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Abstract

Background: Defining the metabolic syndrome (MetS) in children remains challenging. Furthermore, a
dichotomous MetS diagnosis can limit the power to study associations. We sought to characterize the serum
metabolite signature of the MetS in early childhood using high-throughput metabolomic technologies that allow
comprehensive profiling of metabolic status from a biospecimen.

Methods: In the Family Atherosclerosis Monitoring In earlY life (FAMILY) prospective birth cohort study, we
selected 228 cases of MetS and 228 matched controls among children age 5 years. In addition, a continuous MetS
risk score was calculated for all 456 participants. Comprehensive metabolite profiling was performed on fasting
serum samples using multisegment injection-capillary electrophoresis-mass spectrometry. Multivariable regression
models were applied to test metabolite associations with MetS adjusting for covariates of screen time, diet quality,
physical activity, night sleep, socioeconomic status, age, and sex.

Results: Compared to controls, thirteen serum metabolites were identified in MetS cases when using multivariable
regression models, and using the quantitative MetS score, an additional eight metabolites were identified. These
included metabolites associated with gluconeogenesis (glucose (odds ratio (OR) 1.55 [95% CI 1.25-1.93]) and
glutamine/glutamate ratio (OR 0.82 [95% Cl 0.67-1.00])) and the alanine-glucose cycle (alanine (OR 1.41 [95% Cl
1.16-1.73])), amino acids metabolism (tyrosine (OR 1.33 [95% CI 1.10-1.63]), threonine (OR 1.24 [95% Cl 1.02-1.51]),
monomethylarginine (OR 1.33 [95% Cl 1.09-1.64]) and lysine (OR 1.23 [95% CI 1.01-1.50])), tryptophan metabolism
(tryptophan (OR 0.78 [95% CI 0.64-0.95])), and fatty acids metabolism (carnitine (OR 1.24 [95% Cl 1.02-1.51])). The
quantitative MetS risk score was more powerful than the dichotomous outcome in consistently detecting this
metabolite signature.

Conclusions: A distinct metabolite signature of pediatric MetS is detectable in children as young as 5 years old and
may improve risk assessment at early stages of development.
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Background

Obesity and related metabolic sequelae such as type 2
diabetes are increasingly prevalent among children in
high-income countries [1, 2]. The metabolic syndrome
(MetS) is a cluster of risk factors including abdominal
adiposity, elevated blood pressure, dyslipidemia, and dys-
glycemia and is associated with a 2.25-fold increased risk
of cardiovascular disease in adults [3, 4]. No clear inter-
national consensus exists to define pediatric MetS due
to variation in defining the metabolic components and
differences in risk factor thresholds [5]. Thus, the preva-
lence of MetS in children and obese youth can vary from
0.4 to 5.5% and from 6 to 39%, respectively, depending
on the adopted definition [5, 6]. Furthermore, it is
equally unclear in children whether the MetS is a dis-
tinct condition that carries a higher risk than that of its
individual components [7, 8]. For example, a dichotom-
ous outcome for the complex MetS aggregate can
underestimate risk and limit the power to detect an as-
sociation [7, 9]. On the other hand, use of a continuous
MetS risk score provides a useful alternative and is a
better reflection of the physiological continuum between
a healthy and an unhealthy metabolic profile [6, 10].
This holds true especially when tracking MetS in early
childhood.

Metabolomics is the comprehensive characterization of
small molecules in a biospecimen using state-of-the-art
instrumentation based on mass spectrometry (MS) or nu-
clear magnetic resonance (NMR) [11, 12]. It offers the po-
tential for biomarker discovery with insights into disease
pathophysiology by capturing complex and dynamic inter-
actions between genetics, post-translational modifications,
gut microbiome activity, and environmental or dietary ex-
posures [13, 14]. The metabolome reflects endogenous
compounds (e.g., amino acids, lipids, and sugars), exogen-
ous compounds derived from the diet or the environment
(e.g., polyphenols and phthalates), and metabolites pro-
duced through gut microbial metabolism (e.g., trimethyla-
mine-N-oxide or TMAO) [15].

