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The real world is uncertain, and while ever changing, it constantly presents itself in terms of new sets of behavioral options. To
attain the flexibility required to tackle these challenges successfully, most mammalian brains are equipped with certain
computational abilities that rely on the prefrontal cortex (PFC). By examining learning in terms of internal models associating
stimuli, actions, and outcomes, we argue here that adaptive behavior relies on specific interactions between multiple systems
including: (1) selective models learning stimulus-action associations through rewards; (2) predictive models learning stimulus- and/
or action—outcome associations through statistical inferences anticipating behavioral outcomes; and (3) contextual models learning
external cues associated with latent states of the environment. Critically, the PFC combines these internal models by forming task
sets to drive behavior and, moreover, constantly evaluates the reliability of actor task sets in predicting external contingencies to
switch between task sets or create new ones. We review different models of adaptive behavior to demonstrate how their
components map onto this unifying framework and specific PFC regions. Finally, we discuss how our framework may help to better
understand the neural computations and the cognitive architecture of PFC regions guiding adaptive behavior.

Neuropsychopharmacology (2022) 47:58-71; https://doi.org/10.1038/s41386-021-01123-1

INTRODUCTION

Humans and other animals have evolved in a world that is uncertain,
ever changing, and constantly presents choice situations that have
been seen before rarely. These characteristics of natural environ-
ments—uncertainty, non-stationarity (volatility), and open-ended-
ness—pose critical adaptive challenges, which ultimately determine
the animal’s ability to learn about sources of food and danger and to
take appropriate actions. To successfully tackle these challenges,
animals must adapt their learning and decision-making strategies in
multiple ways. Mammals are the most adaptive class of species as
evident from their success in populating very different environments
on the planet. The ability to adapt to different environments mainly
relies on the brain cognitive flexibility, and not surprisingly,
mammalian brains have evolved in specific ways related to the
demand for adaptability [1] (also see [2] for more detailed discussion
[R3.6]). Notably, the prefrontal cortex (PFC) has extensively evolved
in mammals and especially in humans, suggesting the importance
of the PFC for adaptive behavior.

Here, we aim to present a unified framework for understanding
adaptive behavior in terms of different learning strategies that link
stimuli, actions, and outcomes to guide behavior. In this framework,
adaptability arises from specific interactions between multiple
learning systems——each implementing different strategies—that
are combined into task sets driving behavior. We propose that the
main role of the PFC in adaptive behavior is to manage the learning
and selection of task sets based on their reliability in predicting
external contingencies, i.e., stimulus—action—outcome contingencies.
We review existing computational models of adaptive learning and

decision making to show how these models can be mapped onto
different components identified in our framework. After establishing
the link between existing models and our framework, we discuss
contributions of different areas and regions of the PFC to adaptive
learning and decision making. We then describe how our framework
may help future research to better understand adaptive learning
and decision making in the PFC by mapping computations that are
currently considered as disparate processes to a unified machinery
subserving adaptive behavior.

EVIDENCE FOR ADAPTABILITY IN LEARNING AND DECISION
MAKING

While an animal is interacting with its environment, not only does
the environment change in multiple ways but also the animal’s
internal state (e.g., needs) changes constantly. Each type of
change requires specific adjustments in learning and decision
making [3]. In this section, we provide examples of such changes
and evidence for corresponding adjustments measured in
controlled experimental settings.

Naturalistic challenges that necessitate flexibility

Environmental changes include but are not limited to alterations
in external contingencies in terms of the rate or probability at
which different stimuli, actions provide reward, resulting in
uncertainty [2, 3]; how reward can be obtained (model of the
environment); and occurrences of new situations featuring new
possible stimuli, actions, outcomes, and contingencies across
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these events. For example, food or water sources can be
replenished at different rates during a season, requiring an animal
relying on them to adjust the time or frequency at which it visits
those sources. However, seasonal changes can drain some of
those sources, forcing the animal to look for new ones. In search of
new sources, the animal is faced with new landscapes and
landmarks with different levels of risks regarding resource scarcity
and predation. In addition to these external factors, as the animal’s
physiological or motivational states change due to depletion or
repletion, the desirability or subjective value of certain rewards
may change. For example, as a thirsty animal drinks water from a
waterhole, the reward value associated with that waterhole as a
stimulus (often referred to as stimulus value should increase,
whereas the value of drinking water as an action (often referred to
as action value) should decrease, allowing the animal to attend to
other needs and actions without reducing the predictive value of
the waterhole in providing water (i.e., dissociate “objective”
prediction of an outcome from its subjective value). Finally,
contextual cues such as the presence of other non-predatory
animals can provide additional information about the reward
predictive value of certain stimuli or actions.

The aforementioned examples highlight important learning and
decision-making challenges that animals face in natural environ-
ments featuring uncertain, volatile, and open-ended situations. In
general, these features require simultaneous updates of different
models that the animal uses to link stimuli, actions, reward
outcomes (which we refer to as internal models), as well as
adjustments in how information from these internal models should
be combined to make choices. However, updating internal models
that contribute to ongoing behavior should differ from previously
learned models that do not. Non-stationary or volatile environ-
ments require adjustments in learning and/or in weighting
different estimates from various learning systems. Finally, open-
ended environments necessitate to regulate the generalization and
transfer of previously learned models to novel situations and tasks.

To understand how the brain resolves these adaptive require-
ments arising in natural environments, similar situations are
recreated in controlled experimental settings. These settings
provide evidence that humans and other mammals exhibit
different types of flexibility required to tackle them.

Effects of uncertainty on learning

The probabilistic reversal learning (PRL) task and its variants have
often been used to study the effects of uncertainty and volatility
on learning and decision making [3], pointing to multiple types of
behavioral adjustments. Using the PRL task with different reward
probabilities for the better and worse stimuli, Costa et al. [4] found
that to detect reversals in stimulus—outcome associations,
monkeys rely more heavily on what they have learned (priors) in
more uncertain environments (reward probabilities closer to 0.5),
pointing to adjustments in inference processes to detect reversals
according to expected uncertainty. Similarly, Grossman et al. [5]
have shown that a model with the learning rate (i.e., the rate at
which reward estimates are updated) that can increase or
decrease depending on unexpected uncertainty (computed using
unsigned reward prediction error) can better capture choice
behavior of mice during a dynamic foraging task.

Other studies have found higher learning rates in volatile
compared to stable environments in both monkeys [6] and
humans [7, 8]. More detailed analyses and modeling of reversal
learning, however, have provided evidence for time-dependent
adjustments in learning relative to the time of reversals in
monkeys [9] and humans [10].

Effects of uncertainty on combination of information

Uncertainty and volatility have other profound effects beyond
changes in learning rates. For example, a recent study examining
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learning and choice behavior across different experiments in
monkeys and humans has found that reward probability and
magnitude are combined in an additive fashion (instead of a
multiplicative model based on the normative account) under
uncertainty, and the relative weighting of reward probability to
magnitude depends on the level of volatility in the environment
[11]. In a similar task, Blain and Rutledge [8] also found that an
additive model explains the combination of reward information in
humans better than a multiplicative model. Interestingly, even when
reward probability and magnitude are explicitly given but risk
pressure changes over time, human subjects combine this
information additively [12]. Consistent with these results, Rouault
et al. [13] also showed that instead of optimal integration of reward
magnitudes and belief about reward contingencies, human
participants additively combine context-dependent reward expecta-
tions and reward magnitudes to make decisions under uncertainty.
Moreover, using a probabilistic learning task in which monkeys had
to learn the probability of reward for three stimuli, Wittmann et al.
[14] showed that recent memories of unassociated reward and
choice outcomes influenced future choices. Finally, there is evidence
that adaptive behavior in volatile and open-ended environments is
likely achieved through approximate low-level inferential processes
about the current latent state of environment (that especially
determines action-outcome contingencies) without inferring possi-
ble higher-order causes of changes in the environment such as the
level of volatility [15].

