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Abstract

Purpose: To develop a deep learning-based method to quantify multiple parameters in the brain 

from conventional contrast-weighted images.

Methods: Eighteen subjects were imaged using an MR Multitasking sequence to generate 

reference T1 and T2 maps in the brain. Conventional contrast-weighted images consisting of T1 

MPRAGE, T1 GRE and T2 FLAIR were acquired as input images. A U-Net-based neural network 

was trained to estimate T1 and T2 maps simultaneously from the contrast-weighted images. 

6-fold cross-validation was performed to compare the network outputs with the MR Multitasking 

references.

Results: The deep learning T1/T2 maps were comparable with the references, and brain tissue 

structures and image contrasts were well preserved. Peak signal-to-noise ratio > 32 dB and 

structural-similarity-index > 0.97 were achieved for both parameter maps. Calculated on brain 

parenchyma (excluding CSF), the mean absolute errors (and mean percentage errors) for T1 and 

T2 maps were 52.7 ms (5.1%) and 5.4 ms (7.1%), respectively. ROI measurements on four tissue 

compartments (cortical gray matter, white matter, putamen, and thalamus) showed that T1 and T2 

values provided by the network outputs were in agreement with the MR Multitasking reference 

maps. The mean differences were smaller than ±1%, and limits of agreement were within ±5% for 

T1 and within ±10% for T2 after taking the mean differences into account.

Conclusion: A deep learning-based technique was developed to estimate T1 and T2 maps 

from conventional contrast-weighted images in the brain, enabling simultaneous qualitative and 

quantitative MRI without modifying clinical protocols.
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3104237743. 

HHS Public Access
Author manuscript
Magn Reson Med. Author manuscript; available in PMC 2023 January 01.

Published in final edited form as:
Magn Reson Med. 2022 January ; 87(1): 488–495. doi:10.1002/mrm.28962.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

MR imaging; brain; deep learning; quantitative imaging; multi-parametric mapping

1. Introduction

Quantitative MRI is promising for tissue characterization and detection of various diseases, 

such as brain tumor1, multiple sclerosis (MS)2-4 and Parkinson’s disease5,6. Compared with 

conventional contrast-weighted images, quantitative parametric maps have the benefits of 

improved sensitivity to subtle tissue alterations7 and higher reproducibility8. Traditionally, 

quantitative MRI acquires multiple sets of images with different time parameters (TI, 

TE, TR, etc.), from which quantitative tissue parameters are obtained through pixel-wise 

nonlinear fitting of the desired signal model (e.g., Bloch equations). The prolonged scan 

time required by this process poses challenges to the wide application of quantitative MRI. 

Although advanced multi-parametric mapping techniques have been developed for more 

efficient quantitative MRI, such as MR fingerprinting (MRF)9 and MR Multitasking10, they 

still require specialized sequences which are not currently part of standardized clinical 

protocols nor widely available, limiting the clinical availability and impact of quantitative 

MRI.

In recent years, deep learning (DL) methods have emerged as a powerful tool for various 

applications in the field of biomedical imaging. For quantitative MRI, DL-based techniques 

have been developed to extract relaxometry information from various inputs. A number 

of approaches used end-to-end DL mapping to directly derive parameter maps from 

undersampled dynamic relaxometry-weighted images or accelerated MRF data.11 Cheng 

et al12 applied a multilayer perceptron to generate quantitative maps and qualitative 

weighted images from images acquired by a versatile multi-pathway multi-echo sequence. 

These methods showed neural networks’ capability to quantify relaxation parameters, but 

additional specialized acquisitions are still required.

Recently Wu et al13 proposed to estimate T1, proton density, and B1 maps separately 

from a single T1-weighted image using a self-attention convolutional neural network 

(CNN) and validated the method in cartilage MRI, demonstrating the feasibility of direct 

DL-quantification of parametric maps from conventional weighted images used in standard 

clinical protocols. However, this work was limited to T1 contrast only, lacking the clinically 

important T2 contrast.

In this study, we trained a CNN to simultaneously quantify multi-parametric maps (T1 

and T2 maps) from three contrast-weighted images (T1-MPRAGE, T1-GRE, and T2

FLAIR) that are commonly used in clinical practice. The network was trained to learn 

the inverse transformation of the Bloch equations (without explicit knowledge of these 

equations) to extract relaxation parameters from these three contrast-weighted images. 

