Skip to main content
. 2021 Aug 26;47(1):163–179. doi: 10.1038/s41386-021-01128-w

Fig. 3. Selected studies revealing the neural underpinnings of performance on devaluation tasks in humans.

Fig. 3

a Effects of damage to the orbital and medial sectors of PFC (VMPFC) on the devaluation task in humans, relative to healthy participants (NL) and brain-damaged controls (BDC). Devaluation score shows change from baseline (presate-postsate responses to the image predicting the sated food). Data from [85]. b Effects on the devaluation task of continuous theta-burst magnetic stimulation (cTMS) applied to the lateral frontal cortex intended to disrupt the orbital frontal cortex network. Lower scores of Sham group indicate reduction in choice of the cue predicting the sated food. Data from [86]. c In an fMRI version of the devaluation task, neural responses elicited by the target CS (Tgt CS + u)—the visual stimulus that had been paired with the devalued odor—declined from pre- to post-satiety, whereas the nontarget CS (nTgt + u) activity was unchanged. OFC (top) and amygdala (bottom) signal change is plotted as contrasts of parameter estimates (betas) for both target and nontarget CS, after adjusting for CS– baselines. Data from [92].