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Abstract

Protein structure refinement is the last step in protein structure prediction pipelines. Physics-based 

refinement via molecular dynamics (MD) simulations has made significant progress during recent 

years. During CASP14, we tested a new refinement protocol based on an improved sampling 

strategy via MD simulations. MD simulations were carried out at an elevated temperature 

(360 K). An optimized use of biasing restraints and the use of multiple starting models led to 

enhanced sampling. The new protocol generally improved the model quality. In comparison with 

our previous protocols, the CASP14 protocol showed clear improvements. Our approach was 

successful with most initial models, many based on deep learning methods. However, we found 

that our approach was not able to refine machine-learning models from the AlphaFold2 group, 

often decreasing already high initial qualities. To better understand the role of refinement given 

new types of models based on machine-learning, a detailed analysis via MD simulations and 

Markov state modeling is presented here. We continue to find that MD-based refinement has 

the potential to improve AI predictions. We also identified several practical issues that make it 

difficult to realize that potential. Increasingly important is the consideration of inter-domain and 

oligomeric contacts in simulations; the presence of large kinetic barriers in refinement pathways 

also continues to present challenges. Finally, we provide a perspective on how physics-based 

refinement could continue to play a role in the future for improving initial predictions based on 

machine learning-based methods.
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INTRODUCTION

Knowledge about protein structures is a key step for understanding the biological function 

of proteins at the molecular level. There have been numerous efforts to predict protein 

structure in atomistic detail using in silico methods.1,2 Template-based modeling became 
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the first successful approach with the growth of protein structure databases by relying on 

homologous protein structures.3 In the meantime, the number of protein sequences has 

exploded as sequencing techniques advanced.4 This progress enabled the identification 

of co-evolutionary relationships between residues from multiple sequence alignments of 

protein homologs.5 At the beginning co-evolutionary information was most helpful for 

proteins for which abundant homologous sequences could be found.6–8 However, with 

the emergence of the deep neural networks and extensive training on existing sequence 

and structure databases, it became possible to extract co-evolutionary information from 

much fewer closely related homologous sequences and reliably predict inter-residue 

geometries.9–13 The predicted geometries were then sufficient to build high-accuracy protein 

structures via protein modeling tools such as Rosetta.12 This approach has now been 

adopted by many protein structure prediction servers as an independent protocol or as a 

hybrid protocol in combination with traditional template-based modeling. Recently, a new 

deep learning-based method, AlphaFold2 (AF2) from DeepMind, was proposed during 

the CASP14 experiment. The method is designed to directly predict a protein tertiary 

structure from its sequence or multiple sequence alignment, rather than building a protein 

model using predicted inter-residue geometries via protein modeling tools. This advance 

led to substantial progress over previous approaches with many predictions reaching quasi

experimental accuracy.

Protein model refinement methods have been developed to improve the quality of predicted 

protein models further.14,15 Structure refinement is usually based on orthogonal approaches 

to initial protein structure prediction methods. More specifically, physics-based methods 

have been successful for improving protein models that were built initially via information

driven modeling methods.16–19 A good template-based model often has the highest accuracy 

at its core where structure is more conserved among proteins in a homologous relationship. 

On the other hand, template-based modeling is not as well suited for accurately predicting 

regions of a protein where there is greater structural variation within a protein family such 

as loops. Ab initio protein loop modeling methods are helpful for improving the model 

quality at these regions by predicting structures based on physical chemistry principles.20,21 

However, template-based modeling methods have also increasingly been applied to predict 

correctly folded structures using remote homologs. Such models predicted using structure 

templates with low sequence identities may display greater inaccuracies throughout the 

entire structure. For example, residue packing may be incorrect, or the orientation and extent 

of secondary structure elements may deviate from the true native structure, thus requiring 

more extensive structure refinement. Molecular dynamics (MD) simulation-based refinement 

methods have successfully addressed such problems.22,23 The idea is that simulations 

started from an incorrect model will fold to a physically more reasonable, lower free 

energy, structure under the guidance of a force field. In addition, MD simulations generate 

dynamic ensembles of low-energy snapshots that can be averaged to better approximate 

how experimental structures are determined. MD simulation-based refinement methods have 

become successful for consistently improving model qualities although full refinement to 

a native-like structure is not always achieved. The main limitation is the presence of 

significant kinetic energy barriers that have to be overcome on a relatively flat energy 

landscape via conformational sampling to reach the native state from an initially misfolded 
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model.24,25 Another issue is that even if sampling is sufficient, e.g., by using accelerated 

sampling techniques, it may be just as likely or easier to further unfold an initially misfolded 

structure than to find conformational transitions that lead to the native state. This has 

resulted in the need for restraints during sampling that have to be chosen such that unfolding 

is prevented yet the native state can still be reached.26

Carefully tuned MD-based refinement sampling protocols are now expected to consistently 

improve the accuracy of initial models generated by other approaches.27 In general, residue 

packing is improved via refinement and incorrect secondary structure elements may be 

adjusted. Typical model refinement now results in improvements in both global and local 

quality metrics by several units. In some cases, more substantial improvements have been 

documented. Refinement methods have remained relevant as ML-based models emerged 

in recent years. In fact, initial tests suggested that there may be more success in refining 

ML-based models than traditional template-based models via physics-based methods, 

presumably since the data-driven residue-level predictions resulted in poor structure packing 

that could be improved relatively easily via MD-based refinement.24,28 However, the 

emergence of a new class of ML-based predictions with much greater accuracy during 

the last round of CASP is posing renewed challenges to the need and utility of refinement 

methods. At the same time, there have also been attempts to use deep learning techniques to 

guide refinement, such as the DeepAccNet method29.

Here, we are reviewing the performance of physics-based protein structure refinement 

via MD simulations in the face of changing approaches in ML-based protein structure 

prediction. The focus is on the performance of the refinement methods from the Feig group 

during CASP14. The results are analyzed in the context of advances over earlier methods, 

continuing challenges, and opportunities for further improvements. A particular emphasis is 

placed on the potential for refinement of a new class of ML-based predictions as exemplified 

by the highly accurate AF2 predictions during CASP14. To address this point, we are 

including an in-depth analysis of selected targets where we constructed Markov state models 

from extensive sampling following an approach taken earlier25. The goal was to map out 

the energy landscape between initial models and native states and address the key questions 

of whether the native state according to experiment could be found in principle based on 

energetics, how the AF2 models mapped onto the MD-generated landscapes, and what kind 

of kinetic barriers needed to be overcome to reach the native state. The insights from this 

analysis allowed us to better understand the future role of MD-based refinement and identify 

remaining challenges towards high-accuracy structure prediction going forward.

METHODS

Overview of refinement protocol

The overall refinement protocol used in CASP14 consisted of three major components 

as illustrated in Figure 1A. For an initial model, information about its protein contexts 

was gathered to construct a simulation system. The oligomeric state, putative binding 

ligands, and the possibility of membrane interactions were predicted manually based on its 

homologous structures searched by HHsearch30. To limit computational cost, the predicted 

oligomer structure was only considered in cases where the oligomerization appeared to be 
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crucial for its structure stabilization. We regarded an oligomerization to be important for 

stabilization if some residues had little contacts within the protein but extensive interactions 

with other proteins in the predicted complex structure. For a homo-oligomeric complex, the 

initial model was replicated and superposed to each chain in the homologous complex to 

construct a homo-oligomeric initial model. For a hetero-oligomeric complex, bound protein 

structures in the homologous complex were used. Putative bound ligands and their binding 

sites were inferred based on homologous structures.24 Stereochemical errors were corrected 

prior to the equilibration of the simulation system by applying locPREFMD31.