With the proposed method, existing clinical imaging protocols can directly produce both 

qualitative contrast-weighted images and multiple quantitative relaxation parameter maps. 

Retrospective estimation of parameter maps can also be performed on previously acquired 
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clinical contrast-weighted images. The approach was validated with in vivo brain imaging in 

MS patients and healthy volunteers.

2. Methods

2.1 Data acquisition

In vivo studies were approved by the institutional review board of Cedars-Sinai Medical 

Center. All subjects gave written informed consent. Eighteen subjects were scanned on a 3T 

clinical scanner (Biograph mMR, Siemens Healthineers, Erlangen, Germany), including 9 

diagnosed MS patients, 6 suspected MS patients, and 3 healthy volunteers. For each subject, 

conventional contrast-weighted images were acquired, including T1 MPRAGE, T1 GRE and 

T2 FLAIR images (T1 MPRAGE: FOV = 256×256×160 mm3, resolution = 1.0×1.0×1.0 

mm3, TR = 1900 ms, TI = 900 ms, TE = 2.93 ms, flip angle = 9°; T1 GRE: FOV = 

256×256×176 mm3, resolution = 1.0×1.0×1.0 mm3, TR = 7.8 ms, TE = 3.00 ms, flip angle 

= 18°; T2 FLAIR: FOV = 256×256×176 mm3, resolution = 1.0×1.0×1.0 mm3, TR = 4800 

ms, TI = 1800 ms, TE = 352 ms). The reference T1 and T2 maps were obtained using 

a whole-brain T1-T2-T1ρ MR Multitasking sequence14, with FOV = 240×240×112 mm3, 

resolution = 1.0×1.0×3.5 mm3. The T1ρ maps generated by MR Multitasking were ignored 

in this study since there were no corresponding T1ρ-weighted images to use as input.

2.2 Data preprocessing

All the contrast-weighted images and quantitative maps were co-registered using a rigid 

transformation in ANTsPy15, with T1 MPRAGE as the target. Skull stripping was performed 

using BET16 and applied for all the images and maps. Contrast-weighted images were 

normalized by dividing by the 95th percentile of intensity within the brain region slice by 

slice. Quantitative maps were normalized by dividing by 3 s; most brain tissues have T1 and 

T2 values < 3 s17,18, so this normalization ensured that most voxels were in the range of 0–1, 

a common range for neural networks12. After excluding extreme superior or inferior slices 

with low SNR or aliasing artifacts due to imperfect slab profile, 75-110 slices were available 

for each subject and a total of 1802 slices for the whole dataset.

2.3 Training the DL model

After testing several network architectures, a 2D U-Net19-based structure was selected as the 

DL model. The specific architecture design is shown in Figure 1. It had four down-sampling 

steps and four up-sampling steps to extract information from different scales. 2×2 average 

pooling was used in the down-sampling track and accordingly a bilinear interpolation

based up-sampling layer followed by 2×2 convolution in the up-sampling track. Three 

convolutional groups (i.e., 3×3 convolution + batch normalization + rectified linear unit) 

were sequentially applied to extract features at each spatial scale. Long skip connections 

were added to recover fine-grained details in the up-sampling track. Slices of the three 

conventional contrasts (i.e., T1 MPRAGE, T1 GRE and T2 FLAIR) were concatenated as 

the 3-channel input. Slices of T1 and T2 maps formed the 2-channel target.

The loss function was a combination of L1 loss and structural-similarity-index (SSIM) loss: 

Ltotal = L1 + λLSSIM. Compared with L2 loss, L1 loss is more robust to artifacts, noise and 
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misregistration errors. The introduction of SSIM loss helps to preserve local structures and 

generate less-blurred results. The weighting factor λ was empirically determined to be 0.1, 

which achieved a good balance between mean absolute error and sharpness.

The ADAM optimizer20 was used to minimize the loss function. A learning rate of 0.0001 

was used for the first 300 epochs and then exponentially decayed with a rate of exp(−0.02) 

for the following 200 epochs. Patch-based training was used, with a patch size of 160×128 

and batch size of 16. Random cropping and flipping were employed for data augmentation. 

