresponding to 
five events that yeast cells passing through the impedance sensing electrodes. Reproduced from [137] with the permission 
from Nature. (D) Scatter plot of impedance signal amplitude vs. phase at 12 MHz for yeast population during three-day 
brewing process. Reproduced from [138] with the permission from Springer. 

Yeast cells, easily accessible and culturable, have been widely used as an important 
model organism to study cell growth and division in cell cycle progression [94]. Xie et al. 
optimized an IFC device with a constriction channel to detect the size of single budding 
yeast (S. cerevisiae) cells and calculate the late-budding rates of populations [139]. As 
shown in Figure 8B, due to the impact of velocity gradient near the constriction channel, 
rod particles are aligned with the electric field lines, so that the length of rod particles 
could be assessed by pulse width of impedance amplitude at 1 MHz. In this way, rod and 
spherical particles could be clearly discriminated. Moreover, late-budding yeast, namely 
mother cell with a daughter cell that is nearly mature, can be viewed as a rod-shaped cell, 
while other yeast is approximately oval. Using the same principle, the shape of target cells 
as well as the budding stages can be obtained. In another work, Chawla et al. developed 
a microfluidic platform allowing for long-term culturing and independent monitoring of 
growth rate of budding yeast (Figure 8(Ci)) [137]. In this device, multiple cell populations 
were anchored to pads and their daughter cells were then washed away, flowing through 

Figure 8. Microbial analysis using IFC devices. (A) (i) Scatter plot of phase (ΦZ50MHz) vs. amplitude (|Z50MHz|) for
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4.2. EIS to Detect Suspended or Adherent Single Cells

Different from IFC devices that are commonly used for cell recognition and screen-
ing with high throughput, EIS sensing devices are capable of extracting broadband
impedance information and tracking dynamic variations of single cells. Recent EIS
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sensing devices applied in single-cell analysis are summarized in Table 2. These devices
are classified into two categories: one is to determine the optimal frequency at which
the impedance of different cell lines or cell states is most sensitive [82,150] and the other
is to continuously monitor the dynamic cell process or cell behavior and phenotypic
changes [83,85,91,92,94,95,148,151–153].

Table 2. Applications of EIS measurement for single cells. OT: Observation time. Throughput: Maximum number of single
cells that can be simultaneously measured.

First Author
(Year) Techniques Frequency

Range Throughput OT Target Cells Application Ref.

Primiceri
(2011) ECIS 1 Hz to

1 MHz / 4 h Hepatocellular
carcinoma cells Monitoring cell migration [152]

Hong (2012) DEP traps 20 kHz to
101 kHz / /

A549,
MDA-MB-231,

MCF-7, and HeLa
cells

Electrical characteristics
analysis of cancer cells [151]

Nguyen (2013)
Hydrodynamic

traps
and ECIS

100 Hz to
1 MHz 16 / MDA-MB-231

and MCF-7 cells

Monitoring cell capture,
adhesion, and spreading

process
[85]

Zhu (2014) Negative
pressure traps

10 kHz to
10 MHz 10 42 min S. cerevisiae cells Monitoring bud growth and

cell motion [83]

Zhu (2015) Negative
pressure traps

10 kHz to
10 MHz 10 120 min S. pombe cells Cell cycle determination [94]

Zhou (2016) Hydrodynamic
traps

100 Hz to
20 MHz 10 48 h Mouse embryonic

stem cells
Monitoring the differentiation

process [95]

Park (2016) Negative
pressure traps

5 kHz to
1 MHz 5 /

Cancerous human
urothelial cells

(TCCSUP)
Cell recognition [150]

Tsai (2016) Hydrodynamic
traps

10 kHz to
100 kHz 3 24 h HeLa cells Monitoring electrical

characteristics [91]

Tang (2017) Hydrodynamic
traps

1.953 kHz
to 1 MHz 10 / MCF-7 cells Monitoring the capture

process and cell screening [82]

Chen (2020) Hydrodynamic
traps

100 kHz to
2 MHz / 24 h Arabidopsis

mesophyll cells
Monitoring the regeneration
process of primary cell wall [148]

Zhang (2020) DEP traps and
ECIS 100 kHz 32 5 min HeLa, MCF-7,

and 293T cells
Monitoring the recovery

process after electroporation [153]

Zhang (2020) DEP traps and
ECIS 100 kHz 32 21 days Mesenchymal stem

cells
Monitoring differentiation

process [92]