Adjustments in predicting reward

In addition to the probabilistic nature of reward outcome and
changes in reward contingencies, an important form of uncertainty
in the environment is the nature of stimulus-action—outcome
associations or simply what predicts reward outcomes. This is
especially challenging in natural environments because stimuli
predicting reward outcomes have multiple features and are
presented simultaneously, and thus, it is unclear what feature(s),
combination(s) of features, and/or stimulus (stimuli) reliably predict
reward outcomes and must be learned. Moreover, there are
different ways that stimuli and actions preceding an outcome could
be linked together. On the one hand, reward magnitudes can be
used to associate presented stimuli and the chosen actions to
estimate the so-called “cached values” for taking actions based on
stimuli, which is usually referred to as model-free reinforcement
learning (RL) [16]. On the other hand, actions (or sequences of
actions) can be directly linked to outcome identity in order to allow
predicting outcomes based on stimuli and states, leading to what is
usually referred to as model-based RL [16].

There is evidence that these two types of RL are involved in a
flexible manner. For example, in a two-step task in humans [17],
the relative involvement of model-free and model-based RL
appears to depend upon the prediction precisions associated with
these processes [18] along with cognitive demands due to a
concurrent task [19]. A more recent study in mice has found that
volatile transitions across successive behavioral steps slows down
the adaptive response to changes in reward probabilities and
moreover, drastically changes how previous outcomes and
interactions between transitions and outcomes influence choice
behavior [20]. Finally, when facing multi-dimensional stimuli, there
is uncertainty about which stimulus features should be learned to
guide behavior to optimize adaptive behavior. For example, one
can associate reward to individual features of stimuli and combine
this information to estimate values associated with each stimulus
(feature-based learning) instead of directly learning the value of
individual stimuli (object-based learning). Recent studies showed
that in response to multi-dimensional stimuli, the learning strategy
also depends on the volatility, generalizability (i.e, how well
features of stimuli or options predict their values), and dimension-
ality of the environment [21-23].
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Together, these studies provide evidence that various mechan-
isms are involved in learning and decision making to guide
adaptive behavior.

A UNIFYING FRAMEWORK FOR UNDERSTANDING ADAPTIVE
BEHAVIOR

The ultimate goal of learning is to enable the animal to exhibit an
appropriate response or select an action with desirable outcomes in
every situation based on presented stimuli, context, and the state of
the animal (Fig. 1). Learning involves multiple internal representa-
tions with various degrees of flexibility. In its simplest form, learning
leads to associate rewards (understood here and thereafter in terms
of their subjective values) to certain stimuli and actions that precede

reward quantities) through Pavlovian and simple instrumental
conditioning, respectively. Learning stimulus-reward (S-Rew) and
action-reward (A-Rew) associations (referred to as stimulus and
action values, respectively) enables stimuli and actions to directly
elicit desirable behavior. These types of learnings, however, do not
form any internal models of the environment, as the learning primary
reflect the current animal’s state or need (but see [24]). As a result,
S-Rew and A-Rew learning are poorly flexible because stimulus or
action values are divorced from outcome identity (e.g, make no
differences between water or food rewards), hindering their use and
integration when the animal’s state or need changes or when
multiple types of reward are present.

Selective models

them. Stimuli and actions thus acquire a rewarding value by being
directly associated with rewards or indirectly via secondary
reinforcers (like numbers or dots representing monetary values or

Instead of associating reward to stimuli or actions that precede
them (S-Rew and A-Rew learning), the brain can use reward to
directly link the chosen action and the stimulus or stimuli that

Task set

Context (external cues and
internal state)

Stimuli
(and/or their features)

Outcomes

Actions
(or sequence of actions)

Flexible S-A-O associations using
task set

Type of learning

S-Rew associations (stimulus value)

A-Rew associations (action value) I

S-A associations (selective model)

S-0 or F-O associations (predictive model)

A-O associations (predictive model)

Fig. 1 Dissecting adaptive behavior based on different types of links between stimuli, actions, and outcomes. A The goal of learning is to
obtain certain outcomes by selecting appropriate actions based on presented stimuli while considering the context that includes internal
state as well as external cues that reflect the latent state of the environment. This requires linking stimuli, actions, and outcomes, which can be
done in multiple ways each with different levels of flexibility. B Different types of learning strategies for linking stimuli (S), actions (A), and
outcomes (O) and their main shortcomings. (1) S-Rew associations link reward values (Rew value) of the outcomes to certain stimuli that
precede those outcomes, allowing for the computation of stimulus value. Such a model cannot correctly link S and O if reward that follows the
same stimulus (Rew’) or the state of the animal changes. (2) A-Rew associations link reward values (Rew value) of the outcomes to certain
actions that precede those outcomes, allowing for the computation of action value. Such a model cannot correctly link A and O if reward
(Rew’) that follows the same action or state of the animal changes. (3) S-A associations or selective models link the chosen action and the
stimulus that precedes this action using experienced rewards. Such models cannot link S and A if reward type or state of the animal changes.
(4) S-O (similarly feature-outcome, F-O) associations or predictive models link S (respectively, F) and O by learning the probability of
outcomes contingent upon stimuli and/or their features regardless of their rewarding values through encoding the statistical occurrences of
these outcomes. (5) A-O associations or predictive models link A and O by learning the probability of outcomes contingent upon actions
regardless of their rewarding values. Predictive models cannot easily transfer learning from one context to another context. C Flexible link
between stimuli, actions, and outcomes through creation of task sets consisting of multiple internal models (see text for more details).
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precede it (i.e., stimulus—action associations, S-A). In response to
stimuli, the most desirable action can then be selected by
choosing the action with the strongest stimulus-action associa-
tion. In the context of habitual vs. goal-directed behavior, similar
types of associations are referred to stimulus-response associa-
tions and attributed to the habit system [25]. However, we suggest
that S-A associations form an internal model of the environment
reflecting the reward magnitude contingencies upon the actions
chosen in response to stimuli, which we refer to as a selective
model [26, 27]. In our view, selective models are internal models
that can be invoked beyond the notion of habits or model-free RL
to covertly sample or replay additional internal models of the
environment in the context of goal-directed behavior (see below).

Selective models improve adaptive behavior beyond S-Rew and
A-Rew learning because they allow selecting actions according to
stimuli, and because they can be used in conjunction with other
internal models as explained below. Learning selective models can
be simply performed through model-free RL based on Hebbian
plasticity modulated by rewards. However, efficient RL requires
the speed of learning (or learning rates) in selective models to
depend in a complex manner upon the environment properties.
Moreover, learning S—A associations can be challenging in natural
environments featuring a myriad of stimuli or choice options,
yielding to the curse of dimensionality (i.e, learning challenge due
to an exponential increase in the number of possible stimuli/
options when stimuli/options have multiple features each with
multiple values) and credit assignment (i.e., correctly assigning
outcomes to stimuli that predict them or to actions that resulted
in obtaining them) issues. Finally, similar to S-Rew and A-Rew
learning, selective models are poorly flexible again because S-A
associations are divorced from outcome identity, hindering their
use and integration when animal’s internal states and needs
possibly in relation with the context (e.g., presence of predators
and dangers) change.

Predictive models

These adaptive issues can be overcome by learning the probability
of outcomes contingent upon stimuli and/or actions regardless of
their rewarding values and by encoding the statistical occurrences
of these outcomes in stimulus—outcome (S-0), action-outcome
(A-O) or stimulus—action—outcome (S-A-O) associations. These
S-O and (S-)A-O associations form internal models of the
environment that aim to predict outcome identity based on
presented stimuli and/or actions, which we refer to as predictive
models. Predictive models enable the brain to select actions based
on anticipating outcome identity (directly from (S-)A-O associa-
tions or indirectly from S-O associations by remapping stimulus
onto action spaces) and consequently based on covertly experien-
cing (i.e., without any action taken or reward being obtained) their
current rewarding values. Predictive models are similar to
cognitive maps [28] and form the basis for the so-called goal-
directed behavior [25] but as explained below, serves an
additional essential purpose, namely the arbitration between
different sets of internal models to drive behavior.

