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Abstract: Glioblastoma (GBM) is the most lethal primary brain cancer that lacks effective molecular
targeted therapies. The PI3K/AKT/mTOR pathway is activated in 90% of all Glioblastoma mul-
tiforme (GBM) tumors. To gain insight into the impact of the PI3K pathway on GBM metabolism,
we treated U87MG GBM cells with NVP-BEZ235 (PI3K and mTOR a dual inhibitor) and identified
differentially expressed genes with RNA-seq analysis. RNA-seq identified 7803 differentially reg-
ulated genes in response to NVP-BEZ235. Gene Set Enrichment Analysis (GSEA) identified two
glycolysis-related gene sets that were significantly enriched (p < 0.05) in control samples compared to
NVP-BEZ235-treated samples. We validated the inhibition of glycolytic genes by NVP-BEZ235 and
examined the impact of the FOXO1 inhibitor (AS1842856) on these genes in a set of GBM cell lines.
FOXO1 inhibition alone was associated with reduced LDHA expression, but not ENO1 or PKM2.
Bioinformatics analyses revealed that PI3K-impacted glycolytic genes were over-expressed and
co-expressed in GBM clinical samples. The elevated expression of PI3K-impacted glycolytic genes
was associated with poor prognosis in GBM based on Kaplan–Meier survival analyses. Our results
suggest novel insights into hallmark metabolic reprogramming associated with the PI3K-mTOR
dual inhibition.

Keywords: glioblastoma (GBM); PI3K/AKT/mTOR pathway; glycolysis; RNA-seq; Gene Set Enrich-
ment Analysis (GSEA)

1. Introduction

Cancer is the second leading cause of death in the United States. Glioblastoma
multiforme (GBM) is the most fatal, neurologically destructive, and common brain tumor
of the central nervous system (CNS) [1]. GBM (grade IV glioma) is highly proliferative
and classified as low-grade and high-grade glioblastoma (LGG and HGG) as per WHO
standards [1,2]. GBM develops from astrocytes, oligodendrocytes, or from their precursors,
and represents ~80% of the total malignant tumors of the CNS [1,2]. GBM is characterized
by rapid growth, aggressive invasion, high rate of recurrence, neovascularization, and poor
prognosis [2–4]. GBM is the highest occurring malignant brain tumor in the United States
and has median survival period of ~15 months [2,5,6].

Glioblastoma is difficult to treat owing to widespread invasiveness, complex surgical
resection, and resistance to chemotherapy and radiation therapy [5]. Traditionally available
surgical tumor resection, chemotherapy, and radiation therapies are associated with poor
survival rate (14 to 18 months) [6,7]. The heterogeneous nature of GBM makes it difficult
for the development of treatments against these aggressive tumors and is responsible for
tumor recurrence [6]. A lack of effective treatments for GBM necessitates the development
of novel molecular approaches for combating this cancer.

Cancer cells are characterized by alterations in metabolic pathways and possess
resistance to cell death. Abrupt changes in glucose metabolism are perhaps the most
distinguishing characteristics between malignant and normal cells. Glycolysis generates
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high-energy ATP from glucose to meet biosynthetic and energetic demands [8]. In GBM,
cancer cells undergo the Warburg effect, a metabolic reprogramming to utilize aerobic
glycolysis as the main source of energy and excrete lactate even in the presence of sufficient
oxygen [9–11]. In GBM, glycolysis is increased compared to the normal cells [12,13]. Fur-
thermore, oncogenes promote glycolytic metabolism in contrast to tumor suppressors [14].
Along with the Warburg effect, cell metabolism in GBM is commonly characterized by
alterations in oxidative phosphorylation (OXPHOS), dysfunctional lipid metabolism, as
well as other metabolic pathways [15].

The evolutionarily conserved phosphatidylinositol 3-kinase (PI3K)/mammalian target
of rapamycin (PI3K/AKT/mTOR) pathway controls major physiological processes such
as survival, proliferation, apoptosis, metabolism, motility, and growth [1,16,17]. The
PI3K/AKT/mTOR pathway is often impacted in GBM by mutations in EGFR, PTEN,
PIK3CA, AKT (PKB), and PDGFRA to increase pathway output [18,19]. Furthermore,
increased activity of PI3K/AKT/mTOR signaling pathways in GBM is highly correlated
with tumor progression, multidrug resistance, and poor prognosis [18,20]. Activation of
PI3K/AKT/mTOR enhances tumor micro-vessel density and increases invasive potential
of cancer cells [21].

PI3K/AKT/mTOR impacts glycolytic metabolism in numerous ways, including the
direct activation of glycolytic enzymes. AKT phosphorylates hexokinase 2, leading to its
activation. AKT also impacts numerous transcription factors, including hindering FOXO
transcription factors to promote glycolysis at least in some contexts in a mechanism that
involves alleviation of MYC suppression by FOXO factors [22]. AKT also promotes glucose
uptake [22]. The MYC oncogene, which encodes c-MYC (or MYC) basic helix–loop–helix
(and leucine zipper) transcription factor, is a critical regulator of glucose and glutamine
metabolism central to the Warburg effect, and highly associated with several human
cancers [23]. Novel mechanisms have been identified that may regulate glycolysis at least
in part independently of PI3K. Under limiting glucose conditions, SHC3 promotes vesicle
recycling of glucose transporters belonging to the GLUT/SLC2A superfamily to increase
glucose uptake in GBM [24]. Given the importance of glycolysis in cancer progression,
many pathways and feedback mechanisms are in place to ensure energetic demands are
met [25]. Understanding variations in metabolism upon glycolytic perturbations such
as upon PI3K pathway inhibition will shed light on feedback mechanisms that deter
treatment efficacy.