Few studies have investigated pediatric metabolic dis-
orders using metabolomics and have primarily focused
on single risk factors, in particular obesity and insulin
resistance [16—20]. Only three metabolomics studies de-
rived an internal (study-specific) continuous MetS z-
score, and all were conducted in adolescents and older
children (10 years and up) [21-23]. In this case-control
study of 456 Canadian children age 5 years, we investi-
gated the metabolomic signature which characterizes
MetS and its component traits.

Methods

Study participants

This study was conducted among children from the Fam-
ily Atherosclerosis Monitoring In earLY life (FAMILY)
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study [24]. FAMILY is a prospective birth cohort study in-
volving 857 predominantly white families that include 901
children recruited from Hamilton, Ontario, between 2002
and 2009 with a 10-year follow-up. Of the 676 children
who completed a follow-up 5-year visit, 557 had complete
anthropometric and clinical data and complete records of
maternal gestational diabetes mellitus (GDM). Fasting
serum specimens were available for 491 children who
were considered for this study (consort diagram Add-
itional file 1: Fig. S1).

Biospecimen and clinical data collection

Data collection occurred at the 5-year follow-up visit
through questionnaires, physical measurements, and la-
boratory analysis of biospecimens as published previ-
ously [25]. Fasting blood samples were collected and
serum was fractionated within 2h from collection ac-
cording to standard protocols, stored at — 80°C and
shipped on dry ice [25]. Cholesterol (LDL, HDL, and
total cholesterol), triglycerides, and glucose from the
fasting serum samples were analyzed at the McMaster
Children’s Hospital and Hamilton Health Sciences Cen-
tral Research Laboratories following standardized ana-
lysis protocols [24, 26].

MetS in children: MetS case selection

Cohort-specific percentiles were calculated for waist cir-
cumference, systolic blood pressure, and serum fasting
glucose using the most complete data sets for each vari-
able from the total number of children who attended the
5-year visit. Standardized BMI-for-age z-scores were de-
rived based on WHO child growth standards [27]. Sex-
specific 90th percentile thresholds for waist circumfer-
ence, blood pressure, and glucose were 57.0 cm, 112 mm
Hg, and 5.0 mmol/L in females and 55.4cm, 110.3 mm
Hg, and 5.1 mmol/L in males, respectively. The 50th per-
centile threshold for waist circumference was 51.1 cm in
girls and 51.2cm in boys. Children were classified as
having a higher risk of MetS and referred to as cases if
they had one or more of the following abnormalities: (1)
z-BMI > 75th percentile and waist circumference > me-
dian, (2) z-BMI > 75th percentile and systolic blood
pressure = 90th percentile, (3) fasting serum glucose =
90th percentile, and (4) maternal GDM diagnosis. Two
hundred twenty-eight children who met these criteria
were classified as “MetS cases” and were age- and sex-
matched 1:1 to 228 controls (Additional file 1: Fig. S1).

IDEFICS MetS risk score derivation

Among these 456 children, we derived a continuous
MetS risk score based on percentile curves created for
18,745 children aged 2.0-10.9 years of the European
IDEFICS (Identification and prevention of Dietary-and
lifestyle-induced health EFfects in children and infantS)
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cohort as reference [6, 28]. The MetS score was calcu-
lated summing sex- and age-specific z-scores according
to the following formula by Ahrens et al. [6]: IDEFICS
MetS score = z waist circumference 1 (Z systolic blood pressure +

Z diastolic blood pressure)/2 + (Z triglycerides ~ £ HDL)/2 t Z fast-
ing glucose- FOr more details on the IDEFICS MetS defin-

ition and score derivation, refer to Additional file 2:
Supplemental Methods.