Simulation systems for non-membrane-bound proteins were constructed in an explicit water 

box. The principal component axes of the modeling protein were aligned to the X, Y, and 

Z axes. A periodic rectangular box was constructed with a minimal distance from any 

protein atom to the closest box edge of 9 Å. Empty spaces in the box were filled with the 

CHARMM version of TIP3P water molecules32. Either sodium or chloride ions replaced 

randomly selected water molecules to neutralize the simulation system. The protein was 

described with a modified CHARMM 36m force field33. When ligands were included, they 

were modeled using CGenFF34,35. Lennard-Jones and direct electrostatic interactions were 

turned off between 8 and 10 Å using a switching function. To calculate the full electrostatic 

energy in a periodic system, particle-mesh Ewald summation36 was used. The SHAKE 

algorithm37 was applied to keep bonds involving hydrogen atoms rigid. In addition, the 

protein structure was restrained throughout the equilibration step with harmonic restraints 

that were applied to every Cɑ atoms with a force constant of 0.5 kcal/mol/Å2. The 

constructed systems were then locally minimized for up to 500 steps with the l-BFGS-b 

algorithm. The energy-minimized system was gradually heated to 360 K and equilibrated 

via Langevin dynamics simulation with a friction coefficient of 0.01/ps for 1 ns using a 2 fs 

integration time step. The NVT ensemble was applied during the heating stage followed by 

simulations in the NpT ensemble at 1 bar with a Monte Carlo barostat. Proteins predicted 

to be membrane-bound were modeled in a lipid bilayer consisting of POPC (1-palmitoyl-2

oleoyl-sn-glycero-3-phosphocholine) using CHARMM-GUI.38 Membrane-bound protein 

systems were equilibrated like non-membrane protein systems. The CHARMM 36 lipid 

force field39 was used for the POPC molecules.

Protein conformations were sampled via molecular dynamics simulations. The sampling 

step utilized our recent improved sampling strategy for protein model refinement. Langevin 

dynamics simulations were carried out at 360 K in the NVT ensemble starting from the 

equilibrated system. Five independent replicas of simulations were conducted for 100 ns, 

and simulation snapshots were recorded at every 50 ps. Hydrogen mass repartitioning40 

was used to allow simulations with a 4 fs integration time step along with the SHAKE 

algorithm37. To focus sampling on the vicinity of the initial structure and prevent it from 

unfolding, restraints were applied on every Cɑ atoms in the functional form of Eq. 1. 

Restraints were gradually switched from Cartesian restraints (Eq. 2) to distance restraints 

(Eq. 3) throughout the simulation by changing λ from 0 to 1. The Cartesian restraints biased 

every Cɑ atoms to their Cartesian coordinates. For the Cartesian restraint parameters, we 

used k0 = 0.025 kcal/mol/Å2 and bflat = 4 Å. The distance restraints were applied to Cɑ 
atom pairs that had distances below 10 Å in the initial model and separated by four or more 

residues. For distance restraints, we used k0 = 0.05 kcal/mol/Å2 and bflat = 2 Å.
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Ecombined(λ) = (1 − λ)∑iECartesian ri; ri
0 + λ∑j − i ≥ 3Edistance dij; dij

0
(1)

ECartesian ri; ri
0 = k0max  0, ri − ri

0 − bflat
2

(2)

Edistance dij; dij
0 = k0max  0, |dij − dij

0 | − bflat
2

(3)

Restraints were based on a flat-bottom harmonic function to allow transitions between 

conformational states via “restraint-free” regions. The use of both restraint types allowed 

more diverse sampling than either one restraint type.27

The sampled conformations were subsequently processed to generate a refined model. 

Simulation snapshots were initially scored using RWplus.41 A subset of structures was then 

selected for the further structure averaging. We used slightly different ensemble selection 

methods depending on the number of initial model structures. When a single initial model 

was used for the sampling, the 25% lowest-scoring structures were selected.27 The deviation 

from the original initial model was additionally considered for selection23,42 when multiple 

initial models were used for the sampling. The selected structures were superimposed onto 

the initial model and averaged based on Cartesian coordinates. To finish, the stereochemical 

quality of the averaged structure was improved via local relaxation by short MD simulation, 

sidechain rebuilding using SCWRL443, and the application of locPREFMD.31 Sidechain 

rebuilding was added over our previous CASP13 protocol to improve sidechain packing and 

increase lDDT scores. Finally, residue-wise errors were estimated from root mean square 

fluctuations (RMSF) from short unrestrained MD simulations.

For some targets, alternative initial models were generated to enhance the conformational 

sampling for refinement. (Figure 1B) Sampling from multiple initial models allowed much 

broader sampling in conformational space.27 We used template-based modeling to predict 

the alternative initial models. Homologous structures in the PDB were searched using 

HHsearch30 with a sequence profile that was generated by sequence search against the 

UniClust30 database44 using HHblits45. To generate models that are comparable to the 

original initial model, the top 100 searched proteins were compared with the original initial 

model using TM-align46, and structures that were close to the initial model (TM-score 

> 0.6) were selected for further modeling steps. Single-template-based models were built 

using MODELLER47 for each selected protein with sequence alignments generated by 

HHalign30,48 with the MAC algorithm, the global alignment mode, and allowing up to three 

alternative alignments. From the generated models, up to ten models were selected that 

had higher structural similarities to the original initial model than a TM-score cutoff, either 

0.6 or the best TM-score minus 0.2, whichever was greater. We did not use the alternative 

initial model strategy if none of the built models satisfied the selection criterion. We built 

hybrid models by recombining structural information from the original initial model and 

the selected single-template-based models to take advantages of multiple-template-based 

modeling. Because the hybridization step combines the original model to be refined with 

other models, we believe that this protocol is still what is typically considered refinement of 
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a given initial model, but with a more aggressive approach towards broader conformational 

sampling by taking advantage of alternative structures. The hybridization was carried out 

by a modified Rosetta “iterative hybridize” protocol49. We chose the Rosetta hybridize 

protocol to perform multiple-template-based modeling rather than running MODELLER 

with multiple templates. MODELLER occasionally resulted in a frustrated model because of 

conflicting information between templates.50 In addition, the Rosetta hybridize protocol can 

generate reasonable structures for residues for which template information is not available 

by relying on fragment assembly.51 Different from the original Rosetta “iterative hybridize” 

protocol, sampling was limited to the vicinity of the original initial model through only ten 

iterations, fewer than in the original protocol. The detailed modifications are described in 

Heo et al.27 Among the hybridized models, the four models with the lowest Rosetta scores 

were selected as alternative initial models. Simulations for the alternative initial models were 

carried out in the exact same way as for the original initial model. When the multiple initial 

model strategy was used, the aggregated simulation time was 2.5 μs.

CASP14 predictors from the Feig group

The predictors from the Feig group are summarized in Table S1. In the refinement (TR) 

category, we participated with two predictors: FEIG-S for server predictions and FEIG for 

“human” predictions. There was no human intervention for FEIG-S, except for two targets, 

R1056 and R1057, where putatively bound ligands were included manually in the simulation 

systems. (Table S2) Since the CASP14 refinement targets were not straightforward to be 

predicted by template-based modeling, we used alternative initial models only for six out 

of 37 regular refinement targets for the FEIG-S predictions. For the FEIG predictions, we 

applied a different multiple alternative initial model strategy: instead of using in-house 
template-based modeling, we used other models from the same predictor group for a given 

target protein (e.g., Zhang-server_TS2–5 for a target that was originally Zhang-server_TS1) 

as inputs of the hybridization for the alternative initial model building protocol. This may 

be a practical procedure even outside CASP, because most structure prediction methods 

usually give multiple models. We only included similar models for the alternative initial 

model building by visual inspection, excluding models where any part deviated significantly, 

such as different or reoriented secondary structure elements, or models that were virtually 

identical to the initial model. As a consequence, the multiple initial model building with 

other submitted models in the FEIG predictor was used only for 14 regular refinement 

targets. For the other targets, we simulated much longer than the FEIG-S predictions to take 

advantage of the longer time allowed for human predictions. We simulated 10 μs in total for 

a target using ten replicas over 1 μs. (vs. 500 ns in total from five replicas each over 100 ns 

simulation time for the FEIG-S predictions)

For the regular tertiary structure prediction (TS) category, we participated with one predictor 

for server prediction and four predictors for human predictions. These predictors combined 

state-of-the-art protein structure prediction methods—they used machine learning models 

for initial predictions—followed by our refinement protocol. FEIG-S was a server predictor 

that used an in-house modeling pipeline based on trRosetta,12 followed by refinement. 