The PI3K/AKT/mTOR pathway regulates forkhead-box type O (FOXO) transcrip-
tion factors, which have a role in tumor suppression, and act in a context-dependent
manner [26,27]. Three members of the FOXO family of transcription factors (FOXO-1,
FOXO-3, and FOXO-4) are widely expressed in mammals and possess tumor suppressor
activity by regulating apoptosis, DNA repair, oxidative stress resistance, and cell cycle
arrest activity [19,27]. FOXO6 is a less conserved homolog whose expression is primarily
in the brain [28]. Even though FOXO transcription factors are known to perform tumor
suppression activities, recent studies identified their involvement in cancer-promoting
activities. Inhibition of the PI3K/AKT/mTOR pathway can lead to increased expression
of stem markers such as OCT4 and ALPP, in part by activation of FOXO transcription
factors [17]. In addition, FOXO transcription factors can act as stress response factors.
Similarly, prolonged FOXO activity can promote resistance to chemotherapeutic treatment
(doxorubicin) in breast cancer [26,29]. In neuroblastoma, expression of FOXO3 was ben-
eficial as a prognostic marker and a biomarker to assess the efficacy of the PI3K/AKT
inhibition [26]. Overexpression of FOXO3 and AKT inhibition increased apoptosis in neu-
roblastoma [26]. These studies suggests that the role of FOXO factors in tumor outcome is
largely dependent on context. Furthermore, in the context of PI3K/AKT/mTOR inhibition
in GBM, the role of FOXO transcription factors is largely unknown.

The PI3K/AKT/mTOR pathway harbors feedback mechanisms that sustain its activ-
ity even in the presence of inhibitors. NVP-BEZ235 is a dual PI3K inhibitor that targets
the catalytic subunit of PI3K and mTOR [30]. Many groups have studied this drug in
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contexts such as GBM and clear cell renal carcinoma [31]. For example, Heinzen et al.
found that NVP-BEZ235 reduced growth and glucose consumption in GBM cell lines [32].
We previously investigated NVP-BEZ235 in the context of basal breast cancer and GBM
and found that 50 nM NVP-BEZ235 enabled stem gene expression such as OCT4 in these
settings but was also associated with decreased cell growth and apoptosis induction [17,33].
To better understand the molecular underpinnings for these phenotypes, we performed
RNA-seq analysis with U87MG cells treated with NVP-BEZ235. Comparative analysis
of RNA-seq data followed by Gene Set Enrichment Analysis (GSEA) [34] was performed
to identify significantly differentially expressed genes and biological pathways associ-
ated with PI3K/AKT/mTOR pathway inhibition in GBM. NVP-BEZ235-regulated genes
were validated in numerous cell lines. Given that FOXO1 is commonly activated upon
NVP-BEZ235 treatment, we examined whether FOXO1 inhibition with (AS1842856) would
suppress changes in NVP-BEZ235-driven gene expression. We found that FOXO1 inhi-
bition did suppress some of the NVP-BEZ235-directed changes in gene expression, but
also had independent impacts on metabolism. We used the GEPIA2 tool to analyze the
clinical importance of the identified glycolytic genes for association with patient survival,
co-expression (correlation analysis), and expression analysis [35]. Our findings suggest
that genes involved in glycolysis were significantly downregulated by PI3K-mTOR in-
hibition with NVP-BEZ235. Delineating molecular changes associated with glycolysis
under PI3K-mTOR inhibition would reveal critical metabolic factors for developing novel
therapeutic solutions.

2. Materials and Methods
2.1. Cell Lines, Cultures, and Drug Treatment

All cell lines used in this study were provided by the American Type Culture Collection
(Manassas, VA, USA). U87MG cells were propagated in MEM (Minimal Essential Medium,
Thermo Fisher, Waltham, MA). DBTRG cells were propagated in RPMI (Roswell Park
Memorial Institute 1640 Medium, Thermo Fisher, Waltham, MA). LN-18, U118 MG, and
LN-229 cells were propagated in DMEM (Dulbecco’s Modified Eagle Medium, Thermo
Fisher, Waltham, MA, USA). Cell lines were grown in standard propagating conditions
supplemented with 10% fetal bovine serum (FBS, Thermo Fisher, Waltham, MA), antibiotic
(Anti-Anti, Gibco cat: 15240096, Thermo Fisher, Waltham, MA), and 5% CO2 at 37 ◦C.
The dual PI3K-mTOR pathway inhibitor NVP-BEZ235 and FOXO1 inhibitor AS1842856
were acquired from Sigma-Aldrich (Saint Louis, MO, USA) and Calbiochem (Danvers, MA,
USA), respectively. NVP-BEZ235 and AS1842856 were utilized in final concentrations at
50 nM (or 1 µM) and 200 nM, respectively. Control samples were treated with DMSO.

2.2. RNA Extraction and RNA Sequencing

U87MG cells were plated at a density of 2700 cells per mL in complete media as
described above. Then, 50 nM NVP-BEZ235 or DMSO vehicle were added to U87MG
cells for four days. Next, total RNA was extracted from the treated and control samples
using the Qiagen MiniPrep RNAeasy kit (Hilden, Germany). Three biological replicates of
control and NVP-BEZ235-treated cell lines were used for the RNA extraction. The quality
of the extracted RNA was analyzed using NanoDrop spectrophotometer (Thermo Fisher,
Waltham, MA, USA). RNA-seq was performed by Novogene Corporation Inc. (Sacramento,
CA, USA).

