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Abstract

We have previously shown that Mkp-1-deficient mice produce elevated TNF-α, IL-6, and IL-10 

following systemic E. coli infection, and exhibited increased mortality, elevated bacterial burden, 

and profound metabolic alterations. To understand the function of Mkp-1 during bacterial 

infection, we performed RNA-seq analysis to compare the global gene expression between E. 
coli-infected wildtype and Mkp-1−/− mice. A large number of interferon-stimulated genes were 

more robustly expressed in E. coli-infected Mkp-1−/− mice than in wildtype mice. Multiplex 

analysis of the serum cytokine levels revealed profound increases in IFN-β, IFN-γ, TNF-α, IL-1α 
and β, IL-6, IL-10, IL-17A, IL-27, and GMSF levels in E. coli-infected Mkp-1−/− mice relative 

to wildtype mice. Administration of a neutralizing antibody against the receptor for type I IFN to 

Mkp-1−/− mice prior to E. coli infection augmented mortality and disease severity. Mkp-1−/− bone 

marrow-derived macrophages (BMDM)3 produced higher levels of IFN-β mRNA and protein, 

than did wildtype BMDM upon treatment with LPS, E. coli, poly(I:C), and herring sperm DNA. 

Augmented IFN-β induction in Mkp-1−/− BMDM was blocked by a p38 inhibitor, but not by an 

JNK inhibitor. Enhanced Mkp-1 expression abolished IFN-β induction by both LPS and E. coli 
but had little effect on the IFN-β promoter activity in LPS-stimulated RAW264.7 cells. Mkp-1 
deficiency did not have an overt effect on IRF3/7 phosphorylation or IKK activation but modestly 

enhanced IFN-β mRNA stability in LPS-stimulated BMDM. Our results suggest that Mkp-1 
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regulates IFN-β production primarily through a p38-mediated mechanism and that IFN-β plays a 

beneficial role in E. coli-induced sepsis.

Introduction

The innate immune system acts as the first line of defense against invading bacterial 

pathogens (1). Mammals rely on germ line encoded pattern recognition receptors to detect 

bacterial components (2, 3). Recognition of the bacterial components activates a cascade 

of signaling events leading to activation of MAPK pathways and key transcription factors 

such as NF-κB (4–8). These transcription factors cooperate to initiate a transcriptional 

program by enhancing the expression of a variety of immune-related proteins including 

pro-inflammatory cytokines, chemokines, and anti-inflammatory cytokines (7, 9). Some of 

the cytokines promote leukocyte recruitment and enhance cellular and humoral bactericidal 

activities (10–14), while others restrain inflammation and limit the collateral damage to the 

host (15).

MAPK phosphatase (Mkp)-1, also referred to as DUSP1 (16), CL100 (17), 3CH134 (18), 

and Erp (19), is a dual specificity protein phosphatase that preferentially acts on p38 and 

JNK MAPK subfamilies (20, 21). In innate immune cells Mkp-1 is robustly induced in 

response to bacterial infection, and serves as a negative regulator of the innate immune 

response (22, 23). We and others have shown that Mkp-1-deficient macrophages produce 

considerably greater amounts of cytokines including TNF-α, IL-6, and IL-10 than do 

wildtype macrophages in vitro (24–29). Manetsch et al. found that knockdown of MKP-1 

in TNF-α-stimulated human airway muscle cells enhanced both p38 and JNK activity 

and augmented IL-8 production (30), illustrating the importance of MKP-1 in the control 

of secondary inflammatory responses in stromal/parenchymal cells. In an E. coli-induced 

sepsis model, Mkp-1−/− mice also produced markedly greater levels of cytokines such 

as TNF-α, IL-6, and IL-10, and exhibited increased mortality (31). Increased bacterial 

burden, more severe organ damage, and metabolic abnormalities were also observed in 

Mkp-1−/− mice relative to wildtype mice after E. coli infection (31, 32). To understand the 

pathophysiology that Mkp-1−/− mice exhibit after systemic E. coli infection, we performed 

multiplex analysis of the serum cytokines in E. coli-infected wildtype and Mkp-1−/− mice. 