FEIG-R1, 2, and 3 were human predictors that refined “model 1” structures of RaptorX, 

Zhang-Server, and BAKER-ROSETTASERVER using our refinement protocol, respectively. 

Heo et al. Page 6

Proteins. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For simplicity, the multiple initial model strategy was not used for these predictors. 

FEIG was another human predictor that functioned as a meta predictor where sampled 

structures from the FEIG-R1, 2, 3, and FEIG-S refinement protocols were combined in 

the post-sampling ensemble selection and averaging step of our refinement protocol. After 

the CASP14 meeting, we also refined AF2 models with our refinement protocol; the 

resulting models are named here as FEIG-AF. Since this paper focuses on the effect of 

the refinement protocol, we mainly analyzed the effect of refinement of other predictors’ 

models, FEIG-R1, 2, 3, and FEIG-AF to complement the analysis of our performance in the 

refinement category with a more systematic view of refinement as a function of initial model 

generation.

Comparison with previous refinement protocols

Two additional refinement protocols were applied to directly measure the progress over 

previous MD refinement protocols (see Table S3). These refinement protocols were based 

on our previous refinement protocols that were used during CASP1242 and CASP13.24 They 

were simplified and optimized to match the computational cost for the MD sampling with 

the latest refinement protocol, while key components of each protocol were maintained.27 

The CASP12 refinement protocol involved various numbers of various lengths of MD 

simulations. MD simulations were performed at 298.15 K with the original CHARMM36m 

force field33 and harmonic restraints on Cartesian coordinates of every Cα atoms. We 

found that MD sampling with harmonic restraints saturates quickly so that more and 

longer replicas of MD simulations provided marginal improvements over shorter and fewer 

simulations.42 Thus, the simplified CASP12 protocol ran five trajectories of 50 ns-long 

MD simulations using the same simulation parameters. During CASP13, we applied two 

refinement protocols: an iterative and a conservative protocol. The conservative protocol 

is identical to the simplified CASP12 protocol, and we selected final models among 

the models from both protocols based on protocol selection rules. The iterative protocol 

iteratively carried out MD simulations and clustering for three iterations. MD simulations 

for the protocol were carried out at 298.15 K with a modified CHARMM36m force field24, 

hydrogen mass repartitioning, and flat-bottom harmonic restraints on Cartesian coordinates 

of every Cα atoms. The number of MD simulation trajectories and their lengths varied for 

each iteration. We previously found that the iterative sampling did not provide additional 

gains over just one iteration.24 Thus, the CASP13 protocol was simplified to perform five 

trajectories of 100 ns-long MD simulations with the same simulation parameters and without 

iterations.

Markov state modeling

In order to provide further insights into the refinability of AF2 models, we built Markov 

state models (MSM)52 for six domains during post-CASP analysis. We selected these 

domains to span different initial AF2 modeling qualities, to cover domains extracted from 

both single-domain and multi-domain proteins, and to consider target structures determined 

via different experimental methodologies (see Table 1). As an input to the MSM generation, 

we ran unrestrained MD simulations with a similar protocol as the one that was used for 

the refinement protocol where restraints were applied. The simulations were carried out with 

the original CHARMM 36m force field33 with a 2 fs time step at 298.15 K in the NVT 
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ensemble. The strategy for building MSMs was similar to the one reported previously25. For 

each domain, starting from the experimental structure and from model 1 generated by AF2, 

ten unrestrained 200 ns MD simulations were launched for each. Snapshots were collected 

every 100 ps. The MD trajectories were featurized using Cα-Cα distances. Time-lagged 

independent components analysis (tICA)53 was employed to reduce the dimensionality of 

these input features and k-means clustering was then used to cluster the MD snapshots in the 

tICA space. Preliminary MSMs were constructed, and snapshots located in clusters between 

the experimental and AF2 structures were selected as starting points for successive MD 

runs. For each selected snapshot, ten unrestrained 200 ns MD simulations were again carried 

out. This sampling strategy was continued until an MSM connecting the experimental and 

AF2 states could be obtained and validated. Our goal was to explore as much as possible 

of the conformational landscape of the domains around these two states; therefore, we 

removed from the analysis those trajectories that were clearly driven off-pathway or those 

that resulted in partial unfolding of the domains. More specifically, trajectories that drifted 

away significantly from both the experimental and AF2 conformations by Cα RMSD of 

around 6 Å or greater were removed. The total sampling time used for MSM analyses 

amounted to 99.8–350.0 μs depending on the domain (see Table S4). The lag times used for 

constructing the final MSMs were found by inspection of the implied timescales plots of the 

domains. Time scale convergence was determined at 20 to 30 ns depending on the domain 

(see Figure S1). To identify the optimal tICA parameters and the number of microstates for 

building the final MSMs, we employed a variational scoring approach based on the rank-10 

VAMP-2 score combined with cross-validation54. The microstate-based MSMs were further 

coarse-grained into a smaller number of kinetically metastable states (macrostates) using 

the Perron cluster cluster analysis (PCCA++) algorithm55 to aid further interpretation. The 

“experimental” and “AF2” macrostates were defined as the states closest to the experimental 

and AF2 structures, respectively. In order to help with the structural interpretation of a 

MSM state, we randomly picked 1,000 snapshots assigned to a given macrostate based on 

the probability proportional to the equilibrium probability of the corresponding microstate, 

selected the best 25% snapshots according to RWplus scores and averaged them using 

the same protocol described above as used for MD-based refinement. The number of 

macrostates used for each domain (from 6 to 20, see Table S4) was selected to achieve 

a balance between model interpretability (having a small number of kinetically separated 

states) and structural homogeneity of states. More specifically, we tested increasing numbers 

of macrostates and for each we scored the GDT-HA of the experimental structure with the 

averaged model of its macrostate. We selected a macrostate number where this score was 

less than 5 units away from the GDT-HA of the experimental structure with the averaged 

model of its microstate, as microstates represent the finest level of clustering in MSMs. 

Macrostate discretization and MSMs were validated using the Chapman-Kolmogorov test 

(see Figure S1). Once we had applied PCCA++, we derived the equilibrium probabilities 

(and free energies) of macrostates and mean first passage times (MFPTs) for transitions 

between them. To assess the uncertainties in these quantities, we employed bootstrap 

analysis without replacement (with ten iterations), in which 90% of the original trajectories 

were used to re-build a MSM and re-compute these values. Refinement pathways from the 

AF2 state to the experimental one were identified by transition path theory (TPT) analysis. 
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Every step of MSM building, validation and analysis was performed with the PyEMMA 

software56.

Relaxation of experimental structures

In addition to the MSM construction, we also relaxed the experimental structures to establish 

the ‘native’ state conformations for all targets according to the MD simulations and the force 

field. The resulting models can be considered as an ideal-case maximum performance of our 

current MD simulation-based refinement protocol. As for the Markov state modeling, we 

carried out unrestrained MD simulations starting from the experimental structures using the 

same protocol (see Table S3). Because the identification of the native state conformation did 

not require significant conformational state transitions from the experimental structure via 

extensive simulations, we ran only five trajectories of 50 ns-long MD simulations, enough 

to achieve local relaxation. To define the native state conformations, the same post-sampling 

steps of the refinement protocol were applied. The resulting models were referred to as 

“MD-native”. For the input of the experimental structure refinement, we used experimental 

structures after parsing domains based on the CASP14 domain definition, to follow the 

procedure by which targets were selected as refinement targets.

In addition to the domain-based refinement, we also used the experimental structures with 

the whole domains for multi-domain targets and the whole proteins for targets that form 

oligomers if the interaction information was available and the whole system consisted of 

less than 5,000 residues. By refining the experimental structures in this manner, we could 

determine not only the effect of the force field and simulation methodology, but also the 

effect of including or excluding other interacting proteins or domains during refinement.