Serum metabolome analysis

A validated, high-throughput method based on multiseg-
ment injection-capillary electrophoresis-mass spectrom-
etry (MSI-CE-MS) [29, 30] was used for the analysis of
polar ionic metabolites consistently measured in serum
filtrate samples on an Agilent 6230 time-of-flight MS
with a coaxial sheath liquid Jetstream electrospray ion
source equipped to an Agilent G7100A CE (Agilent
Technologies Inc., Mississauga, ON, Canada). This mul-
tiplexed separation platform takes advantage of a serial
sample injection format of 13 samples [31, 32] within a
single CE run including a pooled quality control (QC)
sample prepared by combining equal aliquots of serum
samples from all study participants (n = 456) for rigor-
ous QC and data filtering procedures. Serum sample
pre-treatment and data acquisition have been previously
described in detail [30]. An iterative data workflow based
on multiplexed injections pattern was used to reject
spurious signals, redundant peaks, and background ions
when performing nontargeted metabolomics based on
analysis of a pooled serum sample that also served as
QC for assessing technical precision [30, 31]. Fifty-eight
serum metabolites were consistently measured in over
75% of the samples and satisfied QC criteria of a vari-
ance under 30% when using MSI-CE-MS under two
configurations with positive and negative-ion mode de-
tection. Fifty-two metabolites were unambiguously iden-
tified (level 1) and subsequently quantified using a
calibration curve, where ion responses were normalized
to a single internal standard. Six unknown serum metab-
olites were annotated based on their characteristic ac-
curate mass and relative migration time under positive
or negative ion mode. 2-hydroxybutyric and 3-
hydroxybutyric acids were not baseline resolved and
were reported as the sum of both isomers (which led to
a higher variance of 40%). Metabolite combinations and
ratios frequently used in the literature were derived for
branched chain amino acids as the sum of leucine, iso-
leucine and valine, and glutamine/glutamate ratio. Any
non-detects were replaced by a value that was 1/5 the
detection limit, set to the smallest value in the data set.
Finally, a robust QC-based batch correction algorithm
was used to adjust for long-term signal drift of the mass
spectrometer [33]. This stringent data pre-processing ap-
proach ensured that only fully authenticated serum
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metabolites were included to reduce false discoveries.
Principal component analysis was used for data
visualization (i.e., data trends/outlier detection) of the
serum metabolome using MetaboAnalyst 4.0 [34]. Add-
itional file 3: Table S1 lists the identification of all de-
tected metabolites based on m/z:RMT:mode, molecular
formula, the mean concentration measured, the % CV,
and the % of data completeness for each metabolite.

Covariates

Dietary assessment

Detailed dietary information at 5 years of age was col-
lected using a self-administered semiquantitative food
frequency questionnaire completed by the mother for
her child [24]. Detailed methods of the derivation of an
overall diet quality score have been described previously
[35, 36]. Briefly, 102 food items were harmonized to cre-
ate 36 common food groups. A diet quality score was
then calculated as the sum of daily servings of “healthy”
foods (fermented dairy, fish and seafood, vegetables, le-
gumes, fruits, nuts, and whole grains) minus the sum of
daily servings of “unhealthy foods” (processed meats, re-
fined grains, french fries, snacks, sweets, and sweet
drinks).

Physical activity

Based on the Habitual Activity Estimation Scale (HAES)
[24], the mother estimated the percentage of time her
child spent at different periods of the day (between wake
time and breakfast, breakfast and lunch, lunch and sup-
per, and supper and bedtime) in each of the following
activity levels: (a) inactive: sleeping, lying down, resting,
napping; (b) somewhat inactive: sitting, reading, watch-
ing TV, playing video games, playing quiet games, or ac-
tivities which are mostly done sitting down; (c)
somewhat active: walking, climbing stairs, household
chores; and (d) active: running, jumping, skipping, bicyc-
ling, skating, swimming, skipping, and games that re-
quire a great deal of these types of movements. Based on
total awake time and after subtracting time spent at each
meal, activity % was transformed into min/day for each
of the four activity levels. The final physical activity vari-
able was derived as a weighted sum of the somewhat ac-
tive and active categories in minutes/day.

Other covariates

Sleep time, screen time, and socioeconomic status were
also evaluated for association with MetS. Sleep at night
was calculated in hours/day. Screen time was expressed
in hours/day of combined television and computer use
averaged between weekend and weekday. Children with
low (< 1h), medium (1 to <2h), and high (> 2h) screen
exposures were given a score of 1, 2, and 3, respectively,
to investigate whether there is a trend with increasing
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screen exposure above the thresholds recommended by
the American Association of Pediatrics and the Canadian
sedentary behavior guidelines at age 5 [37]. Socioeco-
nomic status was measured using a previously validated
“Social Disadvantage Index” comprised of a 6-level score
based on income, marital status, and employment [38].
There was no adjustment for ethnicity as all participants
were white Caucasian.

