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Abstract: Novel concepts for developing a surface-enhanced Raman scattering (SERS) sensor based
on biocompatible materials offer great potential in versatile applications, including wearable and
in vivo monitoring of target analytes. Here, we report a highly sensitive SERS sensor consisting of
a biocompatible silk fibroin substrate with a high porosity and gold nanocracks. Our silk-based
SERS detection takes advantage of strong local field enhancement in the nanoscale crack regions
induced by gold nanostructures evaporated on a porous silk substrate. The SERS performance of the
proposed sensor is evaluated in terms of detection limit, sensitivity, and linearity. Compared to the
performance of a counterpart SERS sensor with a thin gold film, SERS results using 4-ABT analytes
present that a significant improvement in the detection limit and sensitivity by more than 4 times,
and a good linearity and a wide dynamic range is achieved. More interestingly, overlap is integral,
and a quantitative measure of the local field enhancement is highly consistent with the experimental
SERS enhancement.

Keywords: silk fibroin; porous; gold nanocracks; surface-enhanced Raman scattering; sensitive;
overlap integral

1. Introduction

Surface-enhanced Raman scattering (SERS) has been widely employed as a spec-
troscopic technique for the identification of chemical and biological species due to its
advantages of high sensitivity, unique spectroscopic fingerprints, and non-destructive
detection [1–3]. SERS can greatly enhance weak Raman signals that are often overwhelmed
by Rayleigh scattering and fluorescence background noise. The principal amplification of
SERS arises from an enhancement of local electromagnetic fields near or at a nanostructured
metallic substrate, which is associated with the resonant excitation of localized surface
plasmons [4,5]. It is now undoubtedly acknowledged that SERS signals are amplified by
the molecules located in nanogaps where electromagnetic fields are largely confined, which
are called hot spots [6,7]. Those plasmonic localization modes are extremely sensitive to
subtle nanoscale perturbations in the surrounded medium [8].

Together with noble metals, in-depth studies on the surface enhancement of organic
and inorganic materials have been conducted to produce a strong SERS effect. For example,
conjugated polymers (CPs) as organic macromolecules can combine the high conductivity
of metals with the chemical tunability of polymers. Such CP-based detection systems are
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very sensitive to minor perturbations and allow a dramatic improvement of the detection
limit compared to a biosensing scheme based on small molecule sensor elements [9]. A
single analyte interacts with multiple monomers of the CP through the conjugated π-
electron system, leading to a great signal amplification effect in CP-based biosensors using
an optical transducer [10]. Additionally, inorganic semiconductor materials, such as metal
oxides, achieved an enhanced Raman signals via a doped semiconductor by changing the
doping species and ion content [11]. Their SERS effect is mainly associated with a chemical
enhancement, and thus, the enhancement factor is relatively low due to a lack of plasmon
resonances in the conduction bands [12].

Recently, biological and biocompatible materials have attracted considerable attention
towards diagnostic devices in various fields, ranging from medical and physiological
monitoring to defense applications [13–15]. Although those advances are promising, they
typically require complex nanofabrication, delicate assembly, and sophisticated detec-
tion [16,17]. To our knowledge, no one has yet demonstrated that naturally occurring
biomaterials can be used as a versatile nanomaterial platform possessing highly sensitive,
cost-effective, and easily customized detection abilities. Specifically, nanostructures or
nanomaterials in nature allow for intense light–matter interactions, which is useful for
realizing a highly sensitive detection system.

Silk fibroin material has gained much interest due to its advantageous characteristics,
such as biocompatibility, biodegradability, and no inflammatory response in vivo [18–20].
A single silk filament with a diameter of ~20 µm contains 3000~4000 individual nanofibrils
whose size distribution ranges from 30 to 200 nm. Nearly parallel nanofibrils run along
the longitudinal axis of the filament. Unique hierarchical silk nanostructures of a large
surface-to-volume ratio can enhance the scattering power [21].

However, conventional approaches to obtain silk-based plasmonic devices often suffer
from expensive and harsh fabrication processes [22,23]. Since free-standing biological films
tend to be mechanically weak and thermally unstable, the use of rigid substrates to support
a thin silk film and to transfer a nanoscale pattern is unavoidable. During the transfer
printing process, which is the most common technique in patterning biopolymers, the
exposure of silk material to high temperature, high pressure, and highly reactive chemical
solutions could be harmful to preserving its biocompatibility and biofunctionality [24,25].

