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Abstract

Objectives: To quantify myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) 

in dilated cardiomyopathy (DCM) and examine the relationship between myocardial perfusion and 

adverse left ventricular (LV) remodeling.

Background: Although regarded as a non-ischemic condition, DCM has been associated with 

microvascular dysfunction, which is postulated to play a role in its pathogenesis. However, the 

relationship of the resulting perfusion abnormalities to myocardial fibrosis and the degree of LV 

remodeling is unclear.

Methods: Sixty-five patients and 35 healthy controls underwent adenosine (140ug/kg/min) 

stress perfusion cardiovascular magnetic resonance with late gadolinium enhancement imaging. 
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Stress and rest MBF and MPR were derived using a modified Fermi-constrained deconvolution 

algorithm.

Results: Patients had significantly higher global rest MBF compared to controls (1.73±0.42 vs 

1.14±0.42 mL/g/min, p<0.001). In contrast, global stress MBF was significantly lower versus 

controls (3.07±1.02 vs 3.53±0.79 mL/g/min, p=0.02), resulting in impaired MPR in the DCM 

group (1.83±0.58 vs 3.50±1.45, p<0.001). Global stress MBF (2.70±0.89 vs 3.44±1.03 mL/g/min, 

p=0.017) and global MPR (1.67±0.61 vs 1.99±0.50, p=0.047) were significantly reduced in DCM 

patients with LVEF≤35% compared to those with LVEF>35%. Segments with fibrosis had lower 

rest MBF (mean difference −0.12 mL/g/min, 95% confidence interval: −0.23 to −0.01 mL/g/min, 

p=0.035) and lower stress MBF (mean difference −0.15 mL/g/min, 95% confidence interval: −0.28 

to −0.03 ml/g/min, p=0.013).

Conclusions: Patients with DCM exhibit microvascular dysfunction, the severity of which 

is associated with the degree of LV impairment. However, rest MBF is elevated rather than 

reduced in DCM. If microvascular dysfunction contributes to the pathogenesis of DCM, then 

the underlying mechanism is more likely to involve stress-induced repetitive stunning rather than 

chronic myocardial hypoperfusion.
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Background

Dilated cardiomyopathy (DCM) is characterized by left ventricular (LV) cavity enlargement 

and impaired contraction in the absence of significant coronary artery disease (CAD) (1). 

Although traditionally regarded as a “non-ischemic” cardiomyopathy, several studies have 

identified myocardial perfusion abnormalities in DCM patients with moderate or severe 

adverse remodeling (2–11). In particular, positron emission tomography (PET) and invasive 

angiographic assessment have demonstrated impaired myocardial perfusion reserve (MPR) 

(4–7,10,11), and coronary flow reserve (2,3,9). In the absence of obstructive epicardial 

CAD, these findings may indicate underlying microvascular dysfunction, providing support 

for a “microvascular ischemia hypothesis”, whereby chronic or recurrent myocardial 

hypoperfusion may drive fibrosis and adverse remodeling in DCM (4,6,12).

Cardiovascular Magnetic Resonance (CMR) facilitates detailed phenotyping of DCM and 

assessment of myocardial perfusion in a single investigation (1). As with PET, CMR 

allows the absolute quantification of myocardial blood flow (MBF), but with the added 

advantages of offering superior spatial resolution and concomitant evaluation of myocardial 

fibrosis (13,14). Such advantages are of particular relevance to DCM, in which LV wall 

thinning frequently accompanies adverse remodeling and myocardial replacement fibrosis is 

an important prognosticator (15). While the assessment of myocardial perfusion in DCM has 

been an area of active study, the relationship between myocardial perfusion and markers of 

adverse remodeling and fibrosis has not been fully elucidated. In this prospective study, we 

used CMR to evaluate absolute MBF and MPR in a broad spectrum of patients with DCM, 
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and to examine the relationship between myocardial perfusion, LV morphology, function 

and replacement fibrosis.