We observed enhanced cytokine production in Mkp-1−/− mice for 10 of the 13 cytokines 

tested. Among the cytokines enhanced by Mkp-1 deficiency in E. coli-infected mice is 

interferon (IFN)-β, a type I IFN critical for host defense against viral infections (33–

35). While regulation of IFN-β induction by TANK-binding kinase 1 (TBK1) mediated 

interferon regulatory factors (IRFs) and NF-κB during viral infections has been well studied 

(36–40), the regulation of IFN-β by Mkp-1 has not been fully understood, particularly in 

the context of bacterial infection. Type I interferon has been shown to play both beneficial 

and detrimental roles during bacterial infections, depending on the pathogens and mode of 

infections (41–43). We found that concurrent with a greater increase in IFN-β levels in the 

blood, many interferon-inducible genes were more robustly induced in Mkp-1−/− mice than 

in Mkp-1+/+ mice following E. coli infection. To address the role of Mkp-1 in the regulation 

of type I interferon, we studied the mechanism underlying Mkp-1-mediated regulation in 

macrophages using Mkp-1 knockout and over-expressing cells as well as pharmacological 
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inhibitors. We also studied the physiological role of IFN-β during E. coli infection in 

Mkp-1−/− mice by using an IFN-α/β receptor 1 (IFNAR1) neutralizing antibody. Our studies 

indicate that Mkp-1 regulates IFN-β expression through controlling p38 but not JNK and 

IFN-β induction is beneficial for the host during E. coli infection.

Materials and Methods

Experimental animals

Mkp-1−/− mice have been described previously (25, 44) and have no obvious phenotype 

prior to experimental use. Mkp-1+/− mice on a C57/129 mixed background were generously 

provided by Bristol-Myers Squibb Pharmaceutical Research Institute (Princeton, NJ). 

Mkp-1+/− mice were intercrossed to generate Mkp-1−/− and Mkp-1+/+ mice for E. coli 
infection experiments. Additionally, the Mkp-1+/− mice were backcrossed to C57BL/6J mice 

for 8 generations to create Mkp-1−/− mice on a C57BL/6J background. While Mkp-1−/− 

and Mkp-1+/+ mice on C57/129 background were used for all infection experiments, all 

macrophage studies in vitro were carried out using bone marrow isolated from the mice on 

C57BL/6J background. All mice were housed with a 12 h alternating light-dark cycle at 

25°C, with humidity between 30% and 70%, and have access to food and water ad libitum. 

All experiments were performed according to National Institutes of Health guidelines and 

were approved by the Institutional Animal Care and Use Committee at the Research Institute 

at Nationwide Children’s Hospital.

E. coli infection

A wild-type (smooth) strain of E. coli (O55:B5, ATCC 12014) was purchased from 

American Tissue Culture Collection (Manassas, VA). Bacteria were grown in nutrient broth 

for 18 h at 37°C and refreshed by culturing in new medium for 2 h after a 1:5 dilution. 

Bacteria were washed three times with sterile PBS and adjusted to the appropriate final 

concentration. The bacterial suspension was injected into the tail vein of the mice at 

the volume of ~250 μl per mouse, as previously described (31, 32). Mouse survival was 

monitored for 7 days. In the antibody neutralization experiments, mice were first given 

i.p. 100 μg of In Vivo Plus murine monoclonal anti-mouse IFNAR1 antibody (Catalog#: 

BP0241) or In Vivo Plus mouse IgG1 isotype control antibody (Catalog#: BP0083) 

purchased from BioXCell (Lebanon, NH). The mice were then infected with E. coli i.v. 

1 h later. Mortality was monitored over seven days. Disease severity was assessed using a 

sepsis morbidity scoring system (Table I), which was adopted and refined from the murine 

sepsis score system developed by Shrum et al (45). This score system evaluates morbidity in 

seven categories: appearance, level of consciousness, activity, response to stimuli, eye state, 

respiration rate and quality. Each of these categories was given a score between 0 and 4. The 

individual scores in all categories were added together to yield the total score for a specific 

animal at the time of examination. Mice that died or were in moribundity (euthanized) at the 

time of evaluation were given a maximal score of 28.
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Bacterial load determination

Bacterial burden was determined 24 h after infection as previously described (31). Bacterial 

colonies were counted separately for each sample. Spleen samples were normalized to organ 

weight and blood samples were normalized to blood volume.