Statistical analysis

Descriptive statistics are presented for the overall sample
(n = 456) and by controls (n = 228) and cases (n = 228).
Continuous variables including anthropometrics, blood
pressure, and laboratory measurement are presented as
mean and standard deviation, and categorical variables
are presented as counts and percentages. Most metabo-
lites were not normally distributed; thus, all metabolites
were natural-log transformed and auto-scaled (mean-
centered then standardized) for further analysis. Signifi-
cant metabolite associations with MetS were tested using
multivariable logistic regression as follows. To build this
model, we identified a set of covariates known from the
literature to be important predictors of MetS, which in-
cluded diet quality, physical activity, time spent outside,
screen time, night sleep, breastfeeding, socioeconomic
status, and maternal education. Among the 456 study
participants, all covariates were available for 433 chil-
dren (95%). As a first step, we tested each of these in a
series of univariate regression models against MetS;
screen time was the only covariate which was associated
with MetS with a p = 0.036, so this was retained as a co-
variate in all future models. Next, we entered all the pre-
viously identified predictors into a forward stepwise
selection model to test if their addition on top of screen
time explained more variance than screen time alone;
from this procedure, screen time and diet quality were
retained. Our final maximally adjusted analysis kept
these two variables along with physical activity, night
sleep, social disadvantage index, and child’s age and sex
to improve direct comparability with previous work in
the field. Additionally, we tested the MetS-metabolite as-
sociations in intermediate adjusted models to confirm
the consistency of results (Additional file 4: Table S2).
Next, to assess the association between the metabolites
and the continuous MetS score, we used multivariable
linear regression adjusting for the same covariates as in
the maximally adjusted logistic model described above.
Statistical significance for the multivariable logistic re-
gression analyses was set at p < 0.05. Bonferroni correc-
tion for multiple hypothesis testing was considered for
the multivariable linear regression model with a p value
threshold <0.0008 (0.05/60 tests). All analyses, tables
and graphs were completed in R (v3.6.3; R Foundation:
A Language and Environment for Statistical Computing).
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Finally, a pathway analysis was conducted by significant
metabolites’ names to understand which pathways the
identified metabolites may affect using MetaboAnalyst
5.0 pathway analysis tool [34] in conjunction with a lit-
erature review relevant to MetS and related conditions
(Additional file 5: Table S3).

Results

Participants characteristics

Characteristics of the study population included in this
analysis (n = 456) are shown in Table 1. The mean age of
the participants was 5.15 years; 50.4% were girls. Various
measures for adiposity and values for glucose, systolic
blood pressure, and diastolic blood pressure were higher
in cases than in controls whereas serum lipids were not
(Table 1). 57.4% of MetS cases had one risk factor, 27.6%
had two risk factors, and 15% had more than two risk fac-
tors (Fig. 1A and Additional file 6: Fig. S2).

Prevalence of MetS and the IDEFICS MetS risk score
According to the IDEFICS criteria the proportion of
children at 5 years with MetS was 2.9% (95% CI 2.0—
3.7%) [6]. The IDEFICS definition is met when the value
of three or more risk factors exceeds the 90th percentile
for waist circumference, systolic OR diastolic blood pres-
sure, HOMA-insulin resistance OR fasting glucose, and
triglycerides OR is lower than the 10th percentile for
HDL cholesterol. The prevalence of 2.9% would require
a very large sample size to conduct association studies
and therefore we employed a case-control design for the
primary analysis.

The age- and sex-specific continuous MetS risk score
and its individual components are presented in Table 2.
The mean IDEFICS MetS score for cases was 1.00 and
for controls was — 0.90, which further validated our se-
lection criteria of cases and controls. Overall, the study
participants at five years followed a normal distribution
of the IDEFICS MetS score around a mean of zero
(Fig. 1B).