Methods

Patients

Consecutive patients (n=65) referred for CMR with a clinical diagnosis of DCM of at 

least 6 months duration were prospectively enrolled (16). The diagnosis of DCM was 

confirmed by CMR on the basis of: 1) increased left ventricular end-diastolic volume 

indexed to body surface area and reduced left ventricular ejection fraction (LVEF) compared 

to published reference ranges normalized for age and gender (17); and 2) absence of 

significant CAD or subendocardial late gadolinium enhancement (LGE) indicative of 

previous myocardial infarction. No patient had a history of previous myocardial infarction 

or coronary revascularization. Additional exclusion criteria included diabetes, hypertensive 

heart disease and significant primary valvular heart disease. Significant CAD, defined 

as ≥50% luminal stenosis in one or more epicardial vessels was excluded by coronary 

angiography in 45 (69%) patients, negative stress echo/SPECT in 12 (18%) patients, and 

CT coronary angiography in 5 (8%) patients. The remaining 3 patients were ≤40 years of 

age, with no history of angina, and no atherosclerotic risk factors. Healthy volunteers, of 

similar age and gender distributions, without cardiovascular disease, hypertension, diabetes, 

or smoking history, were recruited as controls (n=35). The study was approved by the local 

ethics committee and all patients and controls gave written informed consent.

CMR Protocol

CMR was performed on a 1.5T Siemens Avanto using a 12-element phased-array coil 

(Siemens Medical Solutions, Erlangen, Germany). Steady-state free precession cine imaging 

was first performed in standard long- and short-axis views with full myocardial coverage 

(18). All subjects were instructed to avoid caffeine ingestion for 24 hours prior to the 

CMR study. Adenosine was infused at 140μg/kg/min for 4 minutes to induce hyperemia. In 

subjects who did not exhibit an adequate hemodynamic response (increase in heart rate>10 

beats per minute and/or fall in blood pressure>10mmHg), adenosine was increased in a 

step-wise fashion to a maximum dose of 210μg/kg/min (18). After injection of 0.1 mmol/kg 

gadobutrol (Gadovist, Schering AG, Berlin, Germany), stress first-pass perfusion images 

were then acquired in 3 short-axis imaging planes (basal, mid-ventricular and apical slices) 

using a hybrid echo planar imaging sequence (19), together with a low-resolution image for 

the arterial input function, as previously described (20). Typical perfusion sequence pulse 

parameters were as follows: echo time 1.12ms, repetition time 5.6ms, voxel size 2.3 × 2.3 × 

8.0 mm3, and flip angle 28°.

LGE images were subsequently obtained using an inversion-recovery prepared gradient echo 

sequence. Inversion times were optimized to null normal myocardium with images repeated 

in two orthogonal phase-encoding directions to exclude artefact. First-pass perfusion 

imaging was repeated at least twenty minutes after stress image acquisition in identical 

slice locations to obtain resting images.
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Image Analysis

Ventricular volumes, ejection fraction, and LV mass were quantified using dedicated semi­

automated software (CMRtools, Cardiovascular Imaging Solutions, London, UK) (17). For 

perfusion quantification, after non-rigid in-plane image registration (21), the endocardial 

and epicardial contours were manually traced to generate the myocardial regions of interest 

(ROI) for the three short-axis perfusion slices. Each slice was then subdivided into four 

segments corresponding to the anterior, lateral, inferior and septal walls. Proton-density 

weighted images were used for surface coil intensity bias correction (22). Time-signal 

intensity curves were generated from the mean signal intensity in each of the twelve 

myocardial segments during first-pass perfusion. Perfusion quantification was performed 

by an observer blinded to all other CMR and clinical data. Absolute rest and stress MBF 

were quantified for each segment by a modified Fermi-function constrained deconvolution 

of the time-signal intensity curves from the arterial input function measured in the LV blood 

pool, as previously described (20,22). Rest MBF values were corrected for rate-pressure 

product in order to eliminate the effect of inter-individual differences in cardiac workload 

at rest (rest MBFcorrected=rest MBF/rate-pressure-productx10,000) (23). MPR was calculated 

as the ratio of stress MBF to rest MBFcorrected. Global rest MBF, stress MBF and MPR 

were derived by calculating the mean of the corresponding values for the twelve segments. 

For each patient, the presence and segmental location of mid-wall and/or epicardial fibrosis 

on LGE short-axis images corresponding to the slice location of the perfusion images was 

adjudicated by 2 experienced observers.

Statistical Analysis

Categorical data are presented as frequencies (%). Continuous data are expressed as mean 

± standard deviation or as medians with interquartile ranges as appropriate. Baseline 

characteristics were compared using Fisher’s exact test for categorical data and the 

Wilcoxon rank-sum test for continuous data. Patients with DCM were subdivided into 

two binary sub-groups: 1) LVEF >35% or LVEF ≤35%, and 2) with or without fibrosis. 