2.3. Bioinformatics Analysis

RNA-seq analyses including mapping to human genome, sequence assembly, and
identification of differentially expressed genes (DEGs) were performed by the Novo-
gene Corporation Inc. (Sacramento, CA, USA). The original image data file from high-
throughput sequencing (Illumina, San Diego, CA, USA) was transformed into sequenced
reads (called raw data or raw reads) by CASAVA base recognition (base calling). Raw data
were stored in FASTQ (fq) format files, which contain sequences of reads and correspond-
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ing base quality. STAR software was used to accomplish the mapping. The abundance
of transcript reflects gene expression level directly. In this RNA-seq experiment, gene
expression level was estimated by the abundance of transcripts (count of sequencing) that
mapped to genome or exon. Read counts were proportional to gene expression level, gene
length, and sequencing depth. FPKM (short for the expected number of fragments per
kilobase of transcript sequence per million base pairs sequenced) was the most common
method of estimating gene expression levels, which takes the effects into consideration
of both sequencing depth and gene length on counting of fragments. For the samples
with biological replicates, differential expression analysis of two conditions/groups was
performed using the DESeq2 R package.

RNA-seq data were deposited to the GEO database (accession: GSE179667). The
RNA-seq data were analyzed to identify differentially expressed genes (DEGs) asso-
ciated with NVP-BEZ235 treatment. DEGs between NVP-BEZ235-treated and control
cell lines were investigated using the Gene Set Enrichment Analysis (GSEA) to iden-
tify enriched biological pathways defined by the set of genes between the two treat-
ments. Gene sets were downloaded from the Molecular Signatures Database (MSigDB)
(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp, accessed on 27 September 2020)
for GSEA analysis. GSEA was performed by setting the ENSEMBL Gene ID v7.0 Chip
platform, 1000 number of permutations, and weighted enrichment statistics [34]. Heatmaps
for gene expression counts in control and NVP-BEZ235 treatments were generated using
the MORPHEUS online tool (https://software.broadinstitute.org/morpheus/, accessed on
5 February 2021). Kaplan–Meier survival analysis, gene expression box plots, and Pearson
correlations were calculated from the GEPIA2 online tool [35]. The GO enrichment analysis
was performed using the gene ontology resource (http://geneontology.org/, accessed on
10 February 2021).

2.4. Quantitative Real-Time PCR (qRT-PCR)

Log-phase cancer cell lines were treated with 1 µM NVP-BEZ235 for five days. This
dose more fully inhibits PI3K [36]. Extracted total RNA was used to prepare cDNA using
Superscript Reverse Transcriptase II (Invitrogen, Carlsbad, CA). Primers spanning the
coding sequences for the genes were designed using Primer3 (v0.4.0) (https://bioinfo.
ut.ee/primer3-0.4.0/, accessed on 30 September 2020) and ordered from Sigma-Aldrich
(Saint Louis, MO). Amplification and expression of genes were performed using the
Applied Biosystems StepOne Real-Time PCR System (Foster City, CA, USA). Four technical
replicates were used for the gene amplification and quantification. ACTIN (ACTB gene)
was used as housekeeping gene for relative normalization and quantification performed by
the 2−∆∆CT method provided in the Applied Biosystems PCR machine [37]. For serum-free
medium, log-phase cells were starved for five days. Briefly, the cells were washed twice
with serum-free media and kept in serum-free media with selective antibiotics (MEM for
U87MG and DMEM for LN18). The drug concentration was 1 µM for a five-day treatment.
PCR data were exported, and analysis was performed using MS Excel and R project
for statistical computing for average, standard error, and Student’s t-test calculation or
Tukey’s test.

2.5. Western Blot

Log-phase cancer cell lines were treated with 1 µM NVP-BEZ235 for five days. Total
protein was obtained from indicated cells by rinsing cells with 1XPBS (phosphate buffered
saline) followed by directed lysis in 2× sample buffer (125 mM Tris-HCL at pH 6.8, 2%
sodium dodecyl sulfate (SDS), 10% 2-mercaptoethanol, 20% glycerol, 0.05% bromophenol
blue, 8 M urea); 2× sample buffer was added to each well and cells were scraped with a cell
scraper. The lysate was collected from each well, placed into a 1.5 mL microcentrifuge tube,
and heated for 10 min at 95 ◦C in a dry-bath heat block. Protein lysates were separated by
sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) at 100 V for 1 h.
Resolved proteins were then transferred onto a polyvinylidene fluoride (PVDF) membrane

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://software.broadinstitute.org/morpheus/
http://geneontology.org/
https://bioinfo.ut.ee/primer3-0.4.0/
https://bioinfo.ut.ee/primer3-0.4.0/
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for an hour and 30 min, then blocked in a 5% milk solution (Carnation powdered milk) and
1× Tris-buffered saline with Tween 20 (TBST) for an hour. Membranes were incubated with
indicated primary antibody overnight at 4 ◦C then washed for 20 min with TBST in 5-min
intervals. The blot was then incubated with secondary antibody for 1.5 h. Membranes were
washed for 20 min in 5-min intervals and allowed to develop using SuperSignal West Dura
Extended Duration Substrate luminol solution (Pierce Biotechnology, Waltham, MA, USA)
for 5 min. A Bio Rad ChemDoc XRS+ Molecular Imager was utilized for protein detection
(Bio Rad, Hercules, CA, USA). Data were analyzed with NIH Image J. Antibodies were
obtained from Cell Signaling Technologies (Danvers, MA, USA): LDHA (C4B5), PKM2
(D78A4) XP, Enolase-1 Antibody #3810, phospho-AKT serine 473 (9271S) and total AKT
(4691S). GAPDH (G-9) was obtained from Santa Cruz Biotechnology Inc., Dallas, TX, USA.
Beta-Actin antibody (clone AC-74, cat: A2228) was obtained from Sigma-Aldrich (Saint
Louis, MO, USA) and utilized at a 1:2000 dilution in TBST with 5% non-fat dried milk.