Metabolite profiling in 5-year-old children

Comparison of serum metabolite profiles in MetS cases and
MetS controls

Comparing the metabolite profiling of fasting serum
samples in 228 MetS children cases to age- and sex-
matched 228 controls, we identified 12 serum metabo-
lites that were significantly associated with MetS (p <
0.05) in the maximally adjusted multivariable model, in
addition to glucose as anticipated (Table 3). For alanine,
tyrosine, and monomethylarginine, each SD increment
in log marker was associated with 33-41% increased
odds of MetS, whereas tryptophan and glutamine/glu-
tamate ratio were associated with 20% decreased odds.
An unidentified unknown anion (m/z 248.0711) was
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Table 1 Characteristics of MetS cases and controls® in FAMILY
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Characteristic

MetS case® (n = 228) MetS control (n = 228) Overall (n = 456)

Age (years)

Sex (female)

Daily night sleep (hours)

Physical activity (weighted daily minutes)
Diet quality Index

Social disadvantage index

Low (0-1)

Moderate (2-3)

High (4-5)

Screen time exposure

Low exposure (< 2 h)

High exposure (= 2 h)
Systolic blood pressure (mm Hg)
Diastolic blood pressure (mm Hg)
Total cholesterol (mmol/L)

HDL cholesterol (mmol/L)

LDL cholesterol (mmol/L)
Triglycerides (mmol/L)

Fasting blood glucose (mmol/L)
BMI (kg/m?)

BMI-for-age z-score (WHO)
Waist circumference (cm)

Waist circumference-to-height
Sum of skinfolds (mm)

z-BMI 2 75th percentile AND waist circumference = 90th percentile

z-BMI 275th percentile AND median < waist circumference < 90th percentile

z-BMI 275th percentile AND systolic blood pressure = 90th percentile
Fasting glucose 2 90th percentile

Maternal GDM

5.14 (0.28) 5.16 (0.29) 5.15(0.29)
115 (50.4%) 115 (50.4%) 230 (50.4%)
10.88 (0.65) 10.93 (0.61) 10.90 (0.63)
237 (71) 227 (71) 232 (71)
- 082 (34) — 137 (345) 1(343)
164 (73.5%) 163 (75.1%) 327 (74.0%)
43 (19.3%) 48 (22.1%) 91 (21.0%)
16 (7.2%) 6 (2.8%) 22 (5.0%)
53 (23.3%)* 71 (31.8%) 124 (28.0%)
174 (76.7%)* 152 (68.2%) 326 (72.0%)
101.30 (8.31)*** 97.37 (8.03) 99.33 (8.40)
61.18 (5.44)*** 59.25 (5.42) 60.21 (5.51)
3 (0.65) 407 (0.72) 4.10 (0.69)

143 (0.32)* 7 (0.31) 140 (0.31)
238 (061) 2.37 (0.63) 237 (062)
0.71 (0.31) 0.69 (0.29) 0.70 (0.30)
4.75 (0.38)*** 4.52(031) 4.63 (0.37)
16.66 (1.80)*** 15.13 (0.90) 15.89 (1.62)
0.84 (1.01)%** - 0.12 (064 0.36 (0.97)
5343 (447)%** 49.97 (2.59) 51.70 (4.04)
048 (0.04)*** 045 (0.02) 047 (0.03)
20.50 (6.78)*** 16.80 (4.14) 18.63 (5.91)

5 (19.7%) 0 (0%) 5 (9.9%)

9 (39.0%) 0 (0%) 9 (19.5%)

2 (9.7%) 0 (0%) 2 (4.8%)

0 (30.7%) 0 (0%) 0 (15.4%)

5 (32.9%) 0 (0%) 5 (16.4%)

Values are presented as mean (SD) or n (%). 2Age- and sex-matched 1:1 with control children. PStatistical comparisons between MetS cases and controls assuming
equal (t test) or unequal variance (Welch's t test) were performed as appropriate for continuous variables; Fisher exact tests were used for categorical variables. *p

< 0.05, **p < 0.01, **p < 0,001

associated with decreased odds of MetS. These results
were consistent among all other intermediate adjusted
models as shown in Additional file 4: Table S2.