In this study, we developed a simple but effective fabrication process for a silk sub-
strate and implemented an enhanced SERS sensor through a combination of a silk surface
with a high porosity and gold nanostructures. We confirmed that a silk-based porous SERS
substrate provided an enhanced detection limit and enhanced sensitivity as well as fairly
good linearity. Without the assistance of rigid or soft substrates, a free-standing SERS sen-
sor platform with gold nanocracks was successfully realized in a large area. To investigate
the influence of the porous silk-based sensor on the quality of SERS signals, we performed
spectroscopic experiments for several types of SERS platforms. A quantitative comparison
of the detection performance, detection limit, sensitivity, linearity, and dynamic range
for individual samples was also explored. It is expected that our silk-based SERS sensor
has the potential to detect subtle nanoscale environmental changes with high sensitivity
towards wearable and in vivo monitoring devices.

2. Materials and Methods

Distilled water (H2O) and ethyl alcohol (C2H5OH) were obtained from DaeJung
Chemicals & Metals Co., LTD. (Siheung, Korea). Sodium carbonate (Na2CO3), sodium
oleate (C18H33NaO2), calcium chloride (CaCl2), and 4-aminobenzenethiol (4-ABT, C6H7NS)
were purchased from Sigma-Aldrich (St. Louis, MO, USA). Bombyx mori cocoons were
supported by the Rural Development Administration (Wanju, Korea).

The fabrication procedure for a highly porous silk substrate to realize a SERS sensor is
as follows: To remove the gum-like sericin layer from the silk fibroin, a native silk cocoon of
Bombyx mori was boiled at 95 ◦C for 60 min in DI water with 2 mM sodium carbonate and
1.5 mM sodium oleate. Then, it was rinsed with DI water for 30 min. The degummed silk
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was dried in the oven at 600 ◦C overnight. Polyurethane (PU) was completely dissolved
in formic acid to prepare 1 wt% of PU solution, and then 15 wt% of the dried silk fibroin
was added to the solution. Then, 4 wt% of calcium chloride (CaCl2) was put into the blend
solution of the silk and PU to dissolve the silk fibroin, and the solution was left stirring
overnight at room temperature to obtain a homogenous solution. The silk solution was
boiled until it turned yellow in color, and it was then filtered by a Mira cloth membrane.
To completely remove the calcium chloride from the silk solution, the solution was poured
into a dialyze tube and was kept for 2 days in a water bath. Centrifugation at 4000 RPM for
20 min was carried out to increase the concentration of the silk solution and to reduce the
drying time. A drying plate was cleaned with ethanol and DI water to remove residual
impurities. The centrifuged silk solution was then dried for 24 h at room temperature in
a clean hood. Finally, a highly porous silk substrate with a size of 5.0 × 5.0 × 1.0 mm3

was obtained.
For the comparison study, several types of SERS sensors based on a silicon wafer, BK7

glass, and a porous silk substrate were prepared. First, when a 40 nm thick gold layer
was applied on individual substrates at a deposition rate of 1.0 Å/s, a smooth and thin
gold film was obtained for the silicon wafer and glass substrates, while a gold film on
a silk substrate presented a corrugated surface profile with a roughness of a few tens of
nanometers. Second, a 3 nm thick gold layer was deposited onto the silicon wafer and
silk substrate to form a pattern of gold nanostructures. Under the process condition of
an electron-beam evaporator (UEE, Ultech, Daegu, Korea) at a deposition rate of 0.2 Å/s,
3 nm thick gold deposition was chosen as the optimum due to it having the highest SERS
intensity in our previous study [26].

We investigated the detection performance of the SERS sensors in terms of the de-
tection limit, sensitivity, and linearity and compared with that of the SERS substrates on
a silicon wafer. For this purpose, a 4-ABT analyte was used as a Raman probe molecule
because the thiol group in 4-ABT allows a specific binding with gold. The SERS substrates
were immersed for 15 min in various concentrations of 4-ABT solution. After 4-ABT
immobilization, the substrates were rinsed with ethyl alcohol and deionized water for
5 min for non-immobilized 4-ABT removal. A confocal Raman microscope system consists
of a microscope with a 100x objective lens (NA = 0.8, BX43, Olympus, Tokyo, Japan), a
785 nm laser source (I0785MM0350MF, Innovative Photonic Solutions, Monmouth Junction,
NJ, USA), a Czerny–Turner spectrograph (SR-303i-A, Andor Technology, Belfast, UK),
and a low dark current deep-depletion CCD (iVac, Andor Technology, Belfast, UK). SERS
signals were measured at five different points for each sample within the range of 500 to
2000 cm−1, with a resolution of 1 cm−1 and an acquisition time of 50 s. After the SERS
measurements, the instrument and CCD noise signals were simply subtracted from the raw
SERS signals. Then, the Savitzky–Golay smoothing and polynomial baseline correction
were performed sequentially.