RESULTS

CASP14 refinement category performance

The CASP14 refinement performance by FEIG-S (server predictor) and FEIG (human 

predictor) are summarized in Figure 2, Figure S2, and Table 2. FEIG-S was a fully automatic 

refinement server except for two targets, R1056 and R1057, where putatively bound ligands 

were added manually before beginning conformational sampling. FEIG was a human group 

that used other predictions from the same group of the initial model or simulated longer 

than the server predictions. Both predictors refined the initial models on average in terms 

of both global and local accuracy measures. All the following analysis is based on model 1 

predictions.

For 37 regular refinement targets, which excludes the CASP-COVID and the extended 

time targets, FEIG-S improved GDT-HA57 and IDDT58 scores on average by +1.67 and 

+1.16%, respectively. However, performance varied depending on targets. First of all, better 

performance was achieved for single-domain proteins and proteins that are not in extensive 

contact with other biological molecules such as oligomers. (for the list of multiple-domain 

and oligomeric targets, see Table S5) For monomeric and single-domain targets, GDT-HA 

scores were improved by +2.85. On the other hand, for targets that form complexes or that 

are part of multi-domain proteins, GDT-HA scores were improved less, by +1.24 on average. 
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Moreover, some multi-domain or oligomeric targets also became significantly worse after 

refinement. The refinement of oligomeric and multi-domain targets will be discussed further 

below.

The FEIG predictor improved GDT-HA and IDDT scores on average by +2.08 and +1.13%, 

respectively. In comparison between FEIG-S and FEIG, there was little overall difference 

in terms of performance measured via GDT-HA, lDDT, Cɑ-RMSD, and SphereGrinder 

scores59 (Figure S3). Again, we found a tendency towards better refinement of monomeric 

and single-domain targets.

We also refined the targets with the refinement protocols that were used by us during 

CASP12 and CASP13 to directly measure methodological progress. (Figure S4 and S5). In 

comparison between the previous methods24,42 and the latest refinement protocol27 used for 

FEIG-S, there has been clear progress after CASP13. The latest protocol outperformed the 

previous protocols both in global and local accuracy measures. Previously, our refinement 

protocols did not improve local structural accuracy as much,24 but this was addressed 

in the latest protocol by introducing an improved MD sampling strategy and by using 

multiple initial models.27 Improved MD sampling resulted from simulations at a higher 

temperature than room temperature, so that conformational space could be explored more 

rapidly. The new protocol also utilized an improved restraint scheme that gradually switches 

from one restraint scheme to another one. This scheme allowed for better sampling of more 

diverse conformations. Despite the progress, some targets became significantly worse with 

the FEIG-S predictor. For example, GDT-HA scores decreased from 65.6 to 49.6 (−16.0) 

for R1042v2. Interestingly, the previous CASP12 protocol did not result in significant 

deterioration of this target as the GDT-HA decreased only slightly to a value of 64.5 (−1.1). 

The reason is that the CASP12 protocol42 used more conservative harmonic restraints 

vs. flat-bottom harmonic restraints in the CASP1324 and CASP1427 FEIG-S protocols. 

The stronger bias toward the initial model in the CASP12 protocol prevented significant 

deterioration.

We further analyzed refinement performance as a function of how the initial model was 

generated. (Figure 3 and S6) Clearly, both FEIG-S and FEIG failed to improve AF2 models. 

On the other hand, models from the other groups such as tFold, Zhang, and Baker groups 

could be improved significantly. 73% and 76% of the targets of those were improved 

in terms of GDT-HA by FEIG-S and FEIG, respectively. Refinement targets with initial 

models from AF2 had very high initial accuracies with an average GDT-HA score of 70.4. 

Models from other groups had lower GDT-HA scores of 50.9 on average, suggesting that 

there was more room for improvement during refinement. We found that AF2 models were 

not just more difficult to improve, but the model quality actually deteriorated significantly 

with the FEIG-S protocol. This will be discussed in more detail in the following sections. 

Among non-AF2 models, we found that models from the tFold and Zhang groups were 

more refinable than models from the Baker group. These differences may reflect the degree 

to which models were already refined during the initial model generation since many 

prediction protocols now include a final refinement stage based on a similar physics-based 

simulation protocol as used by us.

Heo et al. Page 10

Proteins. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



When we compared the performance by FEIG-S and FEIG on non-AF2 targets, FEIG 

appeared to perform better than FEIG-S (+4.67 for FEIG vs. +3.85 for FEIG-S in GDT-HA 

on average), but with low statistical significance (p=0.052 according to Student’s paired 

t-test, n=30). The key differences between FEIG and FEIG-S were more extensive sampling 

and the use of multiple initial models. The idea of multiple initial models was benchmarked 

before on previous CASP refinement targets and found to result in significantly better 

performance than with the single initial model-based protocol. However, in CASP14, 

alternative initial models could be built via homology modeling only for a few targets. 

Instead, we used other models from the same group of the initial model as alternative 

initial models for the FEIG protocol. We expected that the use of these alternative models 

may provide benefits in a similar way to homology models, but from the CASP14 results 

it is unclear whether this modified strategy was beneficial due to poor statistics given 

the limited number of targets (+4.97 vs. +4.35 in GDT-HA on average for FEIG with 

and without the multiple initial model strategy, respectively, with the difference not being 

significant according to p=0.21 from Student’s paired t-test, n=14). Longer simulations for 

the FEIG predictions were likely to provide additional progress over the FEIG-S predictions, 

but the statistical significance was low due to the small number of targets. (+4.40 for 

FEIG with longer simulations vs. +3.49 for FEIG-S in GDT-HA on average; p=0.061 

from Student’s paired t-test, n=16). When we performed a post-analysis to use a subset 

of sampled conformations for the FEIG predictions with longer simulations, there was a 

clear trend that the refinement performance improved with additional sampling. (Figure S7) 

Refinement with more independent simulations resulted in better performance, but there was 

not significant gain beyond running more than five trajectories.

Refinement of TS models

To test our refinement protocol more broadly, we also refined regular tertiary structure (TS) 

models generated by different methods during the prediction season (FEIG-R1/2/3) and after 

the CASP14 conference (FEIG-AF). The results are summarized in Table 3, Figure 4, and 

Figure S8. The main conclusions based on the refinement of TS models were similar as for 

TR targets: It was generally possible to improve models built by top-performing methods 

- except for AF2. As for TR targets, the extent of refinement varied depending on the 

prediction methods. For example, models from the Zhang group (FEIG-R2) were refined 

more than models generated by the Baker group (FEIG-R3). Again, it was very difficult to 

improve AF2 models, and although modest refinement was possible in some cases, it was 

more common that AF2 models deteriorated significantly after refinement.

We found that the refinement protocol works well with moderately accurate models (GDT

HA scores between 40 and 70).24 This may partially explain why models from the Zhang 

group could be refined more than the others because most of their models (47) were in that 

range. There were fewer models in that range with other methods: 34 for RaptorX models 

(FEIG-R1), 45 for Baker models (FEIG-R3) and 24 for AF2 models (FEIG-AF). In addition, 

we expect that the extent of refinement that was already applied to the initial models played 

a role as well although this point is difficult to assess without knowing the exact details of 

each prediction method and without access to possibly unrefined final models. 69 out of 87 

TS domains had inter-protein or inter-domain contacts, and those were harder to improve 
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as for TR targets. When measuring the refinement performance only on monomeric and 

single-domain targets, average improvements in GDT-HA were +2.55, +3.61, +0.74, and 

−7.53 for FEIG-R1, 2, 3, and FEIG-AF, respectively.