Comparisons of rest MBF, stress MBF and MPR between these sub-groups were performed 

using the Wilcoxon rank-sum test. Mixed-effects linear regression was used to investigate 

within patients whether segments with fibrosis had significantly different MBF to segments 

without fibrosis.

Linear regression analysis was performed to examine the relationships between perfusion 

measurements and LVEF in the entire study population. Univariable regression was 

used to investigate the association between perfusion measurements and clinical/CMR 

characteristics within the DCM cohort. Multivariable models were used to adjust for age, 

sex, LVEF, New York Heart Association (NYHA) functional class and LV mass index, as 

well as any other variables that were significant on univariable analysis, unless two variables 

were collinear in which case only one was included. Two-tailed values of p<0.05 were 

considered significant. Where multiple comparisons were necessary, a Bonferroni correction 

was applied to the p-values. All statistical analyses were conducted using Stata Version 15 

(StataCorp, College Station, Texas, USA).
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Results

Sixty-five patients with DCM and 35 healthy control volunteers were studied. The baseline 

characteristics of the study population are summarized in Table 1. Patients and controls were 

comparable with respect to age and sex. There was no significant difference in baseline 

systolic blood pressure between patients and controls, but DCM patients had a higher 

weight, resting heart rate, and rate pressure product. Among the patients with DCM, 33 

subjects (51%) had an LVEF≤35% and 32 (49%) subjects had an LVEF>35%. Patients in the 

LVEF≤35% and >35% subgroups had similar cardiovascular risk factor profile, heart failure 

duration, and treatment rates with angiotensin converting enzyme inhibitors/angiotensin II 

receptor blockers and beta-blockers, as well as a similar prevalence of mid-wall fibrosis 

(Table 2). The subgroup of patients with LVEF≤35% were older than the DCM LVEF>35% 

subgroup and were also more likely to receive treatment with loop diuretics, with a trend 

towards higher NYHA functional class.

Global Myocardial Blood Flow and Myocardial Perfusion Reserve

DCM vs Controls: Patients with DCM had a significantly higher global rest MBF 

compared to controls (1.73±0.42 vs 1.14±0.42 mL/g/min, p<0.001) (Figure 1A). In contrast, 

global stress MBF was significantly lower in DCM patients than in controls (3.07±1.02 

vs 3.53±0.79 mL/g/min, p=0.02) (Figure 1B). Consequently, global MPR was severely 

impaired in the DCM group (1.83±0.58 vs 3.50±1.45, p<0.001) (Figure 1C). The differences 

in global rest MBF and MPR remained significant when rest MBF without RPP correction 

was substituted in the analysis (uncorrected rest MBF: 1.56±0.38 vs 0.95±0.52 mL/g/min, 

p<0.001; MPR 2.01±0.65 vs 5.02±3.20 mL/g/min, p<0.001).

DCM LVEF≤35% vs DCM LVEF>35%: At rest, global MBF was comparable between 

the DCM subgroups (1.69±0.43 vs 1.77±0.41 mL/g/min, p=1.00) (Figure 1D). However, 

both global stress MBF (2.70±0.89 vs 3.44±1.03 mL/g/min, p=0.017) and global MPR 

(1.67±0.61 vs 1.99±0.50, p=0.047) were significantly reduced in DCM patients with 

LVEF≤35% compared to those with LVEF>35% (Figures 1E and 1F). Although the DCM 

subgroup with LVEF>35% and healthy controls had similar global stress MBF (3.44±1.03 

vs 3.53±0.79 mL/g/min, p=1.00) (Figure 1E), global rest MBF was significantly increased 

in the LVEF>35% subgroup (1.77±0.41 vs 1.14±0.42 mL/g/min, p<0.001) (Figure 1D). 

Accordingly, DCM patients with LVEF>35% still demonstrated a significantly depressed 

global MPR compared to controls (1.99±0.50 vs 3.50±1.45, p<0.001) (Figure 1F).