3. Results and Discussion

In Figure 1, field emission scanning electron microscope (FE-SEM) and atomic force
microscope (AFM) images were employed to investigate the surface morphological features
of the fabricated porous silk substrate. After a simple yet effective chemical procedure
in Figure 1a, a highly porous surface profile was successfully realized, as presented in
Figure 1b. The rough and porous silk surface is clearly shown from the AFM data in
Figure 1c. The silk substrate had quite rough surface features, and its average roughness
was determined to be 38.55 nm. While the results are not shown, the surface roughness of
the silicon wafer was as smooth as 0.15 nm. Such rough and porous silk characteristic could
contribute to an excitation of localized plasmons in the presence of gold nanostructures,
thereby leading to enhanced Raman scattering.
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Figure 1. A highly porous free-standing silk substrate for SERS sensor application. (a) Procedures
for fabricating a porous silk substrate. (b) FE-SEM image of the fabricated silk sample with a high
porosity. (c) AFM image of the silk substrate and its surface profile.

First, we deposited a 40 nm thick gold film onto the silk substrate to verify the effect
of porous surface on the local field enhancement. For comparison study, we prepared a
silicon wafer and a BK-7 glass substrate and evaporated a thin gold film at a deposition
rate of 1.0 Å/s. Figure 2 showed the photo images and Raman spectra of the three samples.
From the SERS experiments with a 10 µM 4-ABT Raman probe molecule, no Raman peak
was found for the cases of the silicon and glass substrates because non-localized plasmon
modes with a thin gold film could not contribute to an enhancement of the Raman signals
to detect the 4-ABT molecules. On the other hand, a gold film on a silk substrate presented
the highest peak intensity of 2042 at 1076 cm−1 of 4-ABT, which was assigned to the
a1-type vibrational mode [27]. The difference in the SERS data seemed to be associated
with local field excitation. From previous publications [28], when the roughness of a
plasmonic substrate was larger than 5 nm, excited plasmons were strongly scattered and
moved with increased disorder, which is less like a propagating wave. Specifically, for
very rough surfaces, a significant change in the dispersion relation was observed because
an accumulation of the electromagnetic fields resulted in highly enhanced and localized
plasmons. Thus, it is expected that the rough and porous surface features of silk substrates
would play a key role in acquiring enhanced Raman signals.
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Subsequently, we analyzed the detection limit and sensitivity performance by varying
the concentration of 4-ABT in the range of 200 nM to 10 µM. For the silk sample with a
thin gold film, we found that the primary SERS peak at the concentration as small as 2 µM
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in Figure 3a. Additionally, we calculated the slope between the intensity of the primary
SERS peak and the concentration of 4-ABT using a linear regression analysis to quantify
the sensitivity. In Figure 3b, the sensitivity and R2 values were determined to be 1349 and
0.71, respectively, where R, the coefficient of determination, was the percentage value of
the dependent variable variation.
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the sensitivity and linearity.

Second, in order to significantly improve the SERS effect, gold nanostructures were
applied onto smooth the silicon wafer and porous silk substrates. When the two substrates
were loaded into the evaporation chamber, a 3 nm gold layer was deposited, and the
contrast in the fabrication results was presented in Figure 4. In the case of the silicon wafer,
the gold nanostructures were regularly patterned, and an average gap distance of 10.2 nm
was measured between them. However, for a rough and porous silk substrate, the gold
nanostructures that were obtained were fairly different from those obtained in the case
of the silicon substrate. From the SEM images, we were able to find sharp cracks and
fractures on the surface, and such patterns seemed to be more appropriate for the SERS
effect according to the concept of hot spots, which occur at nanogaps or nanocracks where
the electromagnetic fields are largely confined. For several silk samples, the gap distance
of gold nanocracks was averaged to be 3.1 nm.