Moreover, for simplicity, we use O to refer to outcome that may
consist of many sensory features O;. Predictive models thus serve
to predict O, O;, or combinations of O;'s occurrences. Using O as a
generic notation, prediction is indeed about whether O will occur
or not, regardless of its subjective values. If O varies on a
magnitude/graded scale, then predicted models code the
prediction as a certain level of O or about not less/more than a
certain level of O. Finally, S and in S-Rew can also be encoded as O
in predictive models. Such stimulus values S-Rew may compete in
decision making with the anticipation of O based on predictive
models and consequently the associated covert experience of the
current subjective value of O. We note that this covert experience
might then gradually alter the acquired S-Rew values internally.
However, because this only can happen gradually, S-Rew values
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remain more rigid than current value anticipation processes based
on predictive models solely.

Therefore, predictive models yield to more flexible behavior
that depend upon animal’s internal states. In natural environments
when stimuli have multiple features, predictive models can also
learn to associate outcomes to stimuli features (F-O associations),
thereby mitigating the curse of dimensionality [21-23]. In
addition, predictive models can be extended to include multiple
stimulus, actions, and outcome and thus can incorporate the true
interdependence between stimuli, actions, and outcomes in the
environment. This makes predictive models more precise than
selective models reflecting only reward magnitudes. At the same
time, predictive models are learned through co-registration of
stimuli or stimulus’ features, actions, and outcomes, making them
more complex to learn than selective models especially in the
presence of other (distractive) events.

Advantages and disadvantages of selective vs. predictive
models

Both selective and predictive models enable the animal to choose
desirable courses of action. They have their own advantages and
disadvantages, yielding to the important question regarding how
they are combined to make decisions or equivalently, how their
respective influence on choice is regulated. Selective models
directly incorporate rewarding/punishing subjective values when
learning occurs making them especially efficient in the short run
or when such values are weakly dependent upon animal’s internal
states but rather inefficient in the converse cases. Predictive
models, by contrast, incorporate more extensive and “objective”
information about the environment, making them slower to learn
and less efficient in the short run but much more efficient to guide
behavior with respect to the animal’s internal states that may vary
across time.

The contribution of selective and predictive models to adaptive
behavior was inspired by similar interactions between model-free
and model-based RL systems [16, 18]. However, unlike pure
competition between model-free and model-based RL in control-
ling behavior and arbitration between the two systems based on
their reliabilities, the respective contribution of selective and
predictive models to adaptive behavior should be viewed as being
cooperative and mutually supportive, as originally proposed in
Artificial Intelligence [29]. Indeed, selective and predictive models
can learn external contingencies in parallel because predictive
models can serve as an internal model to covertly (i.e., without
taking any action) simulate the environment, which selective
models may covertly sample and consequently learn with respect
to current animal’s internal states. Accordingly, adaptive behavior
is likely to derive from a constant mixture of signals from selective
and predictive models invoked together [30], which weights
should especially rely on the reliability of outcome expectations
drawn from predictive models [27, 29, 31-33].

Shortcomings of selective and predictive models and how
they can be mitigated
A central challenge for adaptive behavior, however, is that in the
learning mechanisms mentioned above, new associations are
learned when new situations occur by gradually erasing previously
learned associations. Although this has little impact when
previously learned situations never reoccur, overwriting learned
associations is dramatically detrimental in open-ended environ-
ments featuring both recurrent and new situations [26, 27].
Therefore, additional adaptive mechanisms are needed to deal
with recurrent and new situations in order that learning new
associations preserves what was previously learned and that
previously learned associations may be retrieved to guide
behavior.

We have previously proposed that this requirement for efficient
adaptive behavior in uncertain, non-stationary, and open-ended
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environments is achieved by creating task sets——that is, combina-
tions of selective and predictive models along with contextual
models (see below)--that are invoked and stored together in
relation with latent states of the environment to efficiently adapt to
both recurrent and new situations [26, 27, 34]. In our framework,
task sets correspond to large-scale neural frames (i.e., combinations
of interacting neural activity across multiple brain regions) linking
together several internal (selective, predictive, and contextual)
models encoded in multiple brain regions to be invoked together
to drive behavior when the corresponding hidden state occurs.
Therefore, task sets are instantiations of external latent (hidden)
states similar to the notion of task state [35].

Unified framework and its computational components
Considering these adaptive challenges altogether with regard to
uncertain, non-stationary, and open-ended environments, we
extend here our previous framework [26, 27, 34] to propose that
adaptive behavior derives from the following computations, not
all of which are present in all mammals. Importantly, we suggest
that although most of these computations involve multiple
cortical and subcortical regions outside the PFC, the critical role
of the PFC is to combine internal models into task sets and to
arbitrate between task sets that allow ultimate flexibility as
explained below:

(1) Simultaneous learning of a hierarchy of selective models
spanning multiple timescales within the same task set.
Timescales refers to the time decay in the influence of
previous rewards on learned associations [36], whereas
temporally distant events (stimuli, actions) can be linked to
rewards via eligibility traces (i.e., variables used to track past
events over time to potentially associate them with
temporally distant subsequent events) occurring at various
timescales [37].

(2) Simultaneous learning of a hierarchy of predictive models
spanning multiple timescales and complexity levels within
the same task set. Complexity levels notably reflect the
combinatorial complexity of associations between stimuli or
features of stimuli, actions, and outcomes (S-A-O, S-O, A-O
associations), resulting in different learning strategies across
these levels.

(3) Inferring latent states in the environment by monitoring the
reliability of outcome expectations from the various
predictive models within the actor task set—— that is, the
task set guiding ongoing behavior—-to allow changing the
actor task set for a new task set to guide subsequent
behavior. Indeed, an actor task set with reliable predictive
models (i.e., more likely matching than not matching current
external contingencies) that become unreliable indicates a
change in the current latent state of the environment
[26, 34]. This inferred change leads to create a new actor
with new internal models retrieved from long-term memory
while preserving the old task set in long-term memory for
future retrieval and use.

(4) Learning an additional type of internal models, named
contextual models that learns on the one hand external cues
predicting rewards associated with selective models and
external cues predicting the reliability of predictive models
on the other hand. As we previously proposed [26, 27, 34],
contextual models enable to build new actor task sets as
appropriate actor priors from properly mixing task sets
stored in long-term memory when their associated latent
states re-occur. When conversely the animal faces an
entirely new situation (latent state) it never experienced
before, the new task set simply results from an uninforma-
tive mixture of previously stored task sets as a proper actor
prior aiming at learning new external contingencies. Overall,
task set reliability that governs the maintenance and
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creation of actor task sets reflect the overall reliability of
task set’s predictive models, i.e., the reliability based on the
likelihood of outcomes and contextual cues given predictive
and contextual models, respectively. Such reliability infer-
ences may be computed through forward Bayesian
inferences or through inference proxies involving these
internal models (see below).

(5) Utilizing and adjusting the internal models within the actor
task set. In this framework, only the internal models within
the actor task set drives ongoing behavior and are updated
accordingly. This implies that only certain learning strategies
and accompanying representations could remain active
(e.g., in working memory) and thus are updated. For
example, representations of only a subset of stimuli could
remain active or only a subset of recent stimuli and their
features (or combination of features), states, and actions
remain active, allowing updates in a small number of
selective and predictive models, respectively. Selecting or
forming an actor task set, a process which might reflect
selective attention, effectively prunes the repertoire of
possible models to avoid an exponential increase in their
number. Within the actor task set, both selective and
predictive models contribute to behavior according to the
reliability of predictive models. The more predictive models
are reliable, the more they contribute to behavior, and vice
versa. This reliability is computed proactively from con-
textual models given contextual cues and reactively from
the predictive models given actual action outcomes.