Association of serum metabolite profiles with the
continuous MetS score

The continuous IDEFICS MetS score was used as an
outcome variable because it would increase statistical
power over use of the dichotomous outcome in detect-
ing metabolomic associations. In the maximally adjusted
model among 433 children, the IDEFICS MetS z-score
was directly correlated with glucose, alanine, tyrosine,
threonine, carnitine, monomethylarginine, and lysine
and inversely correlated with tryptophan, and glutamine/
glutamate ratio. These nine associations were consistent

with the case to control results, and six of them satisfied
Bonferroni correction for multiple hypothesis testing (p
< 0.0008) (Table 4). Eight novel metabolites which were
not identified in the case-control analysis were identified
to be associated with the MetS z-score (p < 0.05) as
summarized in Table 4. The metabolomics results in
children age 5 years between the continuous and binary
outcomes were largely in agreement although as defini-
tions differed, so too did the metabolites which passed
the statistical significance thresholds.

Discussion

We identified a unique panel of fasting serum metabo-
lites associated with MetS in young children using non-
targeted metabolomics by MSI-CE-MS. Circulating
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A)
FAMILY MetS cases and controls (n=456)

Risk factors: (cases/total)
1.zBMI (WHO) 2 75%P (141/154)

2. WC > 90%P (47/50)
3.SBP > 90™P (31/41)
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Fig. 1 Participants’ metabolic syndrome (MetS) risk factors and MetS risk score distribution. A Bar graph of the clustering of MetS risk factors in
FAMILY cases compared to controls. 57.4% of MetS cases had one risk factor, 27.6% had two risk factors, and 15% had more than two risk factors.
B Histogram showing the distribution of the IDEFICS MetS score in study participants at age 5 years. The mean IDEFICS MetS z-score for all 456
was 0.05 and overall, the study participants at 5 years followed a normal distribution of the IDEFICS MetS score around a mean of zero. IDEFICS
MetS score = z waist circumference 1 (Z systolic blood pressure *t Z diastolic blood pressure)/z + (Z triglycerides — Z HDL)/2 +z fasting glucose

B)
FAMILY children age 5 years (n = 456)

75

50
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IDEFICS MetS z-score
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metabolites related to gluconeogenesis (glucose, alanine,
and glutamine/glutamate ratio), amino acids metabolism
(tyrosine, threonine, monomethylarginine, tryptophan
and lysine), and fatty acids metabolism (carnitine) were
associated with pediatric MetS consistently using both
definitions after adjusting for age, sex, screen time, diet
quality, physical activity, night sleep and socioeconomic
status. Additionally, acetylcarnitine, hydroxybutyric
acids, methionine, proline, arginine, 3-methyl-2-oxovale-
ric acid, and an unknown cation (m/z 129.066) had sig-
nificant associations with the continuous MetS score.

In this well-characterized cohort of healthy 5-year-old
children, our study design focused on the presence of
any cardiometabolic risk-enhancing factors in early
childhood, which considered both waist circumference
and BMI together for adiposity, systolic blood pressure,
hyperglycemia, and maternal GDM. Exposure to the

latter increases the long-term risk of obesity and glucose
intolerance in the offspring [39]. Yet, pediatric MetS re-
mains ambiguously defined in the literature as there are
no reference values in children, and studies can be
biased to one risk factor over the other [5]. Conse-
quently, our primary analysis was complemented by cal-
culating the continuous MetS score that included
diastolic blood pressure and lipid measurements. This
score was adapted from external thresholds and is thus
more generalizable. The consistency between both
methods of analyses addresses an ongoing debate as to
whether MetS is equal to, or more than, the sum of its
constituent components. We hereby report a unique me-
tabolite signature associated with MetS as an aggregation
of risk factors.

Both tyrosine and alanine were previously found as po-
tential early markers for the onset of insulin resistance

Table 2 IDEFICS MetS score characteristics of MetS cases and control children in FAMILY

Characteristic MetS cases (n = 228)

MetS control (n = 228) Overall (n = 456)

IDEFICS MetS score 1.00 (2.06)
z-waist circumference 0.50 (1.29)
z-systolic blood pressure 0.38 (0.95)
z-diastolic blood pressure - 0.19 (0.87)
z-triglycerides 0.51(0.73)
z-HDL-cholesterol 041 (0.88)
z-lipids (triglycerides-HDL) 0.05 (0.66)
z-glucose 0.36 (0.83)