SERS experiments with 10 µM 4-ABT analytes demonstrated that gold nanostructures
on a silicon wafer presented the highest peak value of 878 at 1076 cm−1, whereas gold
nanocracks on a porous silk substrate showed a highly enhanced Raman signal of 8350.
Note that in in Figure 4a, the sharp and intense Raman peak at 520 cm−1 was obtained
from crystalline silicon, which was not found in Figure 2a, as the entire silicon surface was
covered by a gold film. The enhancement in that Raman signal that is about 10 times that
seen previously in Figure 4b could be interpreted by synergistic plasmonic effects. Contrary
to the silicon sample, the dielectric feature of the silk substrate and its combination with
the gold nanocracks was more relevant for an efficient excitation of the localized surface
plasmon modes. Additionally, a narrow gap distance was beneficial in generating hot-spot
modes in the gold nanocracks, leading to an enormous signal amplification.

Next, we evaluated the linearity performance between SERS peak intensity and
concentration of 4-ABT. For the silk samples with gold nanocracks, the detection limit was
experimentally obtained to be 500 nM in Figure 5a, and the sensitivity and R2 values of 5890
and 0.96 were determined from the linear regression data in Figure 5b. The linearity was
also quite good in a wide dynamic range. It is very interesting to note that compared to the
results of silk samples with a 40 nm thick gold film in Figure 3, both the detection limit and
sensitivity characteristics were improved by about four times. In order to understand the
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contrast in the performance of silk samples with a gold film or gold nanocracks, in-depth
investigations were necessary.
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Figure 4. SERS sensor platform with a gold nanostructure. (a) FE-SEM image of a silicon wafer with gold nanostructures
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nanocracks on a porous silk substrate and SERS experiments of 4-ABT analytes at a concentration of 10 µM.

Biosensors 2021, 11, x FOR PEER REVIEW 6 of 10 
 

 

Figure 4. SERS sensor platform with a gold nanostructure. (a) FE-SEM image of a silicon wafer with gold nanostructures 

with a thickness of 3 nm and SERS experiments of 4-ABT analytes at a concentration of 10 μM. The sharp and intense 

Raman peak at 520 cm−1 originated from the crystalline silicon wafer. (b) FE-SEM image of a silk-based SERS sensor with 

gold nanocracks on a porous silk substrate and SERS experiments of 4-ABT analytes at a concentration of 10 μM. 

Next, we evaluated the linearity performance between SERS peak intensity and con-

centration of 4-ABT. For the silk samples with gold nanocracks, the detection limit was 

experimentally obtained to be 500 nM in Figure 5a, and the sensitivity and R2 values of 

5890 and 0.96 were determined from the linear regression data in Figure 5b. The linearity 

was also quite good in a wide dynamic range. It is very interesting to note that compared 

to the results of silk samples with a 40 nm thick gold film in Figure 3, both the detection 

limit and sensitivity characteristics were improved by about four times. In order to un-

derstand the contrast in the performance of silk samples with a gold film or gold nanoc-

racks, in-depth investigations were necessary. 

 

Figure 5. SERS sensor performance measurement. (a) SERS experiments of 4-ABT analytes at a varied concentrations for 

a silk substrate with gold nanocracks. (b) Linear regression analysis of the Raman intensities at 1076 cm−1 to quantify the 

sensitivity and linearity. 

Figure 5. SERS sensor performance measurement. (a) SERS experiments of 4-ABT analytes at a varied concentrations for a
silk substrate with gold nanocracks. (b) Linear regression analysis of the Raman intensities at 1076 cm−1 to quantify the
sensitivity and linearity.

Figure 6 presents the composition analyses of two silk-based SERS substrates de-
termined using energy-dispersive X-ray spectroscopy (EDS) measurements. Hydrogen
(H) and nitrogen (N) contents of silk fibroin were not detected due to the small atomic
mass of hydrogen and the extremely low responsivity of nitrogen [29]. Obviously, the
percentage content of gold was drastically increased as a result of gold deposition between
the two silk samples. For the 40 nm thick gold film, there was relative increment in the
percentage weight of the gold that was more than 20-fold. Such a difference in the amount
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of gold would be responsible for the formation of gold nanocracks and the excitation of
plasmon fields.
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In addition, we studied the underlying physics of localized field amplification and
plasmonic field-analyte interaction using the finite-element method (FEM). FEM models
were prepared for silk substrates with flat and non-flat surface profiles. Refractive indices
(n, k) of gold and silk at λ = 785 nm were chosen to be (0.2313, 4.3933) and (1.5405, 0),
respectively [30,31]. As a quantitative metric of the field–analyte interactions, we defined
an overlap integral (OI), which is the integration of local field intensity within a 0.2 nm
thick binding layer of 4-ABT [32,33]. Illumination was assumed as a normal incidence of a
unit amplitude. For non-flat silk samples, a rough surface profile was designed using the
real AFM data in Figure 1c, whose surface roughness was 38.55 nm. The overall surface
dimension of 1 µm was large enough for the given geometric values of a 40 nm thick gold
film and 3 nm thick gold nanocracks, so a number of statistical variations were included in
a constructed surface profile, indicating that the use of a single rough surface could provide
valid insights on the roughness effect.