(6) Storing task sets in long-term memory as large-scale neural
frames linking together task sets’ internal models. This
storage enables to create new actor task sets as mixtures of
stored task sets weighted by their contextual models given
contextual cues to retrieve the relevant internal models for
rapid adaptation to recurrent situations (i.e., recurrent latent
states) or to transfer this knowledge as proper priors to
adapt to new situations (i.e., new latent states).

These computations and processes extend our previous frame-
work [26, 27] in multiple ways. First, here we consider that task
sets also comprise additional predictive models based on S-O
associations divorced from actions and directly predicting out-
comes from stimuli or their features. Such models may also
contribute to behavior by remapping stimuli or their features onto
action spaces.

Second, considering the combinatorial and temporal extent of
external contingencies in natural environments, we propose that
the animal updates hierarchies of selective and predictive models
(within the actor task set) at various timescales and different
complexity levels, consistent with the extensive heterogeneity of
neural responses to rewards and outcomes across the cortex [38].
Although presumably, only a small part of these internal models
contributes to behavior at one time, learning this variety of
internal models enables the brain to subsequently create more
efficient multi-scale task sets and to better estimate their
reliability.

Third, adaptive behavior derives from either adjusting the
actor’s internal models while perseverating with the same actor or
switching to a new actor for guiding subsequent behavior.
Arbitration between these two alternatives is based on inferring
the actor reliability. Here we further propose that the actor
reliability integrates the reliability of multiple predictive models,
which are evaluated separately to determine their contribution to
behavior. A task set is said reliable when collectively, the
predictive models more likely match than do not match current
external contingencies (see [26] for a proper computational
definition). It is said unreliable in the converse case.

Fourth, we further suggest that within task sets, contextual
models comprise internal models that learn external cues
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predicting the rewards associated with distinct selective models
and internal models that learn the reliability of predictive models,
allowing to proactively weight their relative contribution to
behavior before experiencing action outcomes.

Fifth, we assume that besides predictive models comprising
S-A-0 associations, task sets include predictive models compris-
ing S-O and A-O associations which number grow much slower
than S-A-O associations Therefore, even though more complex
models are more accurate in estimating and predicting external
contingencies, these simpler models are faster to learn, as being
more generic and less precise than more complex models that
require experiencing more specific combinations between stimuli,
actions and outcomes. Consequently, simpler models may enable
faster adaptations to more volatile environments, whereas more
complex models could exhibit biases when the environment
changes quickly.

Finally, all computations outlined above are unlikely to be
observed in all mammals. As previously argued based on
anatomical evolutionary considerations [26], the learning of
contextual models that enables proactive reliability inferences
might have evolved only in higher mammals such as primates
with the evolution of the mid-lateral prefrontal cortex. In humans,
additionally, the evolution of the lateral frontopolar cortex is
viewed as endowing humans with the ability to jointly monitor
the reliability of several task sets in parallel, namely the actor task
set along with two/three additional task sets [26, 39]. These
additional task sets are named counterfactual because they are
neither contributors to ongoing behavior nor updated accord-
ingly. However, they endow humans with two new key adaptive
capabilities: (1) switching reversibly between concurrent actors
according to their respective reliability without resorting on the
notion of task set creation; and (2) transforming the notion of task
set creation into hypothesis-testing: when no monitored task sets
(including the actor) are deemed reliable, a new task set is
tentatively created to serve as actor as described above and
monitored along the others. This “probe” actor is generally
unreliable initially but by learning from experience, will eventually
become reliable. However, this new task set may be subsequently
disbanded when it remains unreliable while one counterfactual
task set become reliable again and consequently selected as actor.
These two capabilities yield to the notion of directed exploration
and perhaps to uniquely human reasoning abilities in the service
of more flexible adaptive behavior [27].

Relationship to other frameworks

Considering parallels between selective vs. predictive models and
concepts of habitual vs. goal-directed systems [25, 40-43] or
model-free vs. model-based RL [16, 18], we would like to highlight
similarities and differences between these and our frameworks in
understanding adaptive behavior (also see chapters by Collins and
Shenhav [44], and by Averbeck and O'Doherty [45] in this special
issue).

First, similar to habitual vs. goal-directed and model-free vs.
model-based RL dichotomies, selective and predictive models are
more concerned with generating a response and predicting the
outcome, respectively. Moreover, learning in habitual vs. goal-
directed systems or model-free vs. model-based systems is often
assumed to be independent of each other while each of the two
systems compete with each other to control behavior based on
their reliabilities. Some also have suggested that interactions
between the two systems could be hierarchical such that goal-
directed behavior can activate habitual mechanisms [46] or vice
versa [47]. In contrast, interactions between selective and
predictive models are more cooperative because while selective
and predictive models learn external contingencies in parallel and
compete for action selection within the actor task set, predictive
models can serve as an internal model to simulate the environ-
ment which in turn is sampled by the selective models to learn
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according to current animal’s internal states. That is, the two types
of models can use other models to learn more efficiently.

More importantly, in contrast to arbitration between habitual vs.
goal-directed systems or between model-free vs. model-based RL,
we suggest that arbitration occurs between task sets; i.e., either
perseverating with the same actor task set (and consequently
relying on and adjusting the same internal models to drive
behavior) or switching to another actor task set (and consequently
relying on other internal models to drive behavior). In particular,
this task-set arbitration may result in activating selective models
from the new actor task set to drive behavior based on (the
unreliability of) predictive models within the old actor task set, a
process that can appear as the so-called mixture of habit and goal-
directed behavior or model-free and model-based RL.

Our unifying framework provides a systemic view and a
systematic way to study adaptive behavior in terms of underlying
computations that can be applied across experimental designs
and tasks (Fig. 1). Although some of the described processes are
more difficult to identify in certain experimental paradigms and
tasks, we suggest that all these processes are elicited and
contribute to some extent to any adaptive behavior. Therefore,
independently of tasks and experimental protocols, our frame-
work provides a lens by which different learning processes,
especially those implemented in the PFC can be viewed as parts of
a unified machinery driving adaptive behavior.

COMPUTATIONAL MODELS OF ADAPTIVE LEARNING AND
DECISION MAKING

In this section, we provide an overview of recent computational
models of learning and decision making and how these models
can be mapped into our unifying framework. Our aim is not to
provide an exhaustive review of existing models. Our main focus is
to identify unique computational components underlying adap-
tive behavior and ultimately to map these components onto
neural substrates. Because of the complementarity of selective
and predictive models in guiding adaptive behavior, we
categorize these computational accounts into those involving
predictive models, those involving selective models, and those
combining both.

Computational accounts based on predictive models

Here, we examine computational models of adaptive learning and
decision making based on predictive models. Learning predictive
models naturally rely on probabilistic or Bayesian inferences,
which are intrinsically related to learning external contingencies in
uncertain environments [48].