Detailed conformational landscapes via MSM analysis

In order to better understand the limits of our refinement protocol, especially in the context 

of seemingly unrefinable AF2 models, we carried out in-depth conformational landscape 

analysis for six domains (see Table 1). The domains were selected to focus on different 

types of situations where AF2 produced models with large to moderate deviations from 

the experimental structure (GDT-HA scores from 26.20 to 78.22, see Figure 5) and where 

our CASP14 protocol was unable to successfully refine those models (with a GDT-HA 

deterioration in five out of six cases and a small increase in the remaining case). We applied 

extensive MD sampling to each system (ranging from 99.8 to 350.0 μs) and subsequently 

combined simulation snapshots via MSM analysis.

Figure 6 shows the free energy landscapes of each domain projected along the first two 

independent components from tICA. The experimental structures and models 1 from AF2 

are mapped onto them. AF2 models 2 to 5 almost always map very close to model 1 (see 

Figure S9). For this reason, we will concentrate our discussion on model 1 of each domain. 

The main result emerging from the MSM analysis is that, for all systems, the experimental 

structure and the AF2 model map onto different macrostates and these states are often 

separated by large kinetic barriers (see the MFPTs values in Table 1). The importance of this 

finding is that although the AF2 models for the targets discussed here are very good, there is 

at least in principle room for further refinement.

From an energetic point of view, for four out of six domains (T1031-D1, T1055-D1, T1070

D3 and T1093-D1), the experimental state has a lower free energy with respect to the AF2 

one, with ΔG values ranging from −2.31 to −0.27 kcal/mol. However, we also find that for 

four domains (T1029-D1, T1031-D1, T1055-D1 and T1074-D1) there is another macrostate 

that is different from the AF2 and experimental states and that has an even lower free energy 

than the experimental one. For two domains (T1031-D1 and T1055-D1) this lowest energy 

state is kinetically near the experimental one, i.e. both states interconvert rapidly despite 

structural differences, but for the other two (T1029-D1 and T1074-D1) it is far from it, i.e. 

in addition to structural differences there are significant kinetic barriers between the lowest 

energy and experimental states. This means that the application of MD-based refinement to 

the AF2 models for the targets analyzed here should move the initial structures to different 

conformations based on the energetic driving force due to the force field, and in four out 

of six cases, the structures favored by the force field would be more native like than the 

initial AF2 models. However, the MSM and MD data also suggests that a major reason 

for why we could not actually refine these models is the existence of high kinetic barriers 

along the refinement pathways that are difficult to overcome in blind refinement. Another 

factor appears to be the presence of highly dynamical regions in some of these domains that 

may require extensive sampling to generate conformational averages matching experimental 

ones.
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Relaxation of experimental structures

We relaxed the experimental structures for all targets to determine the best-case native state 

models that could be expected with our simulation setup. This tested certain methodological 

aspects such as the force field, but also the validity of a protocol focused on single 

domains without considering any additional factors or uncertainties that may be present 

during experimental structure determination. Experimental structures are not expected to 

require any structural transition to reach the native state. Therefore, only local relaxation via 

MD simulations was needed to generate the MD-native structures via ‘refinement’ of the 

experimental structures.

The MD-native structures were first compared with the experimental states identified by the 

MSM analysis from extensive MD simulations for the selected domains. (Figure S10 and 

Table S6) We found that the MD-native structures were generally in the same state of the 

experimental states with little structure difference for most of the domains. For T1029-D1, 

the MD-native structure was intermediate between the experimental structure and the MSM 

experimental state. This may be because the simulation time for the MD-native structure 

generation was less extensive than the sampling applied during the MSM model generation. 

However, the MD-native structure changed in a similar direction as the MSM experimental 

state, i.e., it resulted in significant deviation from the experimental structure. Therefore, 

we believe that the approach of applying short MD relaxation to all of the experimental 

structures at least approximates what would otherwise be obtained by a full MSM analysis 

with respect to the experimental state according to the force field we used and given the 

other assumptions we applied during the refinement MD simulations.

The structural similarity between the true experimental structures and the MD-native 

structures is summarized in Figure 7 and Figure S11 for the TR and the TS targets, 

respectively. Again, the MD-native structures resulting from relaxation of the experimental 

structures have to be considered as the maximum ideal-case performance of our MD 

simulation-based refinement given our current protocol simulation setup. This maximum 

performance would be attained only if the experimental macrostate were the lowest energy 

state for every domain. For some domains, this condition may hold true (see Table 1 and our 

previous work). For others, the experimental state is expected to be the lowest energy one 

only if simulating the domains in their full experimental contexts (see discussion below). 

Nevertheless, the analysis suggests that many tertiary structure models could theoretically be 

expected to be refined to near-atomistic accuracy (Cɑ-RMSD ~ 1 Å). Among the refinement 

targets, 12 out of 31 unique domains had lower than 1 Å accuracy in Cɑ-RMSD. Similarly, 

27 out of 87 TS domains achieved such high near-atomistic accuracy. On the other hand, 

even although we started from the experimental structure, some of the MD-native structures 

ended up with significant deviations from the experimental structures. We found that there 

was a big gap between monomeric single-domain targets and oligomeric or multi-domain 

targets in the maximum performance. On average, monomeric, single-domain targets can 

reach up to 81.0 GDT-HA units, while targets that were simulated without the interaction 

contexts showed less similarity with an average GDT-HA score of 71.7. When we compared 

the MD-native structures with the AF2 models, they had lower GDT-HA scores than the 

AF2 models for 55 out of 87 domains (63%).
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DISCUSSION AND CONCLUSIONS

Conformational sampling is still a major obstacle for refinement

Based on what we found from relaxing the experimental structures via MD, it seems that 

we could in principle reach near-atomistic accuracy for many targets. However, this requires 

long enough simulations to sample the native state with an assumption that the native state 

remains the lowest free energy state as other non-native conformations are being explored. 

It appears that this assumption is usually valid. The native states for proteins described in 

Heo et al.25 had lowest free energies. Among the domains analyzed here via MSM analysis, 

the experimental macrostate is the global energy minimum for two domains, T1070-D3 and 

T1093-D1. For other domains, where the experimental macrostate is not the global energy 

minimum, the discrepancies could be rationalized by specific reasons such as the absence 

of crystal contacts. This will be discussed more below. Therefore, unless the experimental 

macrostate is not at the lowest free energy, the ideal-case relaxation of the experimental 

structures suggests that MD simulation-based refinement should be able to improve many 

models to near-atomistic accuracy.

The theoretical expectation of reaching near-atomistic accuracy for many models, was, 

however, not fulfilled by our actual refinement performance during CASP14. This suggests 

that insufficient sampling remains a significant challenge for actually realizing what may be 

the best-case scenario for MD-based refinement. The fundamental reason for the significant 

difficulties in achieving sufficient conformational sampling is the presence of sizable kinetic 

barriers that have to be overcome during refinement.25 This remains true even when the 

starting model is very close already to the experimental structure. The MSM analysis 

presented here shows that even although the structural divergences between the AF2 and 

experimental structures are small (the starting AF2 model’s GDT-HA scores range from 65 

to 74), there were still significant kinetic distances separating the AF2 and experimental 

macrostates because non-trivial structural transitions were needed to reach the native state. 

For five out of six analyzed domains, the estimated MFPT from the AF2 to experimental 

states is greater than 10 μs, 20 times the aggregated MD simulation time used in our 

refinement protocol, with refinement pathways progressing through series of slow transitions 

(see Figure S12). T1031-D1 gives a clear example for the sampling challenge encountered 

during refinement. In the AF2 model, there is a register error (see Figure 5) at the N-terminal 

tail (residues 1–13); the pocket where the sidechain of Ile7 is positioned in the experimental 

structure is occupied by Ile4 in the initial model. In the refinement pathway identified via 

simulation, the N-terminal tail has to lose contacts with the rest of the domain, followed by 

partial unfolding (from state A to 1 with an MFPT of 12.6 μs), sliding to the correct register 

(from state 2 to 3 with an MFPT of 11.1 μs) and, finally, refolding. (see Figure S13D)

Meanwhile, the MD sampling during the actual refinement protocol rarely transited to 

other conformational states from the initial states as demonstrated in detail for the targets 

subjected to the extensive MSM analysis. Figure S14 shows how the sampled conformations 

for the refinement mapped onto the free energy landscapes obtained from the MSM analysis. 