2.6. Quantitative Glutamate Assay

The quantification of glutamate in control (DMSO) and NVP-BEZ235-treated GBM
cells lines was performed using the Glutamate Colorimetric Assay kit (#K629-100, BioVision
Inc., Milpitas, CA, USA) as per the manufacturer’s protocol. Log-phase U87MG cells
were treated with 1 µM NVP-BEZ235 for five days. The 1 mM glutamate standard was
prepared and added to a 96-well plate to generate two replicates of 0, 2, 4, 6, 8, and
10 nmol/well standard concentrations. Absorbance for glutamate standards and samples
were measured at 450 nm using iMark Microplate Absorbance Reader (Bio-Rad, Hercules,
CA). Standard and sample absorbances were corrected relative to the background control
to visualize the standard curve using regression equation. Glutamate concentrations were
estimated from the regression equation and using the formulae C = Sa/Sv provided by the
manufacturer’s protocol.

2.7. NAD+/NADH Cell-Based Assay

The nicotinamide adenine dinucleotide (NAD+) in normal and GBM cells were mea-
sured using Cayman’s NAD+/NADH cell-based assay kit as per the manufacturer’s
protocol. Briefly, the NAD+ standards were prepared in the range of 0 to 1000 nM as per
the manufacturer’s protocol. Log-phase U87MG cells were treated with 1 µM NVP-BEZ235
for five days. Cells were washed, centrifuged, and incubated for 90 min after adding 100 µL
reaction solution to each well. The absorbance for NAD+ standards and samples were mea-
sured at 450 nm using iMark Microplate Absorbance Reader (Bio-Rad, Hercules, CA, USA).
Standard and sample absorbances were corrected relative to the background control to
visualize the standard curve with regression equation. Total cellular NAD+ concentrations
were calculated using the standard curve equation as per the manufacturer’s protocol.

2.8. Glucose Uptake and Lactate Secretion Assays

Glucose Uptake-GloTM and Lactate-Glo TM (Promega, Madison, WI, USA) assay kits
were used to perform the glucose uptake and lactate secretion assays, respectively, as
per the manufacturer’s instructions. Both assays were performed with or without FBS
with similar results. For glucose uptake assays, log-phase U87MG cells were treated with
1 µM NVP-BEZ235 for 48 h under starvation conditions (without FBS). After treatment,
36,000 cells were washed with PBS and incubated with 2-deoxy-D-glucose (2DG) for 10 min
at room temperature. Luminescence was recorded using a 20/20n luminometer from
Turner Biosystems (Sunnyvale, CA, USA). Samples were examined in quadruplicate in
replicate experiments.

For lactate secretion assays, log-phase U87MG cells were treated with 1 µM NVP-
BEZ235 for 48 h under starvation conditions (without FBS). Then, 3 µL of culture media
were placed into 97 µL of PBS and were incubated with the Lactate Detection Reagent
for 60 min at room temperature. The luminescence was recorded using the 20/20n lumi-
nometer from Turner Biosystems. Cell numbers were counted for each sample and were
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used to normalize luminescence readings for comparisons. Samples were examined in
quadruplicate in replicate experiments.

3. Results
3.1. NVP-BEZ235 Treatment Reduced Glycolytic Gene Expression in GBM Cells

RNA sequencing was performed from U87MG cells treated for four days with 50 nM
NVP-BEZ235 (dual PI3K-mTOR pathway inhibitor) or vehicle control with three biolog-
ical replicates of each condition. This drug dose was employed in our previous studies
(and others) and is not a complete inhibition of PI3K-mTOR in U87MG cells [31,33]. The
four-day timepoint allowed us to obtain high-quality RNA for sequencing. Initial bioin-
formatics analyses included quality filtering. Genome mapping followed by comparative
gene expression analysis between NVP-BEZ235-treated and control samples led to the
identification of 7803 differentially expressed genes (DEGs). The 7803 DEGs (native fea-
tures) obtained from the RNA-seq analysis were used for GSEA [34,38]. Analysis with
the Molecular Signatures Database curated Hallmark gene sets revealed that seven gene
sets were significantly enriched in control samples (compared to NVP-BEZ235-treated
samples), including HALLMARK_HYPOXIA, HALLMARK_GLYCOLYSIS, and HALL-
MARK_HEME_METABOLISM (Table S1). Several gene sets were significantly enriched in
NVP-BEZ235-treated samples: HALLMARK_COMPLEMENT, HALLMARK_PANCREAS_
BETA_CELLS, and HALLMARK_COAGULATION (Table S2). We further investigated
the impact of NVP-BEZ235 on glycolytic gene expression given the robust enrichment
of these genes in control samples (ES = 63, p < 0.001, Table S1). GSEA was carried out
for the glycolysis C1 (hallmark gene set) and C2 gene sets (curated gene sets), including
the KEGG_GLYCOLYSIS_GLUCONEOGENESIS and HALLMARK_GLYCOLYSIS collec-
tions available in the MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp,
accessed on 27 September 2020) [39]. GSEA indicated that glycolytic gene sets were signifi-
cantly enriched in the control (DMSO samples) compared to NVP-BEZ235-treated samples
(p < 0.05) in KEGG_GLYCOLYSIS_GLUCONEOGENESIS and HALLMARK_GLYCOLYSIS
(Figure 1a,c and Table S3).