Probabilistic inferences have been proposed to account for learning
predictive models regarding current outcome contingencies and
guiding decision making. In a stationary world, learning such
contingencies consists of inferring the statistical regularities of
outcomes given stimuli and/or actions. In non-stationary environ-
ments, however, learning such predictive models is much more
complex, because the learning must take into account possible
changes in latent states of the environment, i.e., the possible changes
in external contingencies over time. To account for this adaptive
challenge, several computational models involve a hierarchy of
inference processes about latent states comprising: (1) first-order
inferences forming beliefs about the current latent state; (2) second-
order inferences about the environment volatility—that is, the
probability of latent state changes—modulating first-order beliefs;
and (3) even third-order inferences about changes in the environment
volatility regulating second-order inferences [7, 49-51]. Despite the
usefulness of these models in revealing computations involved in
integration of reward outcomes in changing environments, these
models raise a computational complexity issue [R1.1]. They rapidly
become computationally intractable, which questions their biological
plausibility.
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Consistently, algorithmic approximations have been proposed
that rely on more explicitly detecting change points in latent
states [4, 52-54]. For example, Nassar et al. [10] reduce a Bayesian
change-detection model to a model based on delta rules that
adjusts the influence of new outcomes according to the
uncertainty and probability of change points. There are also
models inspired by Kalman filters that keep track of both the
estimated state of the system (e.g., reward probability) and the
variance of these estimates in order to tackle learning under
volatility [55, 56]. Other models use probabilistic inferences to
more directly estimate outcome contingencies and uncertainties
about these estimates ([48, 55, 57, 58]. There are also models of
adaptive behavior that rely only on first-order probabilistic
inferences about current latent states but combines these
inferences with other mechanisms to adjust learning and decision
making. For example, Faraji et al. [59] have proposed a model
monitoring Bayesian surprise, i.e., the discrepancy between
outcome likelihoods derived from first-order beliefs and actual
outcomes, along with a notion of belief commitment, to drive
adaptive learning by minimize such confidence-corrected Baye-
sian surprise.

In all these models, first-order beliefs about current latent states
derive from predictive models and as outlined above, correspond
to the notion of reliability associated with predictive models that
contribute to task set reliability. However, despite the proposed
approximations of higher-order probabilistic inferences about
volatility, these models remain based on a complex algorithmic
machinery which biological plausibility is again questionable.
Surprisingly, Findling et al. [15] have recently shown that higher-
order inferences about volatility and consequently these algo-
rithmic approximations are actually unnecessary for efficient
learning in non-stationary environments. Specifically, they demon-
strate that first-order inferences alone about latent states are
sufficient to reach near-optimal adaptive behavior and best
account for human adaptive performances, provided that these
inferences undergo computational imprecisions consistent with
the psychophysical Weber's law [60]. The result thus provide
evidence that learning predictive models within the actor task set
that guides ongoing behavior and inferring their reliability to
possibly change the actor task set require only imprecise
computations confined to simple first-order inferences about
current latent states.

Predictive models predict outcome identity and alone, are
unable to orient behavior towards desirable outcomes. The
previously described models generally circumvent this issue by
considering only binary rewarding outcomes (i.e., reward vs. non-
reward outcomes), that allows conflating the notion of outcome
identity with desirability. In natural environments, however,
rewards are rarely binary. Efficient adaptive behavior thus requires
predictive models to be combined with other information as the
magnitude of rewards, i.e., the rewarding values of outcomes or in
our terminology, stimulus values (S-Rew). One possibility is that
reward magnitudes are incorporated within predictive models, so
that predictive models learn not only to predict outcome identity
but also reward magnitudes through probabilistic inferences. The
resulting predictive models however become highly complex to
learn and to draw first-order inferences about latent states.
Another possibility is that reward magnitudes are divorced from
predictive models and consequently from outcome identity and
are learned as stimulus and/or action values or as S-A associations
composing selective models through RL. These considerations
yield us to now review models of adaptive behavior based on
selective models.

Computational accounts based on selective models

Most early models of adaptive behavior focus on associating
rewards to cues or actions that precede them. These models
correspond to learning stimulus values (S-Rew), action values (A-
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Rew), and S-A associations composing selective models through
model-free RL based on reward prediction errors [61, 62]. These
models, however, remains too simple to face the adaptive
challenges raised by natural environments including their volatility
and open-endedness along with the multiplicity of stimuli
accompanying rewards as revealed in downward unblocking
paradigms. Tackling these challenges requires additional compo-
nents as proposed in subsequent models. For example, competi-
tion between stimuli for learning [63] or competition during
representation [64] can account for downward unblocking and
allows for flexibility in the learning rate depending on the
outcome unexpectedness.

Similarly, more recent models have used (unsigned) reward
prediction errors to adjust the learning rate or to construct a
dynamic learning rate [65-68]. Alternatively, the history of
unsigned reward prediction errors has been used to estimate
the expected uncertainty to scale the learning rate in a dynamic
action-based learning task [5]. Moreover, in a recent model by
Wittmann et al. [14], a conventional model-free RL model was
supplemented with multiple components that track recent
rewards and choices in terms of location and stimulus in order
to capture the effects of choice and reward history on behavior
during an armed bandit task with three stimuli. Importantly, these
models are extensions of conventional model-free RLs learning
action values (A-Rew) or selective models (S-A associations). We
note however that they often relate to experiments involving only
binary rewards, which prevent from really distinguishing the
formation of true action values A-Rew or S-A associations
composing selective models from (S-)A-O associations compos-
ing predictive models. Note however that even with binary
rewards, the distinction can be made in sequential, multi-steps
tasks because of the presence of intermediate action steps before
obtaining rewards.

Learning adjustments to the environment volatility were also
captured by mechanistic models that adapt to reward statistics with
neither any probabilistic inferences about outcome identity nor
assumptions about the environment contingencies [9, 69, 70]. For
example, Farashahi and colleagues [9] have shown that a specific
structure of synaptic plasticity associated with multiple meta-stable
internal neural states capturing the reward history leads to learning
adjustments to expected and unexpected uncertainty resulting in
time- and option-dependent learning rates.

In natural environments, there is myriad of stimuli and choice
options each with multiple features or attributes, making
association of rewards to stimuli challenging. To tackle this
challenge often referred to as the curse of dimensionality, more
recent models include reinforcement learning about features of
stimuli [21-23, 71-73]. This feature-based learning strategy, which
allows estimating stimulus values based on their features, can
mitigate the curse of dimensionality by reducing the learning
about all possible stimuli (object-based learning) to a much
smaller number of feature-reward associations (feature-based
learning) [21, 71]. Interestingly, Farashahi et al. [21] show that
feature-based and object-based learning models can interact
more efficiently based on the reliability of signals in the two
models rather than based on choice accuracy. Moreover, more
complex learning strategies accompanying feature-based learning
are required for more flexibility [23]. Similarly, learning S-O
associations when multiple stimuli are presented can be achieved
by predicting more rewarding stimuli based on presented cues
without any explicit probabilistic inferences [74, 75].

Finally, it has been proposed that model-free RL can learn to
arbitrate between selective models within actor task sets. For
example, Duverne and Koechlin [76] show that distinct selective
models can acquire reward values through RL that allow
arbitrating between them. Eckstein and Collins [77] further
propose a hierarchical RL consisting of learning distinct selective
models composed of S-A associations along with learning
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“selective models of selective models” composed of associations
between contextual cues and selective models in order to
arbitrate between the subordinate selective models to drive
adaptive behavior across changing contexts.

Computational accounts combining predictive and selective
models

As noted above, selective models (S-A associations) along with
stimulus values (S-Rew), action values (A-Rew) learn the
magnitude of rewards/punishments through RL more efficient
than predictive models (S-O, A-O, S-A-O associations) that
capture statistical regularities of outcomes. Conversely, predictive
models adapt behavior to changes in the animals’ internal states
more efficiently than selective models. Therefore, combining
selective and predictive models are certainly required to elicit
efficient adaptive behavior.

Collins and Koechlin [34] propose a model combining selective,
predictive, and contextual models within task sets to drive
adaptive behavior. This model assumes that within the actor task
set, the selective model learns through model-free RL and selects
actions, while predictive models learn to predict action outcomes
from selected responses to stimuli. Contextual models learn
external cues predicting proactively the reliability of predictive
models. Task sets’ reliability is computed through first-order
probabilistic inferences regarding the reliability of predictive
models, proactively according to contextual cues and reactively
according to actual outcomes. While the actor task set is deemed
reliable, it guides behavior. Otherwise, if other task sets are
monitored along with the actor task set and one of them is
deemed reliable, this task set is selected to serve as actor. If no
other monitored task sets are deemed reliable, a new task set is
then created from the mixture of task sets stored in long-term
memory to serve as a probe actor task set. This probe actor is
generally unreliable initially but learns from experience and guide
behavior as long as no other monitored task sets become reliable.
In the case another monitored task set becomes reliable, the latter
becomes the actor, yielding the probe actor to be either
disbanded if still deemed unreliable or stored in long-term
memory in the converse case. Collins and Koechlin [34] show that
this model forms a forward algorithmic approximation of optimal
but computational intractable adaptive processes based on
Dirichlet Processes Mixtures. They further show that all these
components including the concurrent reliability monitoring of
three/four task sets are necessary to account for human adaptive
performances. One limitation of this model, however, is that
within the actor task set, action selection is confined to a unique
selective model, while task set reliability derives from the reliability
of a unique predictive model within each task set.