We implemented the models in Tensorflow21 and trained them from scratch on a Linux 

workstation with an Nvidia GTX 1080 TI GPU. It took 3.7 hours to train for 500 epochs on 

a dataset with about 1500 slices. Once the network has been trained, making predictions on 

1 subject (100 slices) took about 1.6 seconds.

2.4 Performance evaluation and statistical analysis

6-fold cross-validation was implemented to evaluate the performance of the proposed DL 

method. Specifically, the 18 subjects were divided into 6 groups, each with 3 subjects, 

resulting in 276-317 slices within each group. At each time, 5 groups were used to train the 

model and the remaining one group was used for validation. The quantitative analysis was 

performed using the results from all the subjects.

Mean absolute error (MAE), mean percentage error (MPE), peak signal-to-noise ratio 

(PSNR) and SSIM were calculated for each slice between the deep learning T1/T2 maps 

and the reference T1/T2 maps obtained from MR Multitasking. Because cerebrospinal fluid 

(CSF) has much larger T1/T2 values than the other parts of the brain and is of little 

interest to clinical diagnosis, the metrics were also calculated excluding CSF regions. More 

specifically, to reduce the impact of segmentation error and partial volume effects, image 

dilation with a spherical structuring element of 1-pixel radius was performed on the CSF 

segmentation obtained using FAST22, and the remaining region of the brain was evaluated in 

this calculation.

In addition to global analysis of the deep learning T1/T2 maps, regions of interest (ROIs) 

analyses were also performed on four brain tissue compartments: cortical gray matter (GM), 

white matter (WM), putamen and thalamus. ROIs for putamen and thalamus were manually 

drawn on a slice at similar locations for all the subjects. For these two compartments, two 

ROIs were drawn on the left and right sides, respectively, which were combined to calculate 

mean T1/T2 values. For GM and WM, twenty slices centered at a fixed distance (25 mm) 

apart from the slice where the putamen/thalamus ROIs locate were picked. GM and WM 

segmentations were obtained using FAST22. Similar to the previously mentioned operation 

on CSF masks, image erosion with a spherical structuring element of 1-pixel radius was 

performed on the segmentations to get cleaner GM/WM ROIs. For either GM or WM, the 

eroded segmentations across the twenty slices were combined, resulting in one ROI for each 

subject.

For each tissue compartment of each subject, the mean T1/T2 values were calculated 

over the corresponding ROI and comparisons were made between the network outputs 

and the MR Multitasking references. Paired t-tests with a significance level of P = 0.05 
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were performed to evaluate the difference between the DL maps and the references. Bland

Altman analysis was also performed to evaluate the bias and limits of agreement.

To investigate how the network’s performance depends on the input contrasts, we also 

trained the network using only subsets of the weighted input images and quantitative metrics 

were calculated.

3. Results

3.1 Image Analysis

Representative cases of the deep learning T1 and T2 maps from MS patients are shown 

in Figure 2. The deep learning maps showed high quality and were comparable with the 

MR Multitasking references. Although some blurring was observed, most of the brain tissue 

structure and contrasts were well preserved. Figure 2 (D)-(F) show representative cases 

with hyperintense lesions. Deep learning T1 and T2 maps were able to delineate these 

lesions. However, for some cases, slight overestimation or underestimation of T1/T2 values 

of lesions was observed on the network outputs (Figure 2 (F)).

Table 1 lists the quantitative metrics obtained from the 6-fold cross-validation. High PSNR 

(32.5 dB and 37.1 dB for T1 and T2, respectively) and SSIM (0.973 and 0.978 for T1 and 

T2, respectively) were achieved. The MAE (and the MPE) for T1 and T2 maps were 120.3 

ms (8.6%) and 21.5 ms (13.0%), respectively. Excluding CSF, the MAE (and the MPE) for 

T1 and T2 maps were 52.7 ms (5.1%) and 5.4 ms (7.1%), respectively, indicating that CSF 

made a large contribution to the error metrics.

The network’s performance using only a subset of the weighted input images is shown in 

the Supporting Information. Larger errors were observed when fewer input contrasts were 

used (Supporting Information Tables S1, S2). The inclusion of T2 FLAIR improved the 

delineation of lesions (Supporting Information Figures S1, S2).