KEGG_GLYCOLYSIS_GLUCONEOGENESIS and HALLMARK_GLYCOLYSIS gene
sets were further analyzed for GSEA core enrichment; we found that 17 and 35 genes, re-
spectively, were significantly downregulated in GBM cell lines in response to NVP-BEZ235
treatment (Table S3). To represent the expression pattern of a large number of core enriched
genes, we created the heatmap for enriched genes in KEGG_GLYCOLYSIS_GLUCONE
OGENESIS and HALLMARK_GLYCOLYSIS based on the expression values of the genes
in control and treated samples (Figure 1b,d). Overall, a large number of glycolysis-related
genes were downregulated in response to NVP-BEZ235 treatment in GBM cell lines
(Figure 1b,d).

https://www.gsea-msigdb.org/gsea/msigdb/genesets.jsp
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Figure 1. Glycolytic genes are reduced by NVP-BEZ235 treatment in U87MG cells. GSEA generated
enrichment plots and generated heatmaps depicting the enrichment of sample phenotypes, control
(DMSO) and NVP-BEZ235-treated (50 nM for four days in U87MG cells), in priori defined glycolysis
gene sets. (a) KEGG glycolysis gluconeogenesis gene set, (b) heatmap of 17 core enriched genes
KEGG_GLYCOLYSIS_GLUCONEOGENESIS gene set (c), Hallmark glycolysis gene set, (d) heatmap
of 35 core-enriched genes in HALLMARK_GLYCOLYSIS gene set. The profile of enrichment score
(ES) and rank ordered list for enriched genes are shown. Both gene sets were significantly enriched
in control samples compared to NVP-BEZ235 treatment samples p < 0.05.

To understand the comprehensive biological functions of NVP-BEZ235-regulated
genes, we performed GO enrichment analysis for biological processes, molecular func-
tions, and cellular components. Glycolysis-related genes were highly enriched for glucose
catabolism, canonical glycolysis, and other glycolytic processes (Figure 2). The GO terms for
glyceraldehyde-3-phosphate dehydrogenase activity and peptidyl-proline 4-dioxygenase
activity were also highly enriched under molecular functions (Figure 2). Similarly, ficolin-1-
rich granule and extracellular organelle were enriched under cellular component categories
(Figure 2). The detailed GO terms are provided in Table S4.
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rate (FDR) values on a minus log10 scale were used for enrichment measurement.

3.2. NVP-BEZ235 Treatment Reduced Glycolytic Genes in Numerous GBM Cell Lines

To validate differentially expressed glycolysis-related genes obtained from RNA-seq
data, we performed qRT-PCR. Primers for selected genes were designed using the Primer3
(v0.4.0) online tool (Table S5). qRT-PCR analysis showed that selected glycolysis-related
genes were significantly downregulated in control (DMSO) as compared to NVP-BEZ235
(Figure 3a). Validation of differential gene expression by qRT-PCR also built confidence
and reliability in the RNA-seq analysis.

To determine whether NVP-BEZ235 impacted glycolytic genes in other cell lines in
addition to U87MG cells, we investigated the expression of these genes in a panel of GBM
cell lines including DBTRG, LN18, LN229, and U118MG (1 µM NVP-BEZ235 for five days,
Figure 3b–e). Results indicated that the LDHA gene was consistently downregulated in
all cell lines in response to NVP-BEZ235 treatment (Figure 3b–e). Similarly, ENO1 was
downregulated in all cell lines in response to NVP-BEZ235 treatment (Figure 3b–e). GAPDH
was slightly upregulated in the DBTRG GBM cell line (data not shown).

In addition to utilizing FBS-supplemented medium, we also performed the validation
of the selected genes with serum starvation conditions in U87MG and LN18 GBM cell lines.
Results indicated that LDHA, PKM2, PGK1, and PGAM1 were significantly downregulated
in both U87MG and LN18 GBM cell lines in response to NVP-BEZ235 as compared to the
control DMSO (Figure 4a,b).
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Figure 3. qRT-PCR validation of the glycolytic genes in various cell lines. (a) U87MG, (b) DBTRG,
(c) LN18, (d) LN229, and (e) U118MG. The relative expression of the genes (compared to ACTB,
encoding actin) was analyzed in control and NVP-BEZ235 (NVP) samples (1 µM treatment for
5 days). The error bars represent the standard deviation of the genes (n = 4). Asterisks (*) represent the
significantly expressed genes (p < 0.05) as compared to control (DMSO). Significance was determined
by Student’s t-test.