Doya et al. [78] have proposed a multiple model-based RL
model, which in a way conceptualizes how different internal
models within the actor task set may be weighted to drive
behavior concurrently. Their model comprises multiple pairs of
selective and predictive models, named controllers. Predictive
models serve to infer the reliability of each controller (which they
refer to as responsibility signals), which is used to: (1) determine
the weighs or relative contribution of each selective model to
action selection; and (2) modulate the updating of internal models
across all controllers following action outcomes. The model
assumes that all controllers are similar in nature but might be
extended to controllers operating at different timescales as
suggested above.

In both Collins & Koechlin’s and Doya et al’s models, only
selective models directly contribute to action selection within the
actor task set. These models provide no accounts of how action
selection may derive from both selective and predictive models.
One extreme view is that either selective or predictive models
contributes to action selection [18]. Alternatively, Rouault et al.
[13] propose that action selection derives from additive (i.e,
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independent) contributions of stimulus/action values, selective,
and predictive models after normalizing each of these contribu-
tions across behavioral options to make them commensurable.
Although such independent contributions are normatively sub-
optimal, this mechanism minimize the impact of learning
imprecisions on decision making and was found to account for
human adaptive performances in non-stationary environments.
The model of Rouault et al. [13], however, leaves open the issue
regarding how in this additive combination, the different
contributions are weighted relative to each other. We propose
here that relative to selective models, the contribution of
predictive models to action selection within the actor task set
are weighted according to their reliability in predicting outcome
identity. The hypothesis is consistent with previous findings
showing that the weights of predictive relative to selective models
in action selection decrease following unexpected changes in
external contingencies [79] and more globally, when the
environment volatility increases [11, 80]. Both cases indeed impact
negatively the reliability of predictive models.

CONTRIBUTIONS OF PREFRONTAL CORTEX TO ADAPTIVE
BEHAVIOR

In the previous sections, we proposed a framework to identify and
integrate multiple computational mechanisms and components
into a unified system driving adaptive behavior. In this section, we
briefly review empirical findings indicating how these elements
map onto the PFC (Fig. 2). While most of these computations also
involve other brain regions (e.g., basal ganglia, hippocampus) that
extensively interact with the PFC, we suggest that the PFC is more
specifically devoted to form and select task sets driving behavior.
We show how our unified framework provide an integrative view
that may help to understand the functional organization of PFC.

Selective models and the lateral premotor-prefrontal cortical
complex

The premotor cortex is a transition area between the motor cortex
and the PFC. There is extensive evidence in monkeys and humans
that the lateral premotor cortex (IPM, Broadman’s Area 6, BA6) along
with the adjacent, caudal sector of the lateral prefrontal cortex
(cIPFC), BA8, BA44/45), learns selective models that drive behavior.
Monkey and human studies show that in relation with basal ganglia,
the IPM learns S-A associations and selects actions associated with
stimuli, whereas the cIPFC learns hierarchically more complex
selective models associating external cues to consistent sets of S-A
associations; i.e., “selective models of selective models” driving
context-dependent behavior (e.g., [81-90]).

Mechanistically, associations composing selective models and
linking stimuli and actions according to reward values are likely
stored at the synaptic level using activity-dependent synaptic
plasticity modulated by reward signals [91]. Synaptic connections
between neurons responding to presentation of a stimulus and
neurons selective for an action can be potentiated or depressed
depending on dopamine releases. This enables these synaptic
connections to learn S-A associations and hierarchically more
complex selective models, especially through the processing
reward prediction errors in subcortical structures involved in RL
(e.g., [92-94]). Stimulus values (S-Rew) or action values (A-Rew) are
likely learned through similar RL mechanisms. The PFC receives
massive dopaminergic projections and contain distinct regions
with neurons encoding stimuli and/or actions, leading distinct
regions to learn stimulus values and action values rather than
selective models similar to many subcortical areas such as striatum
that encodes both stimulus and action values [26].

Stimulus values and the lateral orbitofrontal cortex

The orbitofrontal cortex (OFC) is present in all mammals and
comprises a medial and lateral sector, with the latter (laOFC)

SPRINGER NATURE

65



A. Soltani and E. Koechlin

66

Behavior
Parietal (- > Contextual C(S-A) MO TNy Parietal
lobe 4 ° ) N\ reliability ;
iy N model
AL S LT L
[ ‘{\ ~ \
) - ‘)\
\\ Py ML
5 R Monitoring N
, O —— h RN\ actor TS
SR e reliability ch' “_tal
)| ipi
Occipital N p

- Predictive models ) lob
lobe ad (S- e

Temporal lobe
Medial

\—/ " Temporal lobe

Prefrontal cortex

Lateral

Fig.2 Functional architecture of the prefrontal cortex contributing to adaptive behavior. Medial and lateral view of the human prefrontal
cortex (PFC) and its main anatomical regions shown in relation with their contribution to adaptive behavior. The 1aOFC (lateral orbitofrontal
cortex), vmPFC (ventromedial PFC), dmPFC (posterior and anterior dorsomedial PFC) along with premotor cortex (and possibly cIPFC) are
present presumably in all mammals from rodents to primates and humans. The lateral PFC including cIPFC and especially midIPFC (mid-lateral
PFC) emerges in primates, whereas fpPFC (frontopolar cortex) is specific to humans. In the proposed framework, the laOFC encodes stimulus
reward values (S-Rew), posterior dmPFC action reward values (A-Rew). The vmPFC encodes predictive models involving learning (Stimulus-)
Action-Outcomes associations. The lateral premotor cortex encodes low-level selective models (Stimulus—Action associations), whereas the
cIPFC encodes higher-level selective models (Cues-(S-A) associations). Task sets (TS) form large-scale neural frames linking such internal
models encoded in these various PFC regions in order to potentially invoke them together to guide behavior. TS reliability is the ability of TS
internal models to jointly predict external contingencies. midIPFC learns contextual models predicting TS reliability according to external
cues. The actor TS is the TS driving ongoing behavior and which reliability is monitored in the vmPFC. Counterfactual TS are the TSs which
reliability are monitored in the fpPFC without contributing to ongoing behavior. White arrows indicate major information flows related to
actor task set reliability (medial PFC) and counterfactual task-set reliabilities (lateral PFC). Black arrows indicate major information flows related
to reward values of action outcome (ventral PFC) and reliability-based inhibition or selection of actor TS in the dorsal PFC. See text for more

explanations.

receiving most sensory inputs to the PFC [95]. There is a long
history of empirical evidence showing that the 1aOFC encodes
stimulus values (S-Rew) divorced from actions in associations with
subcortical structures [96, 97]. More recent studies notably using
human neuroimaging confirm that the laOFC encodes stimulus
values learned through RL [13, 98, 99]. Lesions of monkeys’ laOFC
further impair S-Rew learning by altering correct assignment of
rewards to chosen stimuli [100].