—0.90 (1.58) 0.05 (2.07)
- 06 (0.94) — 005 (1.25)
- 0.08 (0.97) 0.15 (0.99)
—0.50 (0.89) —0.34 (0.89)
047 (0.72) 049 (0.72)
0.22 (0.89) 0.32 (0.89)
0.12 (0.66) 0.08 (0.66)
- 0.13(067) 0.11 (0.79)

Values are presented as mean (SD)
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Table 3 Relation of serum metabolome profiles to risk of MetS
in young children with maximal adjustment for covariates

Metabolite OR 95% ClI p-
Glucose 1.55 (1.25-1.96) 0.0001
Alanine 142 (1.16-1.75) 6.8e—4
Tyrosine 134 (1.10-1.64) 0.004
Monomethylarginine 135 (1.09-1.66) 0.005
Tryptophan 0.79 (0.65-0.96) 0.017
Choline 0.79 (0.64-0.96) 0.023
Deoxy carnitine 1.25 (1.03-1.52) 0.028
Carnitine 1.24 (1.03-1.52) 0.029
Threonine 124 (1.02-1.52) 0.031
Lysine 1.23 (1.01-1.50) 0.043
Arginine 1.22 (1.00-1.49) 0.048
Unknown 248.0711 0.82 (0.67-1.00) 0.049
Glutamine/glutamate 0383 (0.68-1.00) 0.053

OR, odds ratio; Cl, confidence intervals; p-, p value for statistical significance
Adjustment for screen time exposure, diet quality score, physical activity, sleep
time, maternal social disadvantage index, child’s sex and age (23 (5.0%)
missing values; final n numbers: 216 controls and 217 cases)

and were positively associated with adiposity in children
of various ethnicities [19, 20, 22, 23, 40]. In fact, Hellmuth
et al. postulated that tyrosine elevations in obese children
precede elevations in branched chain amino acids [41]. In-
sulin increases the activity of tyrosine aminotransferase,
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an enzyme that catalyzes tyrosine transamination and
while in insulin resistance, circulating insulin may main-
tain adequate glucose metabolism, tyrosine breakdown
may be affected [41]. Wiirtz et al. reported association of
circulating tyrosine levels with intimal medial thickness—
a surrogate for subclinical atherosclerosis—in young
adults [42]. Alanine, on the other hand, is a central
energy-related metabolite related to gluconeogenesis and
the alanine-glucose cycle, which allows for recycling of
hepatic glucose [43]. Our findings support the role of tyro-
sine and alanine in metabolic perturbations early in life
before perturbations take place for other aromatic or
branched chain amino acids, as well-established for adult
diabetes [11]. Branched chain amino acids were not re-
flective of early stages of MetS in our cohort of generally
healthy children in their fifth year of life. Tryptophan, an
essential aromatic amino acid, was inversely correlated
with MetS in young children. This could be attributed to
low-grade inflammation which enhances tryptophan deg-
radation to kynurenine [44]. However, kynurenine and
other tryptophan metabolites [45] (e.g., serotonin,
xanthurenic acid) were below method detection limits in
our work.

Glutamine/glutamate ratio has been frequently re-
ported in relation to metabolic abnormalities [46] and
was inversely associated with pediatric MetS in our ana-
lysis. It has been hypothesized that glutamate increases

Table 4 Associations of fasting serum metabolites to the IDEFICS MetS score in young children

Adjustment for screen time exposure, diet quality
score, physical activity, sleep time, and maternal

social disadvantage index

Adjustment for screen time exposure, diet quality
score, physical activity, sleep time, maternal social
disadvantage index, sex and age