Generation of expression heat map of interferon-stimulated genes

Mkp-1+/+ and Mkp-1−/− mice were infected i.v. with E. coli at the dose of 2.5×107 CFU/g 

body weight (b.w.). Livers were isolated 24 h post infection, and total RNA was isolated 

from 4 animals in each treatment group for RNA-seq analysis (32). The RNA-seq data 

have been deposited in Gene Expression Omnibus (GSE122741). A comprehensive list 

of 71 known interferon-stimulated genes was compiled, and the transcript copy numbers 

were used to calculate the fold of changes and p values using a t-test. The fold change 

of transcripts for each gene was calculated relative to the average expression in control 

Mkp-1+/+ mice (injected with PBS, i.v.). The data set was then sorted from the highest 

level to the lowest level. Values were log2-transformed to generate a heat-map where red 

indicates up-regulation, white indicates no change, and blue indicates down-regulation of 

gene expression.

ELISA and multiplex assessment for cytokines

Interferon concentrations in blood and cell culture medium were measured by ELISA 

following a standard protocol (46) with minor modifications. Briefly, wells on 96-well 

plates were coated with an IFN-β-capture antibody (Catalog number 519202, BioLegend, 

San Diego, CA) diluted in phosphate-buffered saline overnight at 4°C. The wells were 

washed 3 times with PBS, and then blocked with ELISA diluent (PBS containing 10% 

FBS) for 1 h at room temperature. Subsequently, the wells were washed 3 times with 

PBS, and the adequately diluted samples (serum or cell culture media) and mouse IFN-β 
standard (BioLegend) were added into the wells to allow incubation at room temperature 

for 2 h. The samples were aspirated, and the wells were washed 5 times with PBS. The 

detection antibody (Catalog #: 32400–1, PBL Assay Science, Piscataway, NJ) diluted to 

a concentration of 50 neutralization units per ml was added to the wells and allowed to 

incubate at room temperature for 1 h. After 5 washes with PBS, HRP-conjugated goat 

anti-rabbit IgG (Catalog number: 111-035-144, Jackson ImmunoReasearch, West Grove, 

PA) diluted by 5,000-fold in PBS containing 10% FBS was added to the wells and allowed 

to incubate for 30 min at room temperature. After 7 washes with PBS, color was developed 

using 1× 3,3’,5,5’-tetramethylbenzidine solution (Pierce, Rockford, IL) and the absorbance 

was measured at 450 nm, using the SpectraMax M2 microplate reader (Molecular Devices, 

Sunnyvale, CA). The IFN-β concentration was calculated based on the standard curve using 

the SoftMax pro program (Molecular Devices).

Multiplex cytokine assessment for mouse sera was carried out using a LEGENDplex 

multiplex kit (BioLegend) according to the manufacturer’s recommendations. We used a 

pre-defined mouse inflammation panel to quantify 13 mouse cytokines (GM-CSF, IFN-β, 

IFN-γ, IL-1α, IL-1β, IL-6, IL-10, IL-12 p70, IL-17A, IL-23, IL-27, MCP-1, and TNF-α).
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Macrophage derivation, culture, and stimulation

Bone marrow was isolated from Mkp-1+/+ and Mkp-1−/− mice on the C57BL/6J background, 

and the red blood cells were lysed by incubating in ACK lysing buffer (Invitrogen, Carlsbad, 

CA) for 2–3 min. The remaining bone marrow cells were cultured on petri dishes in 

DMEM supplemented with 10% FBS (Atlantic Biologicals, Flowery Branch, GA), 25% 

L929-conditioned medium, 10 mM HEPES Buffer, 100 units/ml penicillin, 100 μg/ml 

streptomycin, and 10 μg/ml gentamicin (Invitrogen). The cells were re-fed once with fresh 

medium after 4 days and cultured for 3 additional days to generate bone marrow-derived 

macrophages (BMDM).

BMDM were stimulated with LPS (O55:B5) (Calbiochem, San Diego, CA) or heat-

killed E. coli for different times. Stimulation of BMDM with synthetic dsRNA 

polyinosinic:polycytidylic acid (poly (I:C)) (Invivogen, San Diego, CA) and sonicated 

herring sperm DNA (Sigma-Aldrich, St. Louis, MO, USA) was carried out by transfection 

with polyethylenimine (Polysciences, Warrington, PA), as previously described (47). 