Action values and the posterior dorsomedial prefrontal cortex
In contrast to the OFC, the posterior dorsomedial PFC (posterior
dmPFC) including the presupplementary motor area and caudal
parts of the anterior cingulate cortex is linked to the motor system.
Although action values (A-Rew) divorced from stimulus are
experimentally difficult to dissociate from stimulus values that
elicit responses, human studies successfully dissociated the two
value notions and found action values guiding selection to be
encoded in the posterior dmPFC [101, 102]. The human posterior
dmPFC was also found to encode the relative reward values
between two distinct action sets (sets of sensorimotor associa-
tions) acquired through RL and guiding behavior [76], indicating
that action values also bear upon action representations
hierarchically higher than simple motor acts.

We note that many studies investigating learning and decision-
making use binary rewards that conflate the notion of reward
magnitudes and outcome identities. Except in sequential, multi-
step tasks, the expectations about binary rewards confound reward
magnitudes with outcome probabilities, making the notion of
stimulus or action values (S-Rew or A-Rew) indistinguishable from
the notion of predictive models comprising S-O and/or (S-)A-O
associations. However, several studies that manipulates reward
magnitudes independently of reward probabilities allow for
identifying the neural bases of predictive models.

Predictive models and ventromedial prefrontal cortex

The ventromedial PFC (vmPFC) refers to the prefrontal region
including the medial OFC and the subgenual part of the anterior
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cingulate cortex. Studies across mammalian brains from rodents
to monkeys and humans provide evidence that the vmPFC learns
and encodes predictive models that predict action outcomes in
response to stimulus (e.g., [13, 103-107]). For example, Hampton
et al. [103] show that in humans, vmPFC activations in a
probabilistic reversal learning task are more consistent with
predicting reward probabilities than magnitudes. Boorman et al.
[104] and Rouault et al. [13] also show that the human vmPFC
encodes reward probabilities independently of reward magni-
tudes. Empirical evidence is that besides reward probabilities, the
vmPFC also encodes the reward magnitudes expected from
chosen actions (e.g. [13, 104]) and after the choice is made
[108, 109]. This evidence suggests that once an action is chosen,
the vmPFC uses predictive models to encode the likelihood of
future action outcomes along with their rewarding values possibly
encoded as stimulus values (S-Rew) in the adjacent laOFC.

Our framework points out the critical role of predictive models
in inferring the actor task set reliability. A task set presumably form
a large-scale neural frame linking together the collection of
internal models involving distinct prefrontal regions as described
above and that can be invoked together to learn and drive
behavior in relation to a latent state of the environment. The actor
task set is the one learning and driving ongoing behavior in the
current latent state. While this task set remains reliable, the current
latent state is unlikely to have changed and this task set is kept as
actor. As hypothesized above, the task set reliability is inferred
online and primary rely on monitoring the reliability of predictive
models that compose it.

Actor reliability and the vmPFC

We mentioned empirical evidence that the vmPFC encodes actor
predictive models. Consistently, neuroimaging and intracranial
EEG studies in humans provide explicit evidence that neural
activity in the vmPFC further correlates online with the actor task
set reliability inferred from predictive models given the occur-
rence of actual action outcomes [109, 110]. Actor reliability
measures the probability that the current latent state of the
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environment remains unchanged. Other neuroimaging studies
confirm that vmPFC activations are indeed associated with latent
states determining current action outcome contingencies
[111, 112]. Consistent with the idea of the OFC as a cognitive
map of task space [35], we suggest that within task sets, the OFC is
more specifically involved in encoding predictive models and
additionally monitoring the reliability of the actor task set from
predictive models for inferring whether the current hidden state
has changed or not. This indeed gives a central role to the OFC in
relation with latent or hidden states and point to the involvement
of metacognition in estimating actor reliabilities. Indeed, actor
reliability also reflects the confidence in perseverating with the
same task set. Neuroimaging studies consistently show that
subjects’ confidence judgments about their own performance are
associated with vmPFC activations [113, 114].

The actor reliability signals observed in Donoso et al. [110] and
Domenech et al. [109] simply reflect the reliability of actor
predictive models. They might serve to weight the contribution of
actor predictive relative to selective models to behavior. More
radically, when the actor task set become unreliable, the current
latent state of the environment has likely changed and as
behaviorally observed, calls for a new actor task set [26, 34].

From actor exploitation to exploration: the anterior
dorsomedial PFC

The anterior dorsomedial PFC (anterior dmPFC) lies between the
vmPFC and posterior dmPFC and particularly includes the dorsal
anterior cingulate cortex (dACC). There is ample evidence across
mammals that the neural activity in the anterior dmPFC reflect
multiple value and reliability signals associated with actions,
action—outcome, stimulus-action, and stimulus-action-outcome
associations (e.g., [87, 115-119]) while lesions of ACC impair
learning that relies on the integration of action outcomes over
time [120], suggesting that the anterior dmPFC is involved in
weighting the different contribution of actor internal models to
guide adaptive behavior [87]. Supporting this hypothesis, Rouault
et al. [13] found that in humans, the anterior dmPFC guides
behavioral choices by collecting and weighting the independent
contribution of learned stimulus values encoded in 1aOFC, beliefs
about outcome probabilities (predictive models) encoded in the
vmPFC, and reward magnitudes of expected outcomes encoded
in the vmPFC. Schuck et al. [121] report evidence that relative to a
default internal model guiding behavior, the anterior dmPFC
increasingly weights another internal model that are gradually
learned in parallel and that will guide subsequent behavior.
Consistent with this integrative weighting function, the anterior
dmPFC was found to combine pieces of behavior-relevant
information over larger timescales than other prefrontal regions
[38].

One may thus hypothesize that through the anterior dmPFC,
actor predictive models contribute to behavior relative to selective
models according to their reliability monitored in the adjacent
vmPFC. In agreement with this hypothesis, Donoso et al. [110] and
Domenech et al. [109] show that, anterior dmPFC neural activity in
humans specifically responds when the actor predictive model
and consequently the actor task set becomes unreliable, yielding
to the creation of a new task set from long-term memory
corresponding to the notion of undirected exploration. Rodent
and monkey studies consistently show that abrupt phase
transitions occur in the dACC neural ensembles in relation to
behavioral switches [122-125]. Moreover, monkey electrophysio-
logical and human neuroimaging studies indicate that the anterior
dmPFC responds when unpredicted action outcomes trigger
behavioral switches [106] and especially switches from exploita-
tion to exploration behaviors [12, 126-128]. In particular, anterior
dmPFC activations are observed when humans form new task sets
to guide subsequent behavior [129]. Thus, the anterior dmPFC
seems to play a pivotal role in weighting the different internal
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models within the actor task set and when the latter is deemed
unreliable, in inhibiting this actor and eliciting new actor task sets
to guide behavior.

All the prefrontal regions reviewed above are present in all
mammals [26]. We now consider the prefrontal regions which has
specifically evolved in primates and humans, endowing them with
additional adaptive flexibility.

Contextual models and the mid-lateral prefrontal cortex
The mid-lateral PFC (midIPFC) mainly corresponds to BA9 and
BA46 located in front of the cIlPFC. The midIPFC is mainly
connected to the cIPFC, the [aOFC, vmPFC, the anterior dmPFC
and the frontopolar cortex (see below) [95, 130-134]. As indicated
above, the cIPFC enables to select selective models within the
actor task set according to contextual cues associated with
selective models. In contrast, there is ample empirical evidence
from monkey electrophysiological recordings, human neuroima-
ging and lesion studies showing that the midIPFC is involved in
proactively eliciting and maintaining actor task sets in relation
with the occurrence of temporally-distant cues, a notion we
previously referred to as episodic control (e.g., [81, 87, 135-144]).
In human neuroimaging experiments, furthermore, effective
connectivity analyses provide evidence that the midIPFC operates
from these cues in a top-down fashion onto cIPFC for proactively
eliciting and maintaining actor selective models to guide behavior
[87, 141, 142]. The midIPFC also appears to similarly operate onto
the vmPFC in relation with actor predictive models. The midIPFC
was indeed activated when the reward values of A-O associations
are proactively recomputed according to contextual cues [145].
Overall, these findings support the idea that the midIPFC
encodes the notion of contextual models we defined above as
learning contextual cues predicting task set reliability. Contextual
models index task sets through external cues that act as proactive
predictors of their reliability. The occurrence of such cues enables
the brain to proactively update actor task set reliability monitored
in the vmPFC contributing to maintain or inhibiting the current
actor task set. This further allows proactively building a new
context-dependent task set from long-term memory during the
process of task set creation. In humans, contextual models may
further allow for updating the reliability of counterfactual task sets
monitored in the frontopolar cortex (see below).