Myocardial Perfusion and Clinical/CMR Parameters

Global Rest MBF: In DCM patients, univariable analysis revealed that weight (β=−0.08, 

95% confidence interval [CI] −0.13 to −0.02, p=0.008), resting systolic blood pressure 

(β=−0.15, 95% CI −0.20 to −0.10, p<0.001), resting diastolic blood pressure (β=−0.13, 

95% CI −0.20 to −0.07, p<0.001), and indexed LV mass (β =−0.04, 95% CI −0.08 to 0.00, 

p=0.032) were significantly associated with global rest MBF (Online Figure 1A). However, 

only weight retained borderline significance on multivariable analysis (β=−0.67, 95% CI 

−0.13 to −0.00, p=0.049). Evaluating DCM patients, there was no correlation between rest 

MBF and LVEF (Figure 2A).
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Global Stress MBF: Significant univariable predictors of stress MBF in DCM patients 

included stress heart rate (β=0.23, 96% CI 0.09 to 0.37, p=0.002), NYHA functional 

class (β=−0.26, 95% CI −0.50 to −0.02, p=0.036), LVEF (β=0.39, 95% CI 0.19 to 0.59, 

p<0.001), LV end-diastolic volume index (β =−0.09, 95% CI −0.14 to −0.03, p=0.004), 

LV end-systolic volume index (β=−0.10, 95% CI −0.16 to −0.04, p<0.001), indexed LV 

mass (β=−0.14, 95% CI −0.23 to −0.05, p=0.003), RVEF (β=0.20, 95% CI 0.03 to 0.37, 

p=0.020), and the presence of midwall fibrosis (β=−0.62, 95% CI −1.20 to −0.05, p=0.034) 

(Online Figure 1B). Multivariable regression analysis demonstrated that stress heart rate 

(β=0.20, 95% CI 0.06 to 0.34, p=0.007) and LVEF (β=0.28, 95% CI 0.05 to 0.51, p=0.018) 

were independently associated with stress global MBF. Figure 2B illustrates the significant 

positive association between stress MBF and LVEF in DCM patients.

Global MPR: Several parameters were associated with MPR on univariable analysis 

including resting systolic blood pressure (β=0.14, 95% CI 0.07 to 0.22, p<0.001), resting 

diastolic blood pressure (β=0.10, 95% CI 0.00 to 0.20, p=0.048), stress heart rate (β=0.12, 

95% CI 0.04 to 0.20,p=0.004), stress systolic blood pressure (β=0.08, 95% CI 0.02 to 

0.14, p=0.012), LVEF (β=0.18, 95% CI 0.06 to 0.30, p=0.003), LV end-diastolic volume 

index (β=−0.04, 95% CI −0.07 to −0.00, p=0.026), LV end-systolic volume index (β=−0.05, 

95% CI −0.08 to −0.01, p=0.007), and RVEF (β=0.10, 95% CI 0.01 to 0.20, p=0.036) 

(Online Figure 1C). In the multivariable model, only stress HR (β=0.14, 95% CI 0.06 to 

0.22, p<0.001), stress systolic BP (β=0.08, 95% CI 0.02 to 0.14, p=0.008), and LVEF 

(β=0.14, 95% CI 0.01 to 0.28, p=0.042) were identified as independent determinants of 

MPR. The significant positive association between global MPR and LVEF in DCM patients 

is illustrated in Figure 2C.

LV Wall Stress: there was no association between stress or rest MBF and the ratio of 

LVEDV to LV mass (a surrogate for LV wall stress) in patients with DCM (r=0.06, p=0.59 

and r=0.12, p=0.34 respectively).

Myocardial Perfusion and Fibrosis

Overall, 16 (25%) DCM patients had midwall fibrosis, detected in 72/192 (38%) segments. 

Compared to patients without fibrosis, those with fibrosis were similar in terms of their 

baseline demographic characteristics, CMR parameters and medication history (Online 

Table 1). Patients with fibrosis had similar rest MBF (1.70±0.48 vs 1.74±0.40 mL/g/min, 

p=0.66) but lower stress MBF (2.60±1.04 vs 3.22±0.98 mL/g/min, p=0.04) and a trend 

towards lower MPR (1.60±0.63 vs 1.90±0.54, p=0.05), compared to those without fibrosis.