3.2 T1/T2 measurements

The T1 and T2 measurements obtained on the four tissue compartments for the deep 

learning maps and the MR Multitasking reference are listed in Table 2. A statistically 

significant bias between the network output and the MR Multitasking reference was found 

only for T1 in the putamen (P=0.027). For this compartment, a small bias of 11.6 ms (i.e., 

1.2% of the reference value) was observed. No other significant differences were observed 

for the T1 values of the other three tissue types (i.e., GM, WM and thalamus) or for the T2 

values of any of the four tissue compartments. Figure 3 shows the Bland-Altman plots for 

combined T1 and T2 measurements of all the tissues. The mean differences were smaller 

than ±1%, and limits of agreement were within ±5% for T1 and within ±10% for T2 after 

taking the mean differences into account.

4. Discussion

In this study, a deep learning-based approach was developed to quantify T1 and T2 

maps from conventional contrast-weighted images. This method allows the simultaneous 
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acquisition of qualitative contrast-weighted images and quantitative parametric maps with a 

conventional clinical imaging protocol. The method was validated on in vivo brain data from 

healthy volunteers and confirmed/suspected MS patients. Global error metrics for image 

quality evaluation as well as T1/T2 ROI analyses on different brain tissues demonstrate that 

the proposed method provided T1 and T2 maps comparable with the reference.

Our results show that the proposed method achieved excellent accuracy on T1 and T2 maps 

when CSF regions were excluded. When CSF was included, both mean absolute error and 

mean percentage error were increased. There are several possible reasons. First, CSF T2 

error was expected because CSF signals were nulled on T2 FLAIR, resulting in low SNR 

for T2 information in CSF. Second, the reference MR Multitasking method was designed 

for mapping soft tissues with shorter T1 and T2 values than CSF, so the label values for 

CSF from MR Multitasking may already be inaccurate or imprecise, potentially posing an 

additional challenge for network prediction. We consider the substandard calculation of CSF 

values of only minor concern in potential clinical applications, as the T1/T2 values of CSF 

region are of little clinical value in diagnosis and prognosis.

The T1/T2 ROI measurements on the four types of tissues showed that our network outputs 

generally provided T1/T2 values in agreement with the MR Multitasking reference, with no 

statistically significant difference observed in 7 out of the 8 paired t-tests and very small 

biases (<1%) in the overall Bland-Altman analyses. The statistical tests showed a significant 

difference in T1 measurements of putamen between the network outputs and the references. 

Despite the statistical significance, the measured mean difference was small, which was 

1.2% of the reference value. This small bias could potentially result from factors such as 

the partial volume effect and the blurring effect observed on the DL results, but further 

investigation with a larger dataset is desirable to make any conclusions regarding this issue.

In the evaluation, we primarily focused on the proposed method’s capability to estimate 

the overall T1 and T2 maps on soft brain tissues. In addition, in Figure 2 (D)-(F), we also 

presented some example cases of the lesions on the DL maps. While generally the lesions 

were preserved in the DL maps, for some cases overestimation or underestimation may be 

present. Compared with the normal-appearing brain tissue, estimation on the lesions is more 

vulnerable to factors like misregistration errors, mismatching resolution between the source 

and target images, deficiency of diversity of subjects included in the dataset, and the blurring 

effects commonly presented in DL methods. Evaluation of performance on lesions requires 

more careful clinical labeling and scoring of the maps, which will be investigated in our 

future work.

In this study, a U-Net-based architecture was selected for deep learning. In the results, 

certain blurring in the deep learning T1/T2 maps was observed. To make improvements 

on this, with a larger dataset in the future, we will explore some more complex network 

architectures and modules, such as generative adversarial network (GAN)23 and networks 

equipped with attention mechanisms24, which have been shown to be better at preserving 

high-frequency details.
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MR Multitasking was employed to acquire reference T1/T2 maps in this work due to time 

constraints in patient studies. The whole-brain T1-T2-T1ρ MR Multitasking took 9 min to 

acquire multi-parametric maps with high quality and accuracy as previously validated,14 

while traditional quantification methods require much longer scan time (e.g., about 17 min). 

Also, MR Multitasking provides inherently co-registered T1 and T2 maps, which avoids 

errors in additional registration and requires less label preprocessing. The Multitasking

trained network serves as a proof of concept of our approach; however, the network could 

also be trained using reference maps provided by other quantification methods if desired, 

such as conventional mapping or MRF.