Among three FEM results, a 40 nm thick gold film on a flat silk substrate, known as a
typical surface plasmon resonance configuration, showed no significant field amplification
in Figure 7a. Under a normal incidence condition, the electromagnetic fields near the
gold surface were not enhanced nor localized. The peak field amplitude was 1.22, and
the OI value that was obtained was 1.51 × 104. On the other hand, a thin gold film with
a non-flat silk surface that displayed a fairly enhanced field at several protrusions on the
gold surface, as presented in Figure 7b. While the excited fields were not highly localized,
the field amplification was quantitatively obtained to be 6.79 for a peak field amplitude and
2.94 × 105 for an OI value, respectively. It is reasonable to mention that such an increase
of the field amplitude and OI value led to procurable SERS signals in Figure 2c. For gold
nanocracks on a rough silk substrate, a strong enhancement of the local plasmon field was
found between the gold nanocracks. When the summation of the field intensity over the
surface was calculated, a maximum field amplitude of 51.12 and an OI value of 1.21 × 106

were determined. It is also noteworthy that the OI enhancement of 4.11 times by the gold
nanocracks was consistent with the improvement of the detection limit and sensitivity by
about 4 times, as seen in Figures 3b and 5b. Moreover, we speculate that the non-uniform
plasmon field distribution of the gold nanocracks on the porous silk substrate in Figure 7c
will not deteriorate the reliability of SERS detection. While the results were not shown
here, the total sum of the field amplitudes over the sensing surface dimension of 10 µm
presented a good standard deviation of 10% compared to its average value. Based on the
good correlation between the OI and SERS characteristics, FEM analyses demonstrated
that the combination of the rough and porous silk substrate and gold nanocracks could
provide a higher detection performance via an efficient excitation of the localized plasmon
fields, expanding applications to a variety of fields, such as noninvasive diagnostics and
healthcare monitoring.
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Figure 7. Numerical analyses on local field enhancement using FEM method. Field distributions of
SERS substrate for (a) a 40 nm thick gold film on a flat silk substrate, (b) a 40 nm thick gold film on a
rough silk substrate, and (c) a 3 nm thick gold nanocracks on a rough silk substrate. FEM models
of rough silk surface were prepared using real AFM data with a surface roughness of 38.55 nm.
Monochromatic light of λ = 785 nm was assumed as a normal incidence of a unit amplitude.

Finally, in terms of the biocompatibility of the proposed SERS scheme, the biological
responses of silk have been extensively explored, revealing its excellent bio-response
in vivo with low immunogenicity [34]. It is evident from previous publications that the
combination of silk and gold nanostructures did not exhibit any cytotoxicity in vitro and
in vivo [35–39]. However, to verify this issue more specifically, we intend to evaluate the
biocompatibility in our device in the subsequent works.

4. Conclusions

In this study, we reported the fabrication and characterization of a novel SERS sensor
consisting of a porous silk substrate and gold nanostructures. The target analytes of 4-ABT
adsorbed on the sensor surface experienced the SERS effect and led to high sensitivity
through an interaction between the local plasmon fields and analytes. The experimental
data showed that the porous silk samples with a 40 nm thick gold film verified the effect
of the porous sensor surface, and, more importantly, the combination with gold nanoc-
racks demonstrated a hot-spot effect at the nanoscale gap regions, finally resulting in an
improvement of about 4 times in the detection limit and the sensitivity as well as in good
linearity and dynamic range characteristics. Moreover, a numerical investigation based on
FEM showed that the proposed SERS sensor was effective for amplifying the local plasmon
fields and encouraging a field–analyte interaction. Our silk-based SERS sensor platform
with biocompatibility could be available for the highly sensitive monitoring of various
analytes for in vitro and in vivo applications.
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