After adjustment for intracluster correlation within the 16 patients who had fibrosis, 

segments with fibrosis had lower rest MBF (mean difference −0.12 mL/g/min, 95% CI: 

−0.23 to −0.01 mL/g/min, p=0.035) and lower stress MBF (mean difference −0.15 mL/g/

min, 95% CI: −0.28 to −0.03 ml/g/min, p=0.013) but similar MPR (mean difference 0.04, 

95% CI: −0.07 to 0.15, p=0.44).
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Discussion

We have performed the first study using fully quantitative first-pass perfusion CMR methods 

to evaluate rest and stress MBF in a large and broad cohort of patients with DCM. Our study 

highlights that patients with DCM not only have reduced MPR and absolute stress MBF, 

but also increased rest MBF, compared with matched controls. Furthermore, we show that 

reduced stress MBF is associated with both the degree of LV dysfunction and the presence 

of myocardial fibrosis.

It has been hypothesized that a myocardial oxygen deficit caused by microvascular 

dysfunction may contribute to deterioration of LV function in DCM (6,12). The 

‘microvascular ischemia hypothesis’ postulates that chronic (rest) and/or repetitive (stress) 

myocardial hypoperfusion as a result of microvascular dysfunction may drive progressive 

LV systolic dysfunction and dilatation, which in turn may affect microvascular function 

in a vicious cycle (6,12). If proven, the microcirculation may in turn represent a novel 

therapeutic target to promote reverse remodeling.

Our results, which demonstrate a lower stress MBF in DCM, support the premise that 

microvascular dysfunction may exist at the level of the resistance vessels responsible for 

augmenting perfusion (4,6,10,24). The mean global absolute stress MBF of our DCM cohort 

is higher than previously reported (4,6,10,24), and not reduced to levels conventionally 

indicative of ischemia (25). This finding is consistent with the work of Dass et al 
who identified dissociation between microvascular dysfunction and tissue oxygenation 

in DCM (26). However, myocardial ischemia is a metabolic state that represents the 

mismatch between supply and demand, and assessment of perfusion alone is not therefore 

a perfect surrogate for this. Nevertheless, our finding that rest MBF is significantly higher 

in DCM patients compared to controls provides circumstantial evidence against chronic 

microvascular ischemia being the main driver of adverse LV remodeling. We therefore 

hypothesize that the failing myocardium requires higher rest MBF to compensate for the 

increased myocardial oxygen demands from increased work and potentially the need to 

overcome higher wall stress. However, in contrast to the significant difference in rest MBF 

between DCM patients and controls, we found no significant association between rest 

MBF and LVEF within the DCM group. We propose that this may be attributable to a 

primary myocardial problem of impaired substrate utilization, as documented by Neglia et 
al (27), with the result that the metabolic drive to increased rest MBF is attenuated. When 

MBF is uncoupled from metabolic demand by the vasodilator adenosine, stress MBF is 

intimately related to LVEF, and therefore stress MBF and MPR correlate with LVEF. If 

microvascular ischemia plays a role in the pathogenesis of DCM, we therefore speculate that 

the myocardial insult stems from transient repetitive episodes of myocardial ischemia, due to 

abnormal vasodilation and inadequate MBF augmentation during stress, rather than resting 

hypoperfusion.

In our study, DCM patients with severe LV dysfunction had greater reductions in stress MBF 

and MPR, compared to those with lesser degrees of contractile impairment. On univariable 

analysis, we observed that stress MBF was significantly associated with LVEF, LV volumes, 

and LV mass index. Of these LV indices, only LVEF was independently associated with 
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stress MBF, supportive of a close relationship between stress perfusion and pump function, 

particularly in the pathophysiologic range.

Several reports have also highlighted endothelial dysfunction as a potential cause of 

perfusion abnormalities in DCM (6,9,10,12). The reduced stress MBF and MPR observed 

in our study may additionally stem from failure of the coronary microcirculation to adapt 

to myocardial hypertrophy, since the increase in LV mass in DCM is not accompanied 

by an appropriate growth of coronary resistance vessels (28,29). Tsagalou et al found a 

reduction in myocardial capillary density, which correlated with depressed coronary flow 

reserve measured by left heart catheterization (30). Work by Laguens et al has identified 

a significant reduction in length density and loss of vessel wall smooth muscle in small 

resistance-arterioles (31). Although a reduction in intramyocardial capillaries was not found, 

their findings suggest that coronary microcirculatory remodeling may still contribute to 

decreased flow reserve (31). In our DCM cohort, indexed LV mass was higher compared 

to controls and correlated negatively with both rest and stress MBF. Although we do not 

have histological corroboration, our findings imply incomplete adaptation of the coronary 

microcirculation to eccentric LV hypertrophy and remodeling.