Metabolite Estimate SE z value p- Estimate SE z value p-
Glucose? 0.64 0.095 6.70 39e-11P 0.65 0.095 6.80 350e—11°
Alanine® 0.56 0.097 5.76 13e—10° 0.55 0.098 562 341e-08°
Tyrosine® 042 0.098 425 2.7e-5° 041 0.099 416 3.87e-05°
Threonine® 0.35 0.099 357 420—4° 0.34 0.10 342 0.001
Carnitine® 041 0.097 417 34e-5° 041 0.098 4.19 3.35e—05°
Tryptophan® - 036 0.099 - 359 4.6e—4° - 036 0.099 - 362 3.2e—4°
Acetylcarnitine - 042 0.098 - 426 3.1e-5° - 042 0.098 - 4.23 2.92e-05°
Hydroxybutyric acids -038 0.098 - 389 2.1e—4° -039 0.098 - 396 8.64e—05"
Methionine 0.34 0.099 344 0.001 0.32 0.10 3.24 0.001
Proline 0.32 0.10 3.15 0.002 0.31 0.10 3.06 0.002
Arginine 0.30 0.10 2.95 0.003 0.29 0.10 2.86 0.004
Monomethylarginine® 0.29 0.10 279 0.006 0.30 0.10 2.85 0.005
Glutamic acid 0.27 0.10 2.72 0.007 0.26 0.10 257 0.011
Unknown 129.066 - 027 0.10 - 262 0.009 - 026 0.10 - 257 0.011
Glutamine/glutamate® - 025 0.10 - 253 0.012 -025 0.10 - 244 0.015
Lysine? 0.23 0.10 2.26 0.024 0.22 0.10 2.12 0.035
3-methyl-2-oxovaleric acid - 022 0.099 -226 0.024 -022 0.099 - 224 0.026

#Consistent with adjusted logistic regression analysis
Bp value passed Bonferroni correction p < 0.0008
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glucagon release as well as transamination of pyruvate to
alanine, promoting gluconeogenesis [45, 46]. Glutamine,
in contrast, has been shown to reduce inflammation, in-
versely associate with diabetes risk and overall associate
with metabolic wellness [46, 47]. Elevated serum carni-
tine, which functions as a shuttle carrier for fatty acids
into muscle and liver cells for mitochondrial B-oxidation
[48], may indicate reduced lipid oxidation in MetS cases.
This hypothesis is supported by reduced serum acetyl-
carnitine and hydroxybutyric acids, which are products
of lipolysis [49]. This is opposite to metabolic alterations
observed in adults and could suggest an initial stage of
maladaptation in early childhood of hyperinsulinemia
and/or reduced ketogenesis [18]. More research is
needed to investigate the role of diet and physical exer-
cise in modifying the MetS metabolite signature. For in-
stance, carnitine mostly comes from dietary meat
consumption such as beef and lamb and can be consid-
ered as a non-quantitative marker of foods of animal ori-
gin, although it is also influenced by other factors such
as age and health status [50].

Our study has several strengths—our metabolomics
analysis in 456 children is the largest to date to investigate
the MetS cluster as opposed to its individual components
and the only study in early childhood as early as age 5
years. To the best of our knowledge, it is the first to derive
the continuous MetS risk score drawn from the large-
scale IDEFICS population. In addition, we examined pos-
sible covariates and adjusted the metabolite to MetS out-
come for all significant covariates the most significant of
which was screen time exposure which deserves further
attention as a key driver of pediatric MetS, especially now
amidst COVID-19 pandemic policies [51]. Next, we ap-
plied a correction to account for the number of statistical
tests performed, to avoid false positive associations. Sev-
eral limitations of the study also deserve mention. Al-
though we used a nontargeted approach for unknown
discovery, our metabolome coverage was limited to polar
ionic metabolites excluding important lipophilic metabo-
lites such as fatty acids [52] and phospholipids. Lipid pro-
file was not incorporated in our MetS selection criteria,
but this limitation was overcome by including triglycerides
and HDL-cholesterol measurements in the continuous
score. Physical activity was measured by maternal assess-
ments on behalf of their children and not through object-
ive accelerometer measurements and did not specifically
measure extracurricular activities. Lastly, study partici-
pants were generally healthy and MetS cases were defined
by presence of any single MetS component trait. A cohort
with a higher prevalence of overweight children and re-
lated MetS traits may yield other novel metabolomic find-
ings. Thus, a limitation of this study may be our definition
of MetS cases, and the establishment of a formal MetS
definition for children aged 5 years should still be pursued.
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Conclusion

In conclusion, from a panel of more than 60 fasting
serum metabolites, a strong metabolic signature
emerged with putative biomarkers of MetS risk in early
childhood. Given the alarming rise in obesity among
children, inadequate physical activity, intensified screen
exposures, and lockdowns in an age group designed to
be mostly active, early prognosis of MetS is extremely
valuable.
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