The mapped trajectories show that the MD sampling never diverged too far from the initial 

AF2 models. As a result, the refined AF2 models remained structurally similar to the 

Heo et al. Page 14

Proteins. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unrefined AF2 structures (see Table S6). Moreover, when the refined AF2 models were 

mapped onto the energy landscape, they are very near to the starting AF2 models and they 

are always included in the AF2 macrostates.

The sampling challenge during MD-based refinement is not new and although we did 

see some progress in CASP14 due to improvements in our sampling strategy, insufficient 

sampling is still the major bottleneck. Increasing computer time may provide some relief, 

but more effective strategies that selectively employ enhanced sampling techniques to 

enhance progress towards refinement without resulting in unfolding remain to be identified.

Inter-protein and domain interactions are important for high-accuracy refinement

We found that the performance of FEIG-S for multi-domain and oligomeric targets was 

clearly lower than for single-domain and monomeric targets. There may be various reasons 

for that observation, but the main factor was likely because we simulated incomplete 

system configurations where experimental structures could not be stabilized due to missing 

domain or crystal contacts. This was also seen when we relaxed the experimental structures: 

monomeric and single-domain targets reached much higher accuracy as they could be 

stabilized by themselves. On the other hand, for domains that form oligomeric complexes 

or that are part of multi-domain proteins, the MD-native states deviated much more from 

their experimental structures after relaxation without considering such contacts. (Figure 7 

and Figure S11)

In previous rounds of CASP the impact of domain or inter-protein interactions was not as 

obvious, perhaps because of different sets of targets and higher initial model accuracy during 

CASP14. However, it is perhaps not surprising that inter-protein or inter-domain interactions 

can be important for stabilizing protein structures. For example, such interactions are highly 

important for stabilizing intertwined beta strands or proteins with swapped domains. As 

perhaps extreme examples, among the refinement targets, the MD-native structures for 

R1042v2 and R1053v2 were less similar to the experimental structures in terms of GDT

HA than the initial model given as refinement targets. (Figure S15) The experimental 

structures for those domains suggest extensive interactions with other domains that appear 

to be essential for stabilizing their native structures. This means that refinement without 

considering the larger domain context is probably not very meaningful. Or to turn the 

argument around, it appears likely that these proteins may possess different structures in 

the absence of their interacting domains. Therefore, it seems to be an ill-posed challenge to 

expect refinement of a model given without the interaction context and evaluate the resulting 

model based on an experimental structure obtained in that context.

When the native states defined by MD simulations were simulated together with other 

domains or proteins that are in the experimental structures, the maximum performance of the 

refinement reached much higher values than that of the refinement without the interaction 

contexts with an average GDT-HA score of 77.5. (Figure S16) Among the AF2 models for 

TS targets, 50 out of 87 domains (57%) had room for improvement based on the MD-native 

models obtained in the presence of the interaction contexts. In particular, for 24 moderately 

accurate AF2 models that had GDT-HA scores between 40 and 70, most of the models (21 

domains) could be refined when interaction contexts were provided by up to an average 
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of 11.6 GDT-HA units. However, without the domain context, only half of the models 

could theoretically be improved and the average maximum improvement in GDT-HA, from 

comparing MD-native models with AF2 models, was only 0.4.

We further analyzed the impact of interactions by relating refinement progress to the 

buried interfacial solvent accessible surface area (SASA), which is the percentage of buried 

SASA of a domain upon inter-domain or inter-protein interactions. (Figure S17) As one 

may expect, domain contacts had more impact when a domain had a larger interfacial 

surface fraction. This direct comparison clearly shows that inter-domain or inter-protein 

interactions are important for stabilizing protein structures especially when the interface 

region comprises a large fraction of their solvent accessible surface. Again, we reiterate the 

perhaps by now obvious statement that interactions within the large protein context should 

be considered for successful refinement of protein models that are in contact with other 

domains or proteins.

Most of the TS targets had some inter-protein or inter-domain interactions. When we carried 

out BLAST searches for those multi-domain or oligomeric targets, close homologs that 

were identified possessed very similar arrangements of domains60 or proteins.61,62 This may 

imply that the ML model underlying AF2 might have been able to implicitly learn not 

just about intra-domain interactions but also about possible arrangements within a larger 

multi-domain or oligomeric context. On the other hand, not including such interactions 

with other domains or proteins clearly emerged as a major obstacle within the context of 

physics-based refinement methods, which are not designed to ‘learn’ or otherwise infer 

knowledge about domain contacts unless explicitly considered as part of the system.

Experimental factors affecting structure prediction accuracy

In addition to biologically relevant interactions, experimental artefacts can also alter the 

energy landscape and thus affect the ability to refine successfully towards the experimental 

structures. In the lowest free energy macrostate identified by the MSM analysis for T1031

D1, the N-terminal tail was positioned in the correct register, but a loop segment (residues 

48–59) lost contact with the tail and acquired a more extended conformation. In the X-ray 

structure of this domain63, the space, where this loop is positioned in the lowest energy 

conformer, is populated by another protein in a neighboring crystal lattice (see Figure 

S13A). This implies that the experimental macrostate would not be energetically favored 

unless the crystal contact is present. Another example where crystal contacts alter the 

energy landscape and protein structure is T1064 (PDB ID: 7JTL),64 the SARS-CoV-2 ORF8 

protein, for which there is another crystal structure independently determined by another 

group (PDB ID: 7JX6). Both structures are very similar for most of the residues. However, 

the two experimental structures significantly differ at residues 62–78, due to different crystal 

contacts with other molecules. (Figure S18) The CASP reference structure for this target 

has several hydrogen bonds with residues in another molecule in the crystal lattice. On 

the other hand, the other crystal structure has fewer interaction across its crystal lattice. 

Therefore, that structure would have been a more attainable target for prediction and high

resolution refinement in the absence of crystal contacts. Furthermore, these analyses revisit 

Heo et al. Page 16

Proteins. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the question about how reliable the crystal structure near crystal lattice interface is because 

crystal contacts can distort the structure.65

A more significant issue appears to pertain to experimental structures obtained via NMR 

experiments. Generally, the MD-native state conformations had low similarity to the 

experimental structures that were determined by NMR experiments. There were three targets 

among the TS targets: T1027, T1029, and T1055. Structure similarity measured in GDT-HA 

was only 44.2, 45.8, and 65.4, respectively.

For T1055-D1, the minimum energy macrostate is a refinement intermediate between the 

AF2 and the experimental states. The AF2 error for this domain is located in its N-terminal 

tail (residues 3–12). In the prediction, these residues are modeled as an α-helix, while in the 

NMR snapshot, they are found in a coiled conformation. In the minimum energy macrostate, 

the full AF2 α-helix is partly unwound, but residues 7–11 still form a helical turn (see 

Figure S13B). As the NMR restraints for this domain are not currently publicly available, it 

is not possible to check which conformation better agrees with the experimental data.

For T1029-D1, the AF2 model substantially deviates from the experimental snapshot (see 

Table 1). The MSM shows that the AF2 macrostate has a much lower energy with respect 

to the experimental one (the ΔΔG is 2.48 kcal/mol). The AF2 state is closer to the minimum 

energy state in structural and energetics terms. The experimental and AF2 macrostates are 

also separated by a large kinetic barrier (see Table 1 and Table S4). The amount of sampling 

required to refine the AF2 model towards the experimental snapshot would be prohibitively 

large. The estimated MFPT between the AF2 and experimental states is ~2.5 ms. The 

experimental state appears to be much more dynamic than the AF2 one (see Figure S19) 

and trajectories initiated from the NMR snapshot tend to largely deviate from this starting 

conformation, while those initiated from the AF2 model are comparatively more stable 

(see Figure S20). This is a surprising result, given the generally consistent performance of 

AF2 and MD-based approaches in identifying native states as low-energy conformations, 

at least in the absence of domain or inter-protein interactions. On the other hand, it is 

well-known that NMR data interpretation can be challenging. Since experimental data is 

available for T0129-D1, we could evaluate experimental observables directly between the 

different models generated for this target. The two main quantities available for comparison 

are residual dipolar couplings (RDCs) and nuclear Overhauser effect (NOE) restraints. We 

found that all of the models were in good agreement with the experimental data with respect 

to the RDCs (see Table S7), there were a significant number of large NOE violations for 

all of the computationally generated models (see Table S8). This suggests that that the 

experimental structure is clearly in much better agreement with the reported NOE restraints, 

however, that comparison could also be affected by misassigned NOEs, which is difficult to 

assess without full access to all of the experimental data.