The decreased stress MBF and MPR observed in the DCM patients may relate to increases 

in wall stress and extravascular compression of microcirculatory vessels. Previous studies 

using intracoronary Doppler flow velocity found that hyperemic flow velocity positively 

correlated with LVEF in DCM patients, and exhibited a significant negative association with 

LV end-diastolic wall stress (29,32). Van den Heuval et al similarly observed a negative 

correlation in DCM patients between MPR measured by PET and LV systolic wall stress 

derived by echocardiography (6). Knaapen et al used CMR to measure the ratio of LVEDV 

to LV mass, an indirect measure of global end-diastolic wall stress (33), and found that this 

inversely correlated with stress MBF derived by PET (34). In contrast, Neglia et al found 

no correlation between coronary flow values or stress MBF values derived by perfusion 

PET between LVEF and LV wall stress measured by echocardiography and LVEDP on left 

heart catheterization (10). This observation is corroborated by the present study, in which 

we found no association between stress or rest MBF and the ratio of LVEDV to LV mass 

(33,34).

Although some previous PET studies have also suggested that rest MBF may also be 

impaired in DCM (5,7,10,35), others have found no difference between DCM patients 

and controls (4,6,34). It is likely that the lack of consensus on rest myocardial perfusion 

in the literature using nuclear methods is a reflection of the small sample sizes in these 

studies, but also the limited spatial resolution making detection of areas of MBF abnormality 

challenging to resolve in a pathology characterized by thin myocardial walls (36). The 

differences in MBF values between these PET studies may also be explained by the use of 

different acquisition protocols, PET tracers, and quantification models (37,38). We cannot 

exclude the possibility that the divergence in rest MBF between our results and PET data 

may partly reflect the qualitatively different approaches and limitations of the two modalities 

(25). Nevertheless, significant advantages of our study over the previous CMR perfusion 

studies include the absolute quantification of MBF at rest and stress with in-plane spatial 
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resolution down to 2.3 mm, and the larger sample size with age- and sex-matched controls 

used (26,35).

Previous work by our group has highlighted the prognostic value of midwall fibrosis 

assessed by LGE-CMR in DCM patients (15,39). Although the pathophysiologic basis of 

midwall fibrosis remains unclear, perfusion and microvascular abnormalities have been 

implicated (12). Studies using PET to explore the hypothesis that fibrosis may lead to 

perfusion abnormalities (or vice versa) have failed to demonstrate a clear association 

(10,34,40). Knaapen et al quantified MBF and the perfusable tissue index as a measure of 

fibrosis (34), finding no association between MBF and perfusable tissue index, although 

histological validation for the latter in DCM is lacking. CMR is able to accurately 

identify myocardial fibrosis in-vivo with good histological correlation (15), in addition 

to allowing quantification of MBF in a single study. Our data show that stress and rest 

MBF in DCM patients are reduced in segments with LGE compared to those without, 

suggesting myocardial fibrosis is associated with impaired perfusion. These findings raise 

the possibility that segments with fibrosis exhibit microvascular abnormalities, exemplified 

by the inability to augment MBF at stress, although the impaired perfusion may simply 

reflect diminished demand secondary to the reduced number of myocytes. Alternatively, 

the presence of fibrosis may have confounded the evaluation of perfusion as reported in 

the setting of hypertrophic cardiomyopathy by Villa et al (41). Nevertheless, the observed 

differences in stress and rest MBF did not translate to a significant difference in the MPR 

in segments with LGE compared to those without. Only a minority of our cohort had LGE, 

and the patient subgroup without fibrosis still demonstrated depressed stress MBF and MPR. 

Hence, while fibrosis may contribute towards perfusion abnormalities in DCM, it is unlikely 

to be the principal cause.

Limitations

This is a single center study based in a large tertiary referral hospital and may therefore 

be subject to referral bias. The impact of this was minimized by enrolling consecutive 

patients who met CMR criteria for DCM. Patients in the LVEF>35% and LVEF≤35% 

groups differed in age. Although advanced age has been shown to affect myocardial blood 

flow (42), this was not found to be an independent determinant of MBF or MPR in our 

cohort.