The PI3K pathway was previously found to promote glycolytic gene expression in
U87MG cells that harbored exogenous constitutively active EGFR-vIII [40]. Specifically,
the reduction of RICTOR, a defining component of mTORC2, decreased glycolytic gene
expression in a FOXO1-dependent manner. FOXO1 induced the expression of miR-34c to
decrease MYC expression in U87MG cells that expressed activated EGFR-vIII. To determine
whether a similar mechanism was employed in cells treated with dual PI3K pathway
inhibitor NVP-BEZ235, we assessed the combined impact of PI3K-mTOR inhibition (NVP-
BEZ235 1 µM) and FOXO1 inhibition (FOXO1 inhibitor AS1842856 1 µM) on glycolytic
gene expression in U87MG and DBTRG GBM cancer cell lines. In both cell lines, LDHA was
reduced with NVP-BEZ235 or FOXO1 inhibition with AS1842856 (Figure 5a,b), suggesting
that both PI3K and FOXO1 promoted expression of this gene. Of note, combined NVP-
BEZ235 and AS1842856 led to increased LDHA and ENO1 compared to NVP-BEZ235 alone
in U87MG cells, suggesting that the loss of FOXO1 suppressed the reduction of these genes
in NVP-BEZ235-treated cells (Figure 5a,b).
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Figure 4. qRT-PCR validation of the glycolysis-related genes under serum starvation in (a) U87MG,
and (b) LN18 cell lines grown in serum-free medium. The relative expression of the genes (compared
to ACTB, encoding actin) was analyzed in control DMSO and NVP-BEZ235 samples (five days
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Asterisks (*) represent the significantly expressed genes (p < 0.05) as compared to control (DMSO).
Significance was determined by Student’s t-Test.
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Figure 5. FOXO1 inhibition partially suppressed NVP-BEZ235 induction of glycolytic genes.
(a) U87MG and (b) DBTRG. The relative expression of the genes was analyzed in DD-, DN-, DF-,
and NF-treated samples. DD: DMSO; DN: DMSO+NVP-BEZ235 (1 µM); DF: DMSO+FOXOi (1 µM
AS1842856); NF: NVP-BEZ235+FOXOi (1 µM of each drug). The error bars represent the standard
deviation of the genes. The p-values were calculated by one-way ANOVA followed by Tukey’s test
(*, p < 0.05; **, p < 0.01, ***, p < 0.001).

We verified the protein expression of the glycolytic genes in U87MG cells treated
with 1 µM NVP-BEZ235 (NVP) for five days. Expression levels of LDHA, PKM2, and
GAPDH were higher in DMSO-treated samples as compared to NVP-BEZ235-treated
samples (Figure 6a). Furthermore, we assessed the C-Myc protein expression under the
FOXOi (AS1842856 1 µM) and combined inhibition (NVP+FOXOi) and found that c-Myc
expression was not impacted by FOXOi or NVP+FOXOi as compared to vehicle control
DMSO (Figure 6b,c). The expression of c-Myc was slightly higher in NVP-BEZ235-treated
samples as compared to control DMSO (Figure 6b,c).
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Figure 6. Expression changes of glycolysis-related proteins. Protein expression was verified using
Western blot analysis in U87MG in (a) DMSO and 1 µM NVP-BEZ235 (NVP) samples, (b) c-Myc
protein expression was verified using Western blot analysis in DMSO, NVP, FOXOi (AS1842856), and
NVP+FOXOi samples (1 µM of each drug). Actin was used as the loading control. (c) Western blot
for c-Myc was quantified using the Image Lab Software (Bio-Rad).

3.3. NVP-BEZ235 Treatment Led to Reduced NAD+ and Glutamate in U87MG Cells

Given that glycolytic genes were reduced upon NVP-BEZ235 treatment of U87MG
cells, we examined whether a concomitant change in metabolism could be observed.
Functional assays were performed to assess the impacts of NVP-BEZ235 on metabolism,
including cellular NAD+ levels, glutamate levels, glucose uptake, and lactate secretion.
In the Warburg effect, high levels of NAD+/NADH are produced as a result of increased
glycolytic activity in cancer cells [41]. We found that the NAD+ concentration was sig-
nificantly higher in DMSO samples as compared to the 1 µM NVP-BEZ235-treated cells,
suggesting that inhibition of PI3K-mTOR reduced glycolytic metabolism (Figure 7a,b).



Cells 2021, 10, 3065 12 of 19

Cells 2021, 10, x  12 of 19 
 

 

was used to analyze the concentration of glutamate in the samples. Glutamate concentra-
tion was significantly higher in control samples as compared to the 1 μM NVP-BEZ235-
treated cells, suggesting that inhibition of PI3K-mTOR causes a reduction in glutamate 
(Figure 7c,d). This observation highlights that glutamate is diminished tenfold by PI3K-
mTOR inhibition. 

 
Figure 7. NAD+ and glutamate were reduced with NVP-BEZ235 treatment. (a) Absorbance of NAD+ 
concentrations at 450 nm. (b) The estimated concentration of NAD+ in control DMSO and 1 μM 
NVP-BEZ235 samples. (c) Absorbance of glutamate concentrations at 450 nm. (d) The estimated 
concentration of glutamate in DMSO and 1 μM NVP-BEZ235-treated samples. The error bars repre-
sent the standard deviation of the samples. Significance was determined by Student’s t-test. 

3.4. Glucose Uptake and Lactate Secretion Were Reduced under NVP-BEZ235 Treatment in 
U87MG Cells  

To further understand the regulation of glycolytic metabolism in NVP-BEZ235-
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Figure 7. NAD+ and glutamate were reduced with NVP-BEZ235 treatment. (a) Absorbance of
NAD+ concentrations at 450 nm. (b) The estimated concentration of NAD+ in control DMSO
and 1 µM NVP-BEZ235 samples. (c) Absorbance of glutamate concentrations at 450 nm. (d) The
estimated concentration of glutamate in DMSO and 1 µM NVP-BEZ235-treated samples. The error
bars represent the standard deviation of the samples. Significance was determined by Student’s t-test.

Glutamate is another important metabolite associated with cancer progression that
can promote glycolysis in certain contexts. We investigated changes in glutamate concen-
tration in control and NVP-BEZ235-treated cell lines. The colorimetric glutamate assay kit
was used to analyze the concentration of glutamate in the samples. Glutamate concentra-
tion was significantly higher in control samples as compared to the 1 µM NVP-BEZ235-
treated cells, suggesting that inhibition of PI3K-mTOR causes a reduction in glutamate
(Figure 7c,d). This observation highlights that glutamate is diminished tenfold by PI3K-
mTOR inhibition.