Additional challenges to refinement at highly dynamic regions

For some domains, even if the experimental macrostates could be reached, it would still be 

difficult to obtain refined models that match exactly the experimental structures due to the 

presence of highly dynamic regions. From the MSM analysis for T1031-D1 and T1055-D1, 

there is significant dynamics due to flexible N-terminal tails, and there is a long loop 
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that is stabilized by contacts with a neighboring domain in the original structure for T1093

D1. (see Figure S13C) In unrestrained MD simulations initiated from the experimental 

structures, the Cα RMSF values show large values in those regions (see Figure S20, upper 

panels). Such local high-amplitude fluctuations give rise to experimental macrostates that 

contain kinetically-proximate conformations but with a high degree of structural variability 

(see Figure S19). The high structural variability is a particularly challenging issue. Although 

we relaxed the experimental structures with all available biological system information 

such as inter-domain and inter-protein contacts, the relaxed structures still had imperfect 

structures with respect to the experimental structure, i.e. 77.5 in GDT-HA and 1.36 Å in Cɑ

RMSD on average. When we analyzed the MD-native structures of all TS domains, there 

was a clear correlation between thermal fluctuations of a residue and its error with an R2 

value of 0.40. (Figure S21) In general, some deviations may be expected due to force field 

inaccuracies, but the dynamic nature of protein structures poses an additional challenge. In 

the macrostates of these three domains, snapshots with high GDT-HA scores (above 70) are 

extremely rare and the RWplus potential that we use for filtering cannot identify them with 

high specificity (see Figure S22, right panels). This may be expected because experimental 

structures should capture the ensemble and time average of native-like conformations rather 

than any specific snapshot that may exist in a single molecule at a single time. The 

ensemble-averaging protocol employed here addresses this issue in principle. However, it 

means that in order to make highly accurate structure predictions of average structures 

for systems with significant dynamics, it is necessary not just to find the native state but 

correctly and completely sample the entire set of conformations corresponding to the native 

basin. This is, of course, a formidable challenge for the simulations because it requires 

complete sampling and a force field that is accurate enough to reproduce the entire native 

state ensemble for systems with significant conformational heterogeneity.

Why was it so difficult to refine AF2 models?

Our refinement protocol continued to be able to refine models from other predictors, 

including many models generated based on machine-learning methods. However, we 

experienced significant difficulty in improving AF2 models. A simple explanation may be 

that AF2 models already had very high accuracy to begin with. In terms of GDT-HA, only 

26 out of 87 TS domains had lower than 70 GDT-HA units. Thus, not many models required 

refinement. However, even for models that had significant errors that should have been fixed, 

refinement was not very successful.

The MSM analysis and relaxation of the experimental structures revealed several issues 

with the current refinement protocol. First, there is still a sampling problem with the 

MD-refinement protocol. To reach the native state from the initial model state via MD 

simulations, it has to overcome several kinetic energy barriers for partial unfolding 

and refolding.25 However, time required for the transitions were much longer than our 

simulations for refinement, and also, state transitions were prohibited by the restraints. As 

a result, the sampled structures during the refinement simulations hardly deviated from the 

initial AF2 models, despite improvements in our sampling protocol.
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However, even though the structures did not deviate much from the AF2 models, they 

appeared to be consistently worse in terms of standard accuracy metrics. This is an 

interesting observation and likely reflects that the AF2 method was trained to directly 

predict ensemble-averaged experimental structures at very high accuracy. On the other hand, 

MD refinement protocols have to sample conformations via MD simulations and obtain 

an ensemble-averaged structure using the sampled conformations. MD simulations sample 

conformations around the energy minimum basin for a state, however, the sampled ensemble 

may be incomplete, slightly inaccurate, or weighted incorrectly, all of which would affect 

the accuracy of the ensemble average even though sampled conformations belong to the 

experimental macrostate. (Figure S20 bottom panels and Figure S21) We observed that the 

experimental structures deteriorated as much as 77.5 in GDT-HA and 1.36 Å in Cɑ-RMSD 

on average as a cumulative result of minor fluctuations across the experimental ensemble 

averaged structures. In other words, just like MD simulations of any experimental structures 

do not exactly recover the experimental ensemble averages, any simulations of the AF2 

models are likely to lead to a deterioration of accuracy in the parts of the model that were 

predicted correctly, while the refinement simulations could not cross kinetic barriers needed 

to improve actual errors in the initial AF2 models.

Second, protein domains in contact with other domains or proteins clearly emerged as a 

major challenge. The relaxation of the experimental structures demonstrates that some of the 

domains cannot be stabilized by themselves and need other domains or proteins to maintain 

their experimentally determined structures. Indeed, the MSM analysis also showed that the 

energy landscape can be altered by interactions with other proteins in the system. The 

inclusion of other biomolecules is in principle possible during refinement, but in practice 

there may not be enough information about such contacts, and it increases the computational 

costs during the MD simulations. Previously, inter-protein and -domain contacts were not 

so critical for refinement because most models had easily refinable errors, while interface 

regions were often not modeled with high-accuracy. However, now, AF2 models apparently 

learned not only intra-domain interactions but also biologically relevant domain-domain and 

inter-protein interactions which made it extremely challenging to then ‘refine’ such models 

without considering such interactions.

Role of MD-based refinement in the future

Physics-based refinement has served its purpose as an orthogonal approach for improving 

the quality of protein models that were predicted by informatics-based approaches. The 

emergence of highly accurate structure prediction by machine learning is now raising 

questions about the limitations and the future role of physics-based refinement. The 

machine learning based models still have deficiencies, but further refinement has become 

much harder. As the current refinement protocols rely on MD simulations, the sampling 

problem continues to be a major challenge as it continues to be difficult to reach 

different conformational states from a given initial model. It may be possible, however, 

to eventually address this problem by applying enhanced sampling methods. One could 

imagine, for example, that MD simulations could be assisted or guided by machine 

learning methods.29,66 However, the larger issue that has emerged from this round of 

CASP is the importance of the larger environment and the experimental conditions under 
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which structures are determined. Going forward, it appears that any attempts at structure 

refinement without inclusion of such interaction contexts are increasingly becoming a futile 

effort. Finally, there is probably also room for better force fields, such as polarizable 

force fields67 or force fields parameterized directly against quantum-mechanical energy 

functions.68 Considering such approaches may be necessary to go further towards true 

atomistic accuracy.

Another view may be that the role of protein model refinement will change in the future. 

Previously, the purpose of refinement was to improve protein model quality. As predicted 

models are clearly becoming much more accurate with respect to experimentally obtained 

structures, the focus on accuracy improvements may not be as critical anymore. However, 

physics-based refinement can be re-defined as a tool for predicting models under various 

environmental conditions starting from an initial model. For example, a protein structure 

may adopt different conformations upon transient protein-protein interaction, but structure 

prediction for a monomer would not be expected to consider interacting proteins, or even 

alternative conformations based on different interaction partners. Physics-based refinement 

also can be used to generate multiple distinct structures with comparable free energies. 

Since proteins are inherently flexible molecules, dynamics is a feature, and many proteins 

feature not just one but multiple functionally relevant conformations. Indeed, an ensemble 

of structures often captured by cryo-EM69 or X-ray crystallography70 for a protein, albeit 

the resulting structures usually only report on the ensemble average. MD-based approaches 

can be utilized to generate the ensemble of structures by simulating from an initial model. 