A small proportion of our cohort did not have coronary artery disease excluded by coronary 

angiography. However, these patients were predominantly young (<40 years) and of low risk 

for ischemic heart disease. Invasive coronary angiography would not therefore have been 

ethical or in keeping with guidelines given the low pre-test probability for ischemic heart 

disease.

Furthermore, these patients had negative non-invasive imaging (CT coronary angiography 

or SPECT) and no evidence of infarction or indeed visually apparent inducible ischemia on 

their CMR scan.

A modified Fermi deconvolution model was used to derive myocardial blood flow values 

from the arterial input function. Severely impaired LV function, particularly when associated 
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with right ventricular dysfunction and severe tricuspid regurgitation may theoretically cause 

dilution of the contrast agent compact bolus, leading to slow arterial enhancement and 

thereby rendering myocardial enhancement insensitive to blood flow. However, other studies 

have also demonstrated the feasibility of perfusion quantification in the setting of severe left 

ventricular dysfunction (43).

Conclusions

Our data demonstrate that patients with DCM exhibit a higher rest MBF but lower 

stress MBF and MPR, indicating partial consumption of vasodilatory reserve as a 

mechanism to augment MBF to the failing myocardium. Reductions of stress MBF and 

MPR significantly correlate with LVEF, and highlight the interplay between myocardial 

perfusion abnormalities and impaired pump function. Impaired stress MBF is also associated 

with fibrosis. These findings suggest that if microvascular dysfunction plays a role in 

the pathogenesis of DCM, then stress-induced repetitive stunning rather than chronic 

myocardial hypoperfusion is likely to be responsible. Further work, including longitudinal 

studies, is required to elucidate the temporal relationship between perfusion abnormalities 

and LV dysfunction in DCM, and to establish their prognostic implications.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CAD coronary artery disease

CMR cardiovascular magnetic resonance

DCM dilated cardiomyopathy

LGE late gadolinium enhancement

LV left ventricular

LVEF left ventricular ejection fraction
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LVESVi left ventricular end-systolic volume index

MBF myocardial blood flow

MPR myocardial perfusion reserve

PET positron emission tomography
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Perspectives

Competency in Medical Knowledge

There is a large body of evidence to support the clinical role of LGE-CMR in 

the diagnosis and risk stratification of patients with heart failure. Quantitative CMR 

perfusion is now emerging as an adjunctive clinical tool. For the first time, we apply 

this quantitative approach to fully characterize perfusion abnormalities in DCM. We 

demonstrate that stress MBF and MPR are reduced in DCM and correlate with LVEF, 

supporting the premise that microvascular dysfunction exists in DCM. However, rest 

MBF is increased, suggesting that sustained hypoperfusion is unlikely to drive disease 

progression.

Translational Outlook

Longitudinal studies are warranted to elucidate the relationship between microvascular 

dysfunction and outcome in DCM. In the absence of such data, our study suggests that 

the microcirculation is unlikely to represent a promising disease-modifying target in 

DCM.
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Figure 1: Myocardial Perfusion Measurements in Dilated Cardiomyopathy and Healthy 
Controls.
Stress and Rest Global Myocardial Blood Flow and Myocardial Perfusion Reserve in 

Dilated Cardiomyopathy Patients versus Controls (A-C) and stratified by Left Ventricular 

Ejection Fraction (D-F). MBF=Myocardial blood flow; DCM=Dilated cardiomyopathy; 

MPR=Myocardial perfusion reserve; LVEF=Left ventricular ejection fraction.
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Figure 2: Myocardial Perfusion and Left Ventricular Function.
Relationship of Rest MBF (A), Stress MBF (B), and MPR (C) to LVEF in Dilated 

Cardiomyopathy. MBF=Myocardial blood flow; LVEF=Left Ventricular Ejection Fraction; 

MPR=Myocardial Perfusion Reserve.
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Table 1:

Baseline Demographic and Imaging Data for DCM and Control Groups

DCM n=65 Controls n=35 P- value

Age, years 50 [44, 62] 45 [38, 54] 0.055

Male, n (%) 48 (73.8) 21 (60.0) 0.18

Height, m 1.74 [1.69, 1.80] 1.73 [1.63, 1.82] 0.50

Weight, kg 80 [69, 95] 73 [62, 83] 0.009

Rest heart rate, min−1 73 [67, 85] 64 [57, 70] <0.001

Stress heart rate, min−1 93 [80, 103] 90 [80, 103] 0.76

Rest Systolic Blood Pressure, mmHg 124 [108, 134] 117 [112, 133] 0.57

Stress Systolic Blood Pressure, mmHg 128 [114, 139] 122 [107, 134] 0.28

Rate-Pressure Product, mmHg min−1 8829 [7560, 10500] 7606 [6669, 8970] 0.002

Imaging Data

Cardiac Index 3570 [3039, 4104] 3460 [3125, 3852] 0.58

LVEDVi, mL/m2 129 [112, 171] 79 [74, 88] <0.001

LVESVi, mL/m2 84 [62, 124] 26 [21, 31] <0.001

LVEF, % 35 [26, 46] 68 [64, 71] <0.001

LV mass index, g/m2 82 [74, 95] 57 [49, 63] <0.001

RVEDVi, mL/m2 90 [69, 108] 80 [70, 89] 0.045

RVESVi, mL/m2 42 [29, 55] 31 [25, 37] 0.002

RVEF, % 54 [41, 61] 61 [57, 69] 0.001

Mid-wall fibrosis, n (%) 16 (24.6) 0 (0.0) <0.001

DCM=Dilated cardiomyopathy; LVEDVi=Left Ventricular End-Diastolic Volume index; LVESVi=Left Ventricular End-Systolic Volume index; 
LVEF=Left Ventricular Ejection Fraction; LV=Left ventricular; RVEDV=Right Ventricular End-Diastolic Volume index; RVESVi=Right 
Ventricular End-Systolic Volume index; RVEF=Right Ventricular Ejection Fraction.
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Table 2:

Baseline Clinical and Imaging Characteristics stratified by LV Function

DCM LVEF ≤35% n=33 (51%) DCM LVEF >35% n=32 (49%) P value

Age, years 55 [46, 66] 47 [35, 58] 0.018

Male, n (%) 26 (78.8) 22 (68.8) 0.41

Hypertension, n (%) 5 (15.2) 6 (18.8) 0.75

Hyperlipidemia, n (%) 11 (33.3) 5 (15.6) 0.15

Smoker, n (%) 5 (15.2) 5 (15.) 1.00

Left Bundle Branch Block, n (%) 10 (30.3) 10 (31.3) 1.00

Rate-Pressure Product, mmHg min−1 9672 [8100, 10578] 8364 [7336, 10464] 0.13

New York Heart Association Class, n (%)

 I 11 (33.3) 20 (62.5)

 II 15 (45.5) 9 (28.1) 0.057

 III 7 (21.2) 3 (9.4)

Medical therapy, n (%)

ACE inhibitor or A2RB 31 (93.9) 29 (90.6) 0.67

Beta blocker 28 (84.8) 23 (71.9) 0.24

Aldosterone antagonist 16 (48.5) 12 (37.5) 0.46

Loop diuretic 19 (57.6) 6 (18.8) 0.002

Imaging Data

Cardiac Index 3158 [2900, 3765] 3834 [3349, 4202] 0.005

LVEDVi, mL/m2 171 [129, 199] 123 [108, 134] <0.001

LVESVi, mL/m2 124 [92, 153] 64 [54, 79] <0.001

LVEF, % 26 [22, 32] 47 [42, 52] <0.001

LV mass index, g/m2 85 [75, 116] 78 [69, 88] 0.033

RVEDVi, mL/m2 85 [66, 112] 98 [79, 107] 0.43

RVESVi, mL/m2 52 [29, 70] 41 [29, 48] 0.16

RVEF, % 43 [28, 56] 59 [54, 63] <0.001

Midwall fibrosis, n (%) 11 (33.3) 5 (15.6) 0.15

DCM=Dilated Cardiomyopathy; ACE=Angiotensin Converting Enzyme; A2RB=Angiotensin II Receptor Blocker; LVEDVi= Left Ventricular End­
Diastolic Volume index; LVESVi=Left Ventricular End-Systolic Volume index; LVEF=Left Ventricular Ejection Fraction; LV=Left Ventricular; 
RVEDVi=Right Ventricular End-Diastolic Volume index; RVESVi=Right Ventricular End-Systolic Volume index; RVEF=Right ventricular ejection 
fraction.
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