EIS sensing technology has been used to investigate the optimal frequency at which
the characteristic parameters extracted from EIS signals are most prominent in measuring
specific dielectric properties of cells [82,150]. Park et al. proposed two types of devices to
distinguish cancerous from normal human urothelial cell lines (Figure 9(Ai)) [150]. In one
device, single cells were captured at 3D traps by applying negative pressure underneath.
Then, the impedance of immobilized single cells was individually measured at frequencies
from 5 kHz to 1 MHz. According to the EIS signals in Figure 9(Aii) plot, 119 kHz was
supposed to be the optimal frequency, at which the impedance of two types of cells had the
greatest divergence. The real-time impedance of the cell lines was measured at 119 kHz in
the other device (an IFC device) to identify cancerous cells. These two devices potentially
provide a supplementary platform to detect urothelial cancer of the bladder (UCB). In
another study, Tang et al. developed a portable single-cell analytical system combining
hydrodynamic traps and EIS measurement to accurately detect the sizes of MCF-7 cells [82].
Under the hydrodynamic forces, MCF-7 cells could be initially captured at the entrance
of the narrow channel and then squeezed into it. Impedance signals were collected from
three groups, among which one is the control group of PBS solution without cells, another
one is the trapped cells in suspension, and the third one is the squeezed cells (Figure 9B).
According to the sweep-frequency measurement of EIS, the frequency was optimized to
500 kHz, at which, cellular trapping-releasing-squeezing manipulation and cell size could
be detected more accurately.
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Figure 9. Cell-based assay using EIS sensing devices. (A) (i) SEM images of the two devices used to detect cancerous
urothelial cells. Left one is an EIS sensing device with a negative pressure trap used to investigate the optimal frequency.
Right one is an IFC device to perform high-throughput electrical impedance measurement of normal and cancerous
urothelial cells. (ii) Measurement of the amplitude difference between normal and cancerous urothelial cells in the frequency
range of 5 kHz to 1 MHz. Reproduced from [150] with the permission from Hindawi. (B) Schematics of a EIS sensing
device to measure the amplitude and phase signal of MCF-7 cells under three typical conditions: PBS solution without cells,
cell trapped and cell squeezed. Reproduced from [82] with the permission from Springer. (C) Using a EIS sensing device
with microfluidic traps to distinguish the undifferentiated and differentiated cells by measuring the impedance over the
frequency range from 100 kHz to 10 MHz. Reproduced from [95] with the permission from Elsevier. (D) (i) Schematics of
an EIS-integrated single-cell culturing device for immobilization and impedance recording of Schizosaccharomyces pombe
(S. pombe) cells. (ii) Recorded EIS amplitude and phase signals over the frequency range from 10 kHz to 10 MHz showing
the growth and division of single S. pombe cells. Reproduced from [94] with the permission from Nature. (E) Imaginary
part of current response for Arabidopsis mesophyll cells at different status (0 h, 12 h and 24 h after incubation, respectively).
Reproduced from [148] with the permission from Elsevier. (F) The Bode impedance spectra measured on working electrode
before and after cell migration, as well as on reference electrode without cells over the frequency range from 100 Hz to
1 MHz. Reproduced from [85] with the permission from American Chemical Society. (G) Recording of |Z|norm for HeLa
cells in the recovery process under different conditions of electroporation. A, N, w and f stand for pulse amplitude, number,
width and frequency, respectively. Reproduced from [153] with the permission from Nature.

EIS sensing technology has been used to monitor cell behavior and phenotypic
changes, including differentiation of stem cells [92,148,154], cell growth and
division [83,94,155], formation of cell wall [95], migration of tumor cells [85,152] and
recovery process after electroporation [153].
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In order to characterize the differentiation process of stem cells, Zhou et al. analyzed
the impedance data from mouse embryonic stem cells (mESCs) at different time points in a
cell differentiation cycle [95]. In this study, impedance opacity (|Z1MHz|/|Z50kHz|) was
increasing during the 48-h cell differentiation process, and was significant at above 1 MHz
(Figure 9C). Based on this finding, they observed the metastable transition state, from which
stem cells could either differentiate irreversibly or return to pre-differentiation state at 24 h.
Zhang et al. proposed a multifunctional microfluidic chip, which featured DEP trapping,
electrical stimulation and real-time impedance monitoring of single cells [92,153,154]. They
recorded the real-time impedance changes of two groups of MSCs with (OM group) or
without electrical stimulation (OM + ES group) [92]. The results showed that electrical
stimulation could accelerate the response to drug and advance the differentiation of MSCs.
Besides, this device provided additional phenotypic indicators that were not available
in cell traction force sensor and contributed to multimodal characterization of long-term
physiological variations in the cell differentiation process [154].

Ghenim et al. were the first to monitor the impedance variation in the mitosis of a
single mammalian cell [155]. Zhu et al. presented a microfluidic cell-culturing chip to
trap, cultivate and selectively release individual yeast cells [156]. Then, this device was
used to monitor the cell dynamics in a cell cycle of yeast cells (Figure 9(Di)) [83,94]. As
an example, electrodes originally used to generate DEP forces were used to measure the
electrical impedance spectrum of rod-shaped S. pombe cells, which were immobilized in an
upright position at the traps [94]. Cell growth, nuclear division and cytokinesis in a cell
cycle were sensitively characterized by EIS signal amplitude at 1 MHz and phase at 5 MHz
(Figure 9(Dii)).