Finally, MD-based approaches can be applied for predicting conformations in a biological 

environment rather than under in vitro or structure determination conditions. In a cell, a 

protein is in a crowded environment,71 which consists of other biomolecules. All of these 

environmental factors may be hard to consider during structure prediction, and it may be 

a long time before suitable machine learned models can be trained to capture all of these 

facets that are encountered by proteins in real physical environments.
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Figure 1. 
Overview of the refinement protocol used during CASP14. The standard refinement protocol 

for a single initial model (A). Steps that were manually performed are shown in dashed 

boxes. Multiple alternative initial model building procedure (B).
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Figure 2. 
Overall performance for FEIG-S (server) and FEIG (human) on TR targets. Targets from 

multimeric or multi-domain proteins are shown as red Xs, while targets from monomeric 

and single-domain proteins are depicted in blue circles. Targets for which the native 

structure was determined by NMR experiments are shown as black squares.
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Figure 3. 
Performance on TR targets as a function of initial model predictor. Performance for each 

predictor is shown as a boxplot. Individual target quality changes are overlaid onto the 

markers (for their definitions, see Figure 2).
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Figure 4. 
Overall performance in GDT-HA for FEIG-R1/2/3 (refinement of RaptorX, Zhang-server, 

BAKER-ROSETTASERVER model 1 structures) and FEIG-AF (refinement of AF2 model 1 

structures, post-CASP14 analysis) on TS targets. For marker definitions, see Figure 2.
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Figure 5. 
Superpositions between the experimental structures (yellow) and AF2 models (blue) of the 

CASP14 domains we selected for MSM analysis. Beside the names of the domains, the 

GDT-HA and Cα RMSD of the AF2 models with the experimental reference are reported. 

Green arrows point to the major errors in the AF2 models. For T1031-D1, residues Ile4 and 

Ile7 (which are discussed in the main text) are additionally highlighted.
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Figure 6. 
Free energy landscapes for selected domains from MSM analysis. MSM-reweighted free 

energy values are projected on the first two independent components (ICs) from tICA. 

Energy levels are reported in units of kcal/mol. Projected structures are indicated as follows: 

blue X, experimental structure; black X, AF2 model 1; cyan X, MD-refined model; circles, 

macrostate averaged structures. Macrostates are denoted as: E, experimental state; A, 

AF2 state; M, minimum energy state if not E or A. Representative high-flux refinement 

pathways identified by TPT are shown with lines connecting the averaged macrostate 

models. Intermediate macrostates found in these pathways are labeled with numbers.
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Figure 7. 
Maximum refinement performance that could be achieved by MD-based refinement with 

the CHARMM36m force field and the TIP3P water model when starting from the actual 

experimental structure. For marker definitions, see Figure 2.
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Table 1.

Structural, energetic, kinetic comparison between experimental and AF2 macrostates in the MSMs of six 

selected domains.

T1029-D1 T1031-D1 T1055-D1 T1070-D3 T1074-D1 T1093-D1

Domain from 
a multi-domain 
target

No Yes No Yes No Yes

Experimental 

technique 
1

NMR X-ray (3.50 Å) NMR X-ray X-ray Cryo-EM

AF2 error(s) Packing of 
multiple 
secondary 
structure 
elements

Register error in 
the N-term. tail

N-term. tail 
modeled as an 
helix

N-and C-
termini; hinges 
connecting to 
other domains in 
the full structure

Two loops 
stemming from 
β-strands

Loop contacting 
other domains 
in the full 
structure

AF2 vs
2
 exp

26.2/47.3/7.12 70.5/71.4/2.97 68.2/73.7/2.27 74.0/73.6/5.05 78.2/83.6/1.87 65.1/76.6/3.24

refined vs
2
 exp

26.0/46.1/7.123 65.8/68.3/2.95 66.0/69.2/2.27 69.1/69.7/5.41 62.3/72.6/2.56 66.5/76.0/3.21

A vs
2
 exp

25.4/46.2/7.06 64.5/69.0/2.80 67.0/70.6/2.59 71.1/69.9/4.72 67.8/73.5/2.21 65.3/75.4/3.26

E vs
2
 exp 40.4/58.9/4.07 67.6/73.8/1.47 65.6/71.7/1.70 79.0/78.9/1.97 83.0/80.9/1.30 66.3/75.2/2.05

M vs
2
 exp

21.4/45.2/7.61 52.6/62.2/4.12 63.7/70.4/2.42 - 50.8/64.8/3.87 -

M vs
2
 AF2

56.8/67.4/2.3 54.5/59.9/4.74 82.6/83.6/2.06 - 53.2/66.2/3.21 -

ΔΔG
3
 (E – A) 

[kcal/mol]

2.48 (±0.10) −0.27 (± 0.03) −1.76 (±0.11) −2.31 (±0.16) 2.39 (±0.14) −0.34 (± 0.05)

ΔΔG
3
 (E – M) 

[kcal/mol]

3.18 (±0.11) −0.81 (±0.03) 0.61 (± 0.09) - 2.98 (± 0.09) -

MFPT
4
 (A→E) 

[μs]

2478.8 (±300.6) 41.9 (±1.9) 1.9 (±0.2) 36.3 (± 2.9) 136.1 (± 16.1) 17.5 (± 3.6)

AF2: original AF2 model 1, exp: experimental structure, refined: AF2 model refined using our CASP14 protocol, A: averaged model of the AF2 
macrostate, E: averaged model of the experimental macrostate, M: averaged model of the minimum energy macrostate.

1
The resolution of X-ray structure is reported in brackets where its value is known.

2
Comparison between two structures in terms of GDT-HA, lDDT and Cα RMSD [Å]. For all comparisons with exp, the value of the structure 

closest to it is marked in bold for each metric. When the E state coincides with the M state, an empty value is present in the table.

3
Free energy difference between two macrostates. Standard errors (reported in brackets) were evaluated through a bootstrap strategy with 10 

iterations and 90% trajectory subsets.

4
Mean first passage time for transitions between two macrostates. Standard errors were evaluated as for free energy differences.
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Table 2.

Refinement performance on TR targets

Method ΔMeasure
1

GDT-HA Ca-RMSD [Å] lDDT SphGr

FEIG-S +1.67 (59%) −0.06 (56%) +1.16% (67%) −0.47 (27%)

FEIG +2.08 (62%) +0.16 (54%) +1.13% (70%) −0.14 (43%)

CASP13 
2 +0.27 (51%) −0.01 (56%) −0.15% (51%) −1.35 (29%)

CASP12 
2 +1.02 (51%) +0.01 (51%) −0.10% (51%) −0.73 (24%)

1
Mean changes of each measure. Percentage of improved targets are shown in the parentheses.

2
Simplified version of our refinement protocol used during CASP13 and CASP12.
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Table 3.

Refinement performance on TS targets

Predictor Mean initial model quality ΔMeasure
1

GDT-HA Cα-RMSD [Å] lDDT SphGr GDT-HA Co-RMSD [Å] lDDT SphGr

FEIG-R1 41.89 7.91 55.85% 65.16 +1.17 (52%) −0.04 (43%) +0.71% (54%) −0.04 (40%)

FEIG-R2 44.46 6.48 58.72% 72.21 +2.78 (66%) −0.10 (57%) +1.77% (65%) −0.26 (40%)

FEIG-R3 42.17 7.71 57.11% 68.08 +1.09 (50%) −0.02 (45%) −0.14% (37%) −1.07 (29%)

FEIG-AF 
2 74.37 2.44 82.10% 94.11 −6.75 (13%) +0.25 (22%) −6.38% (1%) −2.24 (10%)

1
Mean changes of each measure. Percentage of improved targets are shown in the parentheses.

2
Refinement of AlphaFold2 (group TS427) models. It was performed after the CASP14 conference.
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