In some experiments, BMDM were pre-treated with either vehicle (DMSO) or a 

pharmacological inhibitor of p38 (SB203580 (48), Calbiochem) or JNK (JNK-IN-8 (49), 

Selleck Chemicals, Houston, TX) for 15 min prior to TLR ligand or E. coli stimulation. 

Medium was harvested for ELISA and cells were lysed to harvest proteins for Western 

blot analysis, or to harvest total RNA for quantitative RT-PCR (qRT-PCR) as previously 

described (50).

RAW264.7 cells culture, transfection, and luciferase assays

RAW264.7 cells were modified using the PiggyBac expression system (51) (SBI System 

Biosciences, La Jolla, CA) to express rat Mkp-1 protein under a tetracycline-inducible 

(Tet-ON) promoter (52). We incorporated the one-vector tetracycline-inducible expression 

feature of the plasmid pCW57.1 MCS1-P2A-MCS2 (neo) (53) into the PiggyBac vector to 

create a new vector PB-SK2. The PB-SK2 vector carries two tandem expression cassettes 

sandwiched by two specific inverted terminal repeats (ITRs). The first cassette expresses 

reverse tetracycline-controlled transactivator (rtTA) and the neomycin phosphotransferase 

separated by a Thosea asigna virus 2A peptide bond skipping sequence. The second 

expression cassette harbors a transgene under a promoter containing 5 tetracycline response 

elements. In the presence of doxycycline, the rtTA transcription factor generated by the first 

expression cassette will turn on the expression of the transgene in the second expression 

cassette. The neomycin phosphotransferase confers G418 resistance to the cells. When co-

transfected with a hyperactive PiggyBac transposase vector, the transposase can bind to the 

specific ITRs of the Piggybac vector and excise the ITR-flanked expression cassettes, and 

insert into the genome at TTAA sites (51). We cloned the rat Mkp-1 cDNA into the EcoRI 

site downstream of the TRE promoter. The authenticity of the constructs was confirmed 

by DNA sequencing. The empty Piggybac vector PB-SK2 or PB-SK2 containing the rat 

Mkp-1 cDNA was co-transfected with a hyperactive PiggyBac transposase vector (51) into 

RAW264.7 cells, using lipofectamine 3000 (Invitrogen). After transfection, the cells were 

selected for 2 weeks in medium containing 500 μg/ml G418. Individual clones were isolated 

to test for the expression of Mkp-1 in the absence and presence of doxycycline. The leftover 

clones were pooled. Adequate RAW264.7 derivative clones and the pools were maintained 
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in DMEM supplemented with 10% FBS, 100 units/ml penicillin, 100 μg/ml streptomycin, 

and 150 μg/ml G418 (Invitrogen). These cells were cultured in medium with or without 

doxycycline overnight, and then stimulated with heat-killed E. coli or LPS to harvest cell 

lysates for Western blot analysis or collect culture medium for ELISA.

In the luciferase assay experiment, we transfected RAW264.7 cell clone (clone 22), 

which was stably integrated with a Tet-ON Mkp-1 expression cassette, with a hyperactive 

PiggyBac transposase vector and a PiggyBac vector carrying a luciferase reporter linked to 

the proximal mouse IFN-β promoter (nucleotides −53 to −195) (54). The cells were then 

selected with puromycin for 2 weeks. The cell pool was then treated with doxycycline (100 

ng/ml) overnight or left untreated. These cells were then stimulated with LPS or heat-killed 

E. coli for 6 h or left unstimulated. Cells were then washed with PBS and lysed to measure 

luciferase activity in the cell lysates, using a Renilla luciferase assay system (Promega, 

Madison, WI), according to the manufacturer’s recommendations.