There are several limitations in this study. First, due to the imaging time limit, our 

MR Multitasking maps had a 3.5 mm slice thickness, which did not match that of the 

conventional weighted images (1.0 mm) used in the source domain. With the acceleration 

of MR Multitasking imaging underway, we plan to collect datasets with matched spatial 

resolution in the future. Also, in this work our dataset consisted of 1802 slices from only 

18 subjects, including MS patients and healthy volunteers. We performed cross-validation 

to reduce the impact of dataset splitting on the results. A larger dataset with a more diverse 

cohort would be preferable to further validate the approach. Furthermore, this work was 

trained on input images acquired with specific imaging parameters (e.g., TE, TR). To 

use images with different parameters as inputs, the network may require retraining. An 

alternative solution to enhance generalizability is to incorporate imaging parameters as 

additional inputs to the network, which will be explored in future work. Finally, although 

examples of lesion detection are presented, a systematic evaluation of the approach for 

disease diagnosis needs to be conducted.

5. Conclusions

A CNN-based technique was developed to quantify both T1 and T2 maps directly from 

conventional multiple contrast-weighted images acquired in clinical practice. The deep 

learning T1/T2 maps preserved the brain tissue structures and image contrasts well, 

produced satisfactory error metrics, and provided T1/T2 measurements in agreement with 

the references. The proposed method provides both qualitative and quantitative MRI without 

modifications to standard clinical imaging protocols. A clinical study is warranted to 

evaluate the diagnostic value of this approach.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Network design. A 2D U-Net-based architecture with four down-sampling steps and four 

up-sampling steps was used. 2×2 average pooling layers were used in the down-sampling 

track. Bilinear interpolation-based up-sampling layers followed by 2×2 convolution were 

used in the up-sampling track. At each resolution scale, 3 convolutional groups were 

sequentially applied, each consisting of 3×3 convolution followed by batch normalization 

and rectified linear unit (ReLU). Long skip connections were added to recover fine details in 

the up-sampling track. Slices of the three conventional weighted images (i.e., T1 MPRAGE, 

T1 GRE and T2 FLAIR) were concatenated as the 3-channel input. Slices of T1 and T2 

maps formed the 2-channel target. A combination of L1 loss and SSIM loss was used as the 

loss function.
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FIGURE 2. 
Representative cases of the deep learning (DL) T1/T2 maps and the MR Multitasking 

(MT) references from 6 different MS patients (A-F). The black arrows show hyperintense 

lesions. The yellow arrows indicate some small white matter hyperintensities affected by the 

blurring.
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FIGURE 3. 
Bland-Altman plots for T1/T2 measurements on the four types of tissues. Each color 

represents one tissue compartment.
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TABLE 1

Quantitative metrics for the deep learning T1/T2 maps.

Full brain region Excluding CSF

MAE (ms)
T1 120.3±26.3 52.7±11.5

T2 21.5±15.2 5.4±1.8

MPE (%)
T1 8.6±1.5 5.1±1.0

T2 13.0±4.5 7.1±2.6

PSNR (dB)
T1 32.5±1.9 38.4±2.8

T2 37.1±3.2 38.7±4.4

SSIM
T1 0.973±0.009 0.992±0.004

T2 0.978±0.011 0.991±0.005

MAE: mean absolute error, MPE: mean percentage error, PSNR: peak signal-to-noise ratio, SSIM: structural-similarity-index.
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TABLE 2

T1/T2 ROI measurements on the four tissue compartments from the network outputs and the MR Multitasking 

references. P values obtained from the paired t-tests are also listed. The asterisk indicates a statistically 

significant difference (i.e., P<0.05).

DL MT reference P value

T1 (ms)

GM 1199.8±27.0 1210.7±32.9 0.14

WM 823.5±20.8 823.3±30.0 0.32

putamen 964.4±25.7 976.0±29.3 0.027*

thalamus 879.4±32.8 888.9±38.0 0.084

T2 (ms)

GM 83.8±1.0 84.7±3.9 0.51

WM 69.3±1.5 69.9±4.2 0.39

putamen 69.5±2.2 69.2±3.2 0.64

thalamus 69.0±1.1 69.8±3.1 0.36
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