3.4. Glucose Uptake and Lactate Secretion Were Reduced under NVP-BEZ235 Treatment in
U87MG Cells

To further understand the regulation of glycolytic metabolism in NVP-BEZ235-treated
cell lines, we measured glucose uptake and lactate secretion. We observed that glucose
uptake was significantly lower (p < 0.001) in NVP-BEZ235-treated samples in comparison
to control DMSO (Figure 8a), consistent with work by Heinzen et al. [32]. Similarly,
lactate secretion was significantly reduced (p < 0.001) in NVP-BEZ235-treated samples
(Figure 8b). These results indicate that glycolytic metabolic reprogramming was hampered
by NVP-BEZ235 in GBM cell lines.
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Figure 8. NVP-BEZ235 treatment reduced glucose uptake and lactate secretion. (a) Glucose uptake
and (b) lactate secretion in control DMSO and NVP-BEZ235-treated (1 µM) samples were measured
with luminescence assay. The error bars represent the standard deviation of the samples. Significance
was determined by Student’s t-test.

3.5. Glycolytic Genes Are Associated with Poor Prognosis in GBM

To ascertain the potential impacts of glycolytic genes on GBM prognosis, we in-
vestigated these genes for association with patient survival in clinical samples. Data
from GEPIA2 were analyzed to construct box plots and perform Kaplan–Meier analy-
ses [35]. Among the enriched genes, elevated expression of Lactose Dehydrogenase (LDHA),
Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH), and Enolase 1 (ENO1) were significantly
associated (log-rank p < 0.05) with worse survival (Figure 9a). Furthermore, we exam-
ined the expression of these genes from the GEPIA2 online tool, which has an expression
database based on The Cancer Genome Atlas (TCGA) database. The comparison of expres-
sions of LDHA, GAPDH, and ENO1 showed overall higher expression in tumor samples as
compared to the normal samples (Figure 9b). Pearson correlation analyses of the glycolysis-
related genes also showed significant correlation for glycolytic genes in GBM (Table 1).
Therefore, our systematic gene expression analysis obtained from RNA-seq provides a
confidence in selecting genes for further genetic analysis and biological interpretation.
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Table 1. Pearson correlation analysis of glycolysis-related genes in GBM.

Gene Gene Correlation Coefficient (R) p-Value

LDHA ENO1 0.56 <0.05

LDHA GAPDH 0.64 <0.05

ENO1 GAPDH 0.55 <0.05

4. Discussion

GBM is the most malignant, aggressive, and lethal brain cancer worldwide, with
a survival rate of less than 18 months both in treated and untreated patients. Altered
glycolytic metabolism is a characteristic of GBM, where glucose is converted into lactate
in the presence of oxygen for tumor cell growth, while generating ATP to meet energetic
demands [25,42]. In addition, glycolysis takes place at a higher rate in GBM than in normal
cells [43]. The oncogenic PI3K/AKT/mTOR pathway regulates metabolic networks and
promotes aerobic glycolysis in favor of tumor cells [22]. The genetic basis of aerobic glycol-
ysis and its regulation of the PI3K/AKT/mTOR pathway are not completely understood.
Hence, decoding the key gene regulatory elements involved in glycolytic metabolism is of
utmost importance for developing therapeutic treatments for GBM.
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Advanced genome and transcriptomic sequencing technologies accelerated cancer
research for developing precision medicine and targeted therapies. However, how cancer
cells in GBM alter glycolytic metabolism and how inhibition of PI3K/AKT/mTOR alters
glycolytic gene expression remained unclear. In this study, we investigated the regula-
tion of glycolysis-related genes by comparing the transcriptomic profiles in U87MG cells
using RNA-seq under NVP-BEZ235 and DMSO treatments. RNA-seq analysis identified
7803 DEGs regulated by the NVP-BEZ235 treatment. GSEA on multiple glycolysis-related
gene sets identified the enrichment of 52 genes (p < 0.05) which were highly downregulated
in response to NVP-BEZ235 (Figure 1). The analysis identified several enriched functional
categories involved in glycolytic metabolism (Figure 2).

In addition to NVP-BEZ235, we also investigated the effect of FOXO1 inhibition with
AS1842856 on glycolytic gene expression. We reported the decrease in LDHA gene expres-
sion in two GBM cell lines (U87MG and DBTRG) with NVP-BEZ235 and/or AS1842856
(Figure 5). FOXO1 inhibition did, however, at least in part suppress NVP-BEZ235-induced
gene expression (Figure 5). In additional to canonical roles in PI3K (involving negative regu-
lation by the PI3K pathway), FOXO1 had a positive impact on LDHA expression. Therefore,
the role of FOXO1 in metabolism in U87MG cells is complex. In line with the positive im-
pact of FOXO1 on LDHA, FOXO factors can be associated with cancer-promoting activities
and even cause resistance to Temozolomide (TMZ) [17,44,45]. Previous reports have shown
that a FOXO1 homolog (FOXO3) contributed TMZ resistance in GBM through promoting
beta-catenin nuclear localization [45]. Given that FOXO1 and FOXO3 are at least in part
functionally redundant, it is conceivable that FOXO1 may also promote WNT signaling,
leading to TMZ resistance [46]. Understanding the molecular mechanisms underlying
TMZ resistance in GBM is essential to develop new targeted therapies.