Western blot analysis

Western blot analysis was carried out as previously described (24, 55). The rabbit 

monoclonal antibodies against phosphor-IRF3 (Ser396), total IRF3, phosphor-IRF7 

(Ser437/538), phosphor-TBK1 (Ser172), total TBK1, phosphor-IκB kinase (IKK) α/β 
(Ser176/180), and Mkp-1 were purchased from Cell Signaling (Danvers, MA, USA). The 

mouse monoclonal antibodies against radical S-adenosyl methionine domain containing 2 

(Rsad2), interferon-stimulated gene (Isg) 15, IκBα, and fatty acid synthase (Fasn) as well as 

the polyclonal antibody against IKKα/β were purchased from Santa Cruz Biotechnology 

(Dallas, Texas, USA). The mouse monoclonal antibody against β-actin was purchased 

from Sigma-Aldrich. The immunoblots were stripped and re-probed with an antibody 

against a house-keeping protein to control for loading. Western blots were developed using 

chemiluminescent reagent ECL Immobilon (Millipore Corporation, Billerica, MA). Western 

blot images were acquired using Epson Perfection 4990 PHOTO scanner (Epson, Long 

Beach, CA, USA).

Assessment of IFN-β mRNA expression and stability

BMDM were stimulated with heat-killed E. coli (O55:B5, ATCC 12014) or various TLR 

ligands for different amounts of time. For E. coli stimulation, heat-killed E. coli were added 

to cell culture plates at a ratio of 10 bacteria per macrophage, and then the plates were 

centrifuged in swinging buckets for 2 min at 2,000 rpm at 37°C. Total RNA samples were 

harvested from the cells using Trizol. Genomic DNA was removed by digesting the total 

RNA with RQ1 RNase-Free DNase (Promega, Madison, WI). Liver RNA was then reverse 

transcribed on a PTC-200 DNA Engine Cycler (Bio-Rad, Hercule, CA) with High-Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA). qRT-PCR was 

performed using PowerUp SYBR Green PCR Master Mix (Applied Biosystems) on a 

Realplex2 Mastercycler (Eppendorf, Hauppauge, NY).

For measuring IFN-β mRNA decay, BMDM were stimulated with heat-killed E. coli 
for 2 h. Actinomycin D was added into the culture medium at a concentration 

of 5 μg/ml. Total RNA was harvested from the cells using Trizol (Invitrogen) 
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after 0, 2, 4, and 8 h. IFN-β mRNA levels were quantified by qRT-PCR to 

assess IFN-β mRNA decay using primers 5’-GCCAGGAGCTTGAATAAAATG-3’ 

and 5’-GATGGTCCTTTCTGCCTCAG-3’, as previously described (46, 47). 18S 

ribosomal RNA was detected using 5’-GTAACCCGTTGAACCCCATT-3’ and 5’-

CCATCCAATCGGTAGTAGCG-3’ and used as an internal control for normalization. The 

levels of IFN-β mRNA expression was calculated relative to 18S using the 2−ΔΔCT method 

(36).

Statistical analyses

Survival differences between groups were analyzed by Kaplan-Meier analysis with log-

rank test using the on-line statistics program (http://www.obg.cuhk.edu.hk/ResearchSupport/

StatTools/Survival_Pgm.php) developed by Dr. Allan Chang, Department of Obstetrics and 

Gynaecology, Chinese University of Hong Kong. Differences in cytokine production or 

gene expression between groups were compared using t-test or two-way ANOVA with 

GraphPad Prism 8.2.0 program (GraphPad Software, San Diego, CA). A value of p<0.05 

was considered statistically significant for all analyses.

Results

Mkp-1−/− mice produce significantly greater IFN-β and have a substantially enhanced 
interferon signature in global gene expression in the liver

Previously, we have found that Mkp-1−/− mice exhibited a profound defect in host defense 

against E. coli infection, indicated by substantial increases in mortality, bacterial burden, and 

organ damage associated with increased production of TNF-α, IL-6, and IL-10 compared 

to wildtype mice. To gain insight into the physiological function of Mkp-1 in sepsis after 

systemic E. coli infection, we analyzed the RNA-seq datasets (GSE122741) generated using 

livers of control and E. coli-infected Mkp-1+/+ and Mkp-1−/− mice (32). We noticed a 

profound enhancement of an IFN genetic response signature, although neither type I IFN 

nor type II IFN mRNA(s) were expressed in the livers of these mice. Interferons evoke a 

unique genetic program via inducing the expression of many interferon-stimulated genes 