Monitoring counterfactual task sets and the frontopolar
cortex

The PFC has further evolved in humans in its most rostral portion
with the emergence of a lateral frontopolar region (fpPFC)
[146, 1471, which apparently has no homologs in monkeys
[148, 149]. Collins & Koechlin [34] demonstrated behaviorally that
in uncertain and non-stationary and open-ended environments,
human adaptive behavior derives from the ability to concurrently
monitor the reliability of three/four task sets, namely the actor
along with two/three counterfactual task sets that do not
contribute to behavior. As explained above, this notion of
counterfactual task sets is critical for more efficiently regulating
the creation of new task sets and consequently approximating
more closely optimal adaptive processes in open-ended environ-
ments [34]. There is converging evidence from human neuroima-
ging studies that the fpPFC is involved in monitoring
counterfactual task sets. For instance, the fpPFC is engaged in
“cognitive branching”, when subjects temporarily hold on the
execution of one task for performing another task in response to
unpredictable events [150-153]. Furthermore, the fpPFC is
involved in monitoring the opportunity to switch back and forth
between two alternative courses of action [104, 154]. More recent
neuroimaging results even provide direct evidence that the fpPFC
monitors the reliability of two concurrent counterfactual task sets,
while the vmPFC monitors in parallel the actor task set [110].
Additionally, the lateral PFC is then engaged, when one
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counterfactual task set becomes reliable and is retrieved as actor
for guiding behavior [110]. In humans accordingly, the capacity of
the monitoring buffer appears to have increased from the actor in
vmPFC to counterfactual task sets in fpPFC[R1.8].

FUTURE RESEARCH DIRECTIONS

Focusing on how stimuli, actions, and outcomes are linked

In this review/perspective, we propose that in order to identify
computational components of adaptive behavior and their
underlying neural mechanisms, we need to examine what
learning in a given task entails in terms of associating stimuli,
actions, and outcomes. This allows us to distinguish between
learning processes that rely on simple model-free associations (S-
Rew, A-Rew, and S-A associations) versus those requiring an
internal model of how stimuli, actions, and outcomes are linked in
the environment (e.g, S-O and (S-)A-O associations). This
distinction is critical because these different types of processes
provide very different levels of adaptability for tackling learning
challenges in natural environments. More importantly, these
processes rely on different types of synaptic plasticity and
learning mechanisms, only some of which are available in certain
brain areas or regions. Distinguishing between different types of
stimulus, action, and outcome associations further enables
disambiguating the contributions of specific brain areas, especially
within the PFC to adaptive behavior. Critically, our framework
suggests specific types of interactions between multiple systems
that can be tested in future experiments.

By considering and examining alternative ways that stimuli,
actions, and outcomes are linked through leaning processes, one
can also pinpoint how inflexibility in learning and choice emerge
and what their underlying neural mechanisms are. This has
important implications for understanding various behavioral
impairments due to neurological disorders and could resolve
many disputes about the role of different cortical and sub-cortical
areas in maladaptive behavior. For example, impairment in
estimating action values (e.g., in the dmPFC and the
striatum)—-which rely on no predictive models and thus is less
flexible—-has a very different impact on adaptive behavior than
impairment in predictive models predicting outcomes based on
the same actions (e.g., in the vmPFC).

In addition, we highlighted shortcomings of most commonly
used experimental paradigms to study different aspects of
adaptive behavior. More specifically, one-dimensional experimen-
tal paradigms——that is, those involving only one reward attribute
such as reward probability or reward magnitude--cannot
distinguish between different types of learning processes. To
carefully examine flexibility in learning and choice behavior, one
needs to consider tasks with multiple types of reward information.
Only when multiple types of reward information are present, can
one tease apart different mechanisms of adaptability and their
neural substrates. Nonetheless, distinguishing between these
mechanisms also requires utilizing computational models that
incorporate multiple components/systems for capturing different
types of learning or associations between stimuli, actions, and
outcomes. For example, ignoring how reward probability and
magnitude are combined can result in erroneous conclusions
about the impacts of volatility on learning and choice behavior.

Inference is an important component of predictive and
contextual models as well as their interactions with other internal
models. However, we would like to emphasize that basic inference
processes for estimating outcomes or for combining inferential
and non-inferential processes can be approximated using very
simple mechanisms [13, 15, 74, 75]. Finally, our framework
highlights the diversity and heterogeneity of learning mechan-
isms. As described below, this has important implications for the
notion of subjective values and utility maximization that are often
used to account for learning and decision-making.

SPRINGER NATURE

Moving beyond the notion of common currency and utility
maximization

As mentioned above, to tackle the challenges of adaptive
behavior in uncertain, ever changing, and open-ended environ-
ments, the brain has to rely on dynamic interaction between
multiple systems that aim to link stimuli, actions, and outcomes in
different fashions. This means the amount by which each system
contributes to behavior constantly changes over time. As
described earlier in details, there are many representations of
values (S-Rew, A-Rew, current subjective value anticipation based
on predictive models, cached values in selective models, etc.) that
all dynamically compete for action selection with different weights
depending on internal and external factors. As a result, the present
framework proposes that there is no integration of all these value
representations into a unique utility function or equivalently a
common currency to be maximized as often postulated [99], even
if the result of these various competitive processes may appear in
some situations as-if the animal maximizes a unique subjective
utility function. More importantly, even though this “as-if”
approach could explain some aspects of choice behavior, it may
not be the best approach to understand how different brain
regions/systems concurrently contribute to adaptive behavior and
might account for the various well-known discrepancies between
human decision-making and utility maximization [155]. Consistent
with this view, the notion of utility function and utility
maximization have been developed to formalize the normative
concept of rational choice rather than any decision-making
processes. This formalization/axiomatization further applies to
what Savage [156] describes as “small worlds”, i.e.,, stationary,
closed, risky but fully known environments with stable agents, in
sharp contrast to the uncertain, changing and open-ended
environments that animals with changing internal states face in
real-life.

Indeed, there is very little evidence for the fusion of different
reward attributes into a single utility quantity even under the
oversimplified condition in which choice options consist of only
two attributes, reward probability and magnitude [11, 13, 80, 157].
Only a handful of studies have actually tested these two
alternative possibilities to examine whether different reward
attributes are fused into a utility quantity before making decisions
or not. Additionally, there is evidence that the properties of the
animal’s environment determine what learning systems should
impact behavior more strongly and that these impacts change
over time depending on the reliability of these systems
[11, 13, 21, 23, 791.

More generally, the present framework suggests that there is no
overarching system computing and maximizing a unique utility
quantity as well as controlling and weighting the concurrent
contribution of each system to behavior. Although within the
actor task set, different systems/models are assumed to influence
behavior with different weights, this weighting implies no
superordinate controllers. Instead, the weighting relies on the
reliability of internal models that within the actor task set, directly
reflects the gain by which neural representations and signals
dynamically encode internal models and consequently regulate
their influence on behavioral choices.

Accordingly, the notion of utility function and utility maximiza-
tion might provide limited insights into understanding computa-
tions involved in adaptive behavior and their neural substrates in
the PFC. We hope the present framework will help to move
forward and better understand the PFC function and how the
multiple neural systems and internal models linking stimuli,
actions, outcomes and rewards along with their dynamic
interactions determine learning and behavioral choices.
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