Chen et al. investigated the formation process of primary cell wall of Arabidopsis
mesophyll cells [148]. As discussed in Section 4.1.4, the formation of the cell wall reduced
the capacitance of entire plant cell and thus led to an increase in the imaginary part of
impedance signal [60]. In support of this hypothesis, they measured the differential current
response of Arabidopsis mesophyll cells at three status of cell wall formation (Figure 9E).

Cell migration, which serves as the initiation of cancer metastasis, could be recorded
by ECIS technology [157]. Primiceri et al. demonstrated that cell migration could be
monitored and automatically analyzed by a EIS biochip [152]. Nguyen et al. proposed
a microfluidic chip with ECIS for monitoring the migration of single cancer cells in 3D
matrixes (Figure 3C) [85]. In this study, the impedance measurements were performed
with a voltage of 10 mV over the frequency range from 100 Hz to 1 MHz and showed the
significant decrease of EIS amplitude after cell migration (Figure 9F). The real-time EIS
recording was carried out at 4 kHz and demonstrated that MCF-7 cells were less metastatic
than MDA-MB-231 cells. Zhang et al. monitored the recovery processes of HeLa cells
after electroporation by using impedance measurement (Figure 9G) [153]. HeLa cells were
trapped and electroporated with different working modes of center electrodes. Within 5
min after electroporation, normalized amplitude curves were slowly rising corresponded
to the reversible EP processes, while those stabilizing at the minimum values indicated the
irreversible EP and cell death.

5. Conclusions

Electrical impedance sensing technology, as a rapid and non-invasive method to probe
cellular biophysical information, has become appealing in single-cell study. The basic
theories and modeling methods of single-cell impedance sensing have been re-viewed
herein and recent advances in this field have been highlighted with respect to the device
design and applications.

Generally, the way to implement electrical impedance measurement in a microfluidic
device is categorized into IFC and EIS sensing. IFC features measuring impedance of single
frequencies for large number of cells, while EIS sensing is capable of re-al-time monitoring
of a few cells over a wide frequency range. A variety of optimal electrode layouts, fluidic
channel configurations, hydrodynamic focusing systems have been proposed to improve
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the sensitivity and consistency of IFC in the measurement of cellular electrical parameters.
With various trapping methods, suspended single cells could be stably immobilized for
in-situ EIS sensing. ECIS can recognize cellular behavior sensitively in response to defined
stimulus. Besides, individually addressable MEAs have been incorporated into EIS sensing
devices in order to overcome the limitation of throughput. Impedance converters and LIAs,
as the basic electronic components to measure impedance, have been further integrated
and miniaturized from instruments to portable platforms. As an alternative, CMOS-
based impedance sensing devices have been developed to increase the integration level of
impedance sensing system.

Since IFC devices have the merits of rapid measurement and high throughput, they
have been widely used in the identification and classification of various species of single
cells and determination of cell viability. The impedance signals at different frequencies
reveal dielectric characteristics of different cellular structures. Hence, a combination of
multiple impedance parameters, such as amplitude at high frequency and low frequency
or amplitude and phase at the same frequency, has been commonly used to identify single
cells with various phenotypes, in different life stages or under multiple external conditions.
Applications of the IFC devices in plant cell analysis, especially pollen screening, have
been proposed and promoted, and the strategy of combining mechanical characterization
and impedance measurement has been also developed. In addition, machine learning has
been used in impedance data analysis to improve the performance of IFC devices.

EIS sensing has been used to choose the most sensitive frequency for subsequent
high-speed analysis or long-term monitoring of cell behavior and phenotypes. The various
cellular physiological processes, including adhesion, growth, division, differentiation,
proliferation and cellular structure formation, have been characterized by the measured
electrical impedance spectra.

From this review, insights into challenges and prospects of electrical impedance
sensing technology for single-cell analysis could be provided as follows. Different cell
subpopulations are hard to be accurately classified based on impedance information at
specific frequencies. To this end, multi-frequency impedance signals and the combination
of multiple biophysical parameters could be used to enrich characteristic information of
different cells, and thus could favor the improvement of phenotyping resolution. Besides,
machine learning algorithm, such as SVM and neural networks, in data analysis could help
to correspond broadband impedance signals to cell phenotypic characteristics or single-cell
physiological processes. On the other hand, the high cost of chip fabrication and benchtop
instruments hinders the popularization of single-cell impedance sensing technology. It
can be supposed that single-cell impedance measurement devices could soon appear in
the clinical laboratory in a more user-friendly format, with the help of development and
promotion of commercial equipment and portable platforms. By then, a quantum leap will
appear in the fields of rapid diagnosis, smart healthcare and personalized medicine.
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