(Isgs). We compiled the mRNA transcript levels of all known interferon-stimulated genes 

that were expressed in the livers (Table S1), log-transformed the values, and generated a 

heatmap (Figure 1). Nearly 60 of the 71 interferon-stimulated genes were up-regulated in 

Mkp-1+/+ mice upon E. coli infection. Forty of the 71 interferon-stimulated genes, including 

myxovirus resistance (Mx) 1, Mx2, 2’−5’-oligoadenylate synthase-like protein 1 (Oasl1), 

Rsad2, nicotinamide phosphoribosyltransferase (Nampt), interferon-stimulated gene (Isg) 

15, Isg20, and ubiquitin specific peptidase 18 (Usp18), were expressed at higher levels in 

Mkp-1−/− mice than in Mkp-1+/+ mice following E. coli infection. Western blot analysis 

confirmed the enhanced protein expression for Rsad2 (Figs. 2A, 2B) but not Isg15 (Fig. 

2C), suggesting that the transcription of these interferon-regulated genes is not the only 

mechanism controlling their protein levels.
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Mkp-1 deficiency enhances the production of a large number of cytokines, including both 
IFN-β and IFN-γ

To understand the molecular basis for the enhanced IFN signature in E. coli-infected 

Mkp-1−/− mice, we measured the levels of 13 cytokines, including IFN-β, IFN-γ, TNF-α, 

IL-1α, IL-1β, IL-6, IL-10, IL-12p70, IL-17A, IL-23, IL-27, MCP-1, and GM-CSF, in the 

sera of Mkp-1+/+ and Mkp-1−/− mice prior and following E. coli infection. We infected 

Mkp-1+/+ and Mkp-1−/− mice i.v. with E. coli (2.5×107 CFU/g b.w.) and analyzed the 

cytokine levels after 3, 6, or 24 h using a multiplex cytokine assay kit. As previously 

described (31), Mkp-1−/− mice produced substantially more TNF-α, IL-6, and IL-10 than 

did Mkp-1+/+ mice following E. coli infection at all three time points (Figs. 3A–C). The 

differences in IL-6 and IL-10 at 24 h were particularly striking. While IL-6 and IL-10 

returned to close to basal levels in Mkp-1+/+ mice at 24 h, IL-6 and particularly IL-10 levels 

remained at very high levels in Mkp-1−/− mice at 24 h. At this point, the IL-6 and IL-10 

levels in Mkp-1−/− mice were 3- and 31-fold higher than in Mkp-1+/+ mice, respectively. In 

addition, IL-17A and IL-27 production in Mkp-1−/− mice were also dramatically increased 

relatively to Mkp-1+/+ mice following E. coli infection at both early and late time points 

(Figs. 3D, 3E). Interestingly, three cytokines, IL-1α, IL-1β, and GM-CSF, were similar 

in the two groups of mice at early time points (3 and 6 h) post-infection but diverged 

in different directions by 24 h (Figs. 3F–H). At that point, the levels of these cytokines 

were substantially decreased in Mkp-1+/+ mice, but further increased (such as IL-1α) or 

persisted at the peak levels (GM-CSF and IL-1β) in Mkp-1−/− mice. Although serum MCP-1 

levels were dramatically increased in both Mkp-1+/+ and Mkp-1−/− mice following E. coli 
infection, there was no significant difference between the two groups of E. coli-infected 

mice (data not shown). IL-23 levels did not change in either Mkp-1+/+ or Mkp-1−/− mice 

after E. coli infection (data not shown). IL-12p70 levels were only slightly increased in 

Mkp-1−/− mice after E. coli infection, and there were no differences between the two groups 

of E. coli-infected mice (data not shown). Interestingly, the levels of IFN-γ were very low 

in uninfected mice, but dramatically increased 6 h after E. coli infection in both Mkp-1+/+ 

and Mkp-1−/− mice (Fig. 3I). Although IFN-γ levels in Mkp-1−/− mice were significantly 

higher than in Mkp-1+/+ mice 6 h after E. coli infection, IFN-γ levels in the Mkp-1+/+ 

mice plummeted to nearly basal levels by 24 h. In contrast, elevated levels of IFN-γ in 

E. coli-infected Mkp-1−/− mice persisted at 24 h post infection. Although IFN-β levels in 

Mkp-1+/+ mice did not significantly change, IFN-β levels at both 3 h and 24 h post E. coli 
infection in Mkp-1−/− mice were significantly higher than in infected Mkp-1+/+ mice (Fig. 

3J). We also developed a sandwich ELISA assay in house to verify the observed differences 

in serum IFN-β levels between E. coli-infected Mkp-1+/+ and Mkp-1−/− mice (Fig. 3K). 

The ELISA assays showed that IFN-β production was induced by E. coli infection in both 

Mkp-1+/+ and Mkp-1−/− mice. Although blood IFN-β levels in uninfected Mkp-1+/+ and 

Mkp-1−/− mice were comparable, serum IFN-β levels 24 h after E. coli infection were over 

3-fold higher in Mkp-1−/− mice than in Mkp-1+/+ mice (Fig. 3K).

Neutralizing IFN-β in Mkp-1−/− mice exacerbates the severity of disease following E. coli 
infection

To address the significance of elevated type I IFN, IFN-β, in the phenotype of Mkp-1−/− 

mice during E. coli infection, we blocked IFNAR1 with a neutralizing antibody, and 
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documented survival (Fig. 4). While prophylactic neutralizing IFNAR1 with a monoclonal 

antibody appeared to increase mortality, the difference compared to the mortality after 

treatment with an isotype control antibody did not reach statistical significance. We then 

assessed the effect of IFNAR1 blockade on disease severity using a comprehensive murine 

sepsis scoring system (Table I) that evaluates appearance, consciousness, activity, response 

to stimuli, eyes, respiratory rate and quality. We found that the IFNAR1 neutralizing 

antibody augmented disease severity in Mkp-1−/− mice following E. coli infection (Fig. 4B). 

Neutralization of IFNAR1 by the antibody almost completely abolished the increase in liver 

Rsad2 protein level in Mkp-1−/− mice triggered by E. coli infection (Fig. 4C), confirming 

the blockade of type I IFN signaling in mice received the IFNAR1-neutralizing antibody. 

To our surprise, IFNAR1 neutralization had neither a significant effect on serum TNF-α or 

IL-6 levels (Fig. 4D), nor affected bacterial burdens in the blood or spleens (Fig. 4E). These 

results demonstrate that increased IFN-β is actually beneficial to the mice, suggesting that 

exacerbating IFN-β production is not responsible for the enhanced mortality and bacterial 

burden of Mkp-1−/− mice after E. coli infection.

Mkp-1 negatively regulates IFN-β production

To delineate the molecular mechanism by which Mkp-1 regulates IFN-expression, we 

analyzed the effects of Mkp-1 on IFN-β production in macrophages. First, we compared 

IFN-β production in Mkp-1+/+ and Mkp-1−/− BMDM following stimulation with heat-killed 

E. coli (Fig. 5A). While E. coli stimulation resulted in IFN-β production in Mkp-1+/+ 

BMDM, substantially more IFN-β (>5-fold) was produced by Mkp-1−/− BMDM following 

E. coli stimulation than by Mkp-1+/+ BMDM. As LPS is an important pathogenic factor in 

Gram-negative bacteria and a potent stimulant for IFN-β production (56), we assessed the 

effect of Mkp-1 deficiency on LPS-stimulated IFN-β production (Fig. 5B). Similar to what 

was observed in E. coli-stimulated BMDM, Mkp-1 deficiency substantially enhanced IFN-β 
production in LPS-stimulated BMDM.

We then assess the effect on Mkp-1 deficiency on IFN-β mRNA levels in E. coli-stimulated 

BMDM by qRT-PCR (Fig. 5C). E. coli stimulation resulted in an ~400-fold increase in 

IFN-β mRNA levels at 1 h in Mkp-1+/+ BMDM, followed by a gradual decrease such that 

by 6 h post stimulation, IFN-β levels were ~40-fold above basal levels. The increase in 

IFN-β mRNA levels was dramatically enhanced in Mkp-1−/− BMDM. Following E. coli 
stimulation, IFN-β mRNA levels increased to >2,000-fold over the basal level in Mkp-1+/+ 

macrophages within 1 h. IFN-β mRNA levels maintained and slightly increased at 2 h, and 

then rapidly declined.

We also