C-Myc is a potent oncogene and is overexpressed in many human cancers [47]. Pre-
vious studies reported that FOXO1 impacted genes involved in glycolysis via down-
regulation of c-MYC [27,48]. Interestingly, we found that NVP-BEZ235 alone led to
increased expression of c-Myc protein as compared to control DMSO, FOXO1 inhibi-
tion (FOXOi with AS1842856 treatment), and combined inhibition (NVP-BEZ235 and
AS1842856), which did not impact c-MYC in wild-type U87MG cells (Figure 6b,c). Thus,
additional mechanisms aside from c-MYC regulation are utilized on the PI3K/AKT/mTOR
pathway to promote glycolysis.

Kaplan–Meier survival analyses showed that high expression of glycolysis-related
genes (LDHA, GAPDH, and ENO1) had a significant correlation with poor survival in GBM
(Figure 9). LDHA is a vital enzyme involved in the anaerobic metabolic pathway, which
catalyzes the conversion of pyruvate to lactate and NADH to NAD+ collaterally [43,49].
LDHA overexpression promotes cancer progression by providing lactate as a nutrient
and acidifying the tumor microenvironment. LDHA is associated with increased levels of
glycolysis in cancer cells [50]. PKM2 encodes the rate-limiting enzyme in glycolysis that
catalyzes the conversion of phosphoenolpyruvate to pyruvate. PKM2 regulates cancer
cell metabolism and contributes to the growth of glioma cells [51]. Similarly, two other
genes, GAPDH and ENO1, promote cancer progression in GBM [43]. The qRT-PCR analysis
revealed that LDHA, GAPDH, and ENO1 were decreased by NVP-BEZ235 treatment in
U87MG cells (Figure 3a). Similarly, these genes followed similar expression patterns across
different GBM cell lines (Figure 3b–e). We also validated the expression of these genes
under serum-free medium in U87MG and LN18 GBM cell lines (Figure 4). This highlights
the crucial role of glycolysis-related genes in GBM malignancy. In line with qRT-PCR
analysis, glycolytic protein expression was higher in DMSO control samples compared to
NVP-BEZ235-treated samples (Figure 6).

In addition to the energy requirements, cancer cells prefer glycolysis to generate
intermediate biosynthetic compounds, such as amino acids, nucleic acids, lipids, and
lactate, and for maintaining the NAD+/NADH redox balance [50]. The growth of the
cancer cells in GBM is dependent on the availability of glutamine, which is involved
in the biosynthesis of nucleotides and amino acids [25]. Glutamate is the precursor for
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glutamine. In GBM, glutamine synthetase (GS) catalyzes the conversion of glutamate to
glutamine to meet the increased demand for glutamine [25,52]. Furthermore, glutamate
secretion is enhanced under GBM conditions concomitant with increased expression of
GS [52]. We observed a significant reduction in glutamate (tenfold) in NVP-BEZ235-treated
samples compared to the DMSO-treated controls (Figure 7c,d). Along with glutamine,
NAD+ metabolite is critical for glycolytic metabolism and tumorigenesis. Reduction
in NAD+ levels led to the impairment of cancer cell growth and proliferation [53,54].
We report that NAD+ levels were significantly suppressed in NVP-BEZ235-treated cell
lines (Figure 7a,b). Furthermore, in GBM, the glycolytic rate is highly increased [42],
which causes increased uptake of glucose and lactate secretion. Work by Ansari et al.
demonstrated that low glucose conditions (0.3g/L) reduced the expression of MIR-451 in
GBM cells due to diminished OCT1 (Octamer binding transcription factor 1) activity [55].
Ansari et al. highlight the importance of glucose levels in determining glycolytic rate. Our
RNA-seq data did not have a significant change in MIR-451 expression with NVP-BEZ235
treatment (data not shown). However, our experiments were performed with constant
levels of glucose in the media (0.9g/L glucose). Our work builds upon that of Heinzen et al.,
who found that NVP-BEZ235 treatment led to reduced oxygen consumption and glucose
consumption in GBM cells [32]. Our work revealed that NVP-BEZ235 treatment not only
reduced glycolytic gene expression but also led to dramatic functional consequences in
metabolic reprogramming, as evidenced by reduced cellular NAD+, glutamate, glucose
uptake, and lactate secretion in U87MG cells.

In summary, PI3K-mTOR inhibition with NVP-BEZ235 led to decreased levels of
glycolytic genes, which have potential roles in GBM pathogenesis and may inform the
development of novel targeted therapies for this cancer. The precise mechanisms employed
by NVP-BEZ235 to impact glycolytic genes appear to be diverse and independent of MYC
in the wild-type U87MG context.

5. Conclusions

Through comparative transcriptomic analysis, we found that glycolysis-related genes
were significantly downregulated by PI3K-mTOR inhibition by NVP-BEZ235 in GBM cells.
GSEA coupled with survival analyses identified key genes including LDHA, GAPDH, and
ENO1 involved in glycolytic metabolism. The molecular validation of these genes con-
firmed our bioinformatics results. We also reported the differential responses of glycolytic
genes and c-Myc under combinatorial drug treatments that included FOXO inhibition,
which showed that FOXO1 activation alone could not explain observed glycolytic changes
upon NVP-BEZ235 treatment. Furthermore, we found a significant reduction in NAD+ and
glutamate metabolites as well as decreased glucose uptake and lactate secretion under PI3K-
mTOR inhibition (NVP-BEZ235 treatment), suggesting decreased glycolytic metabolism
in GBM. These findings and the knowledge generated from this study will contribute
towards advancing precision medicine for GBM. Glycolysis may serve as a barometer of
NVP-BEZ235 treatment efficacy.
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GLUCONEOGENESIS and HALLMARK_GLYCOLYSIS gene sets, Table S4: Detailed GO analysis
table for enriched GO terms for biological process, molecular function, and cellular components,
Table S5: List of forward and reverse primers of glycolysis-related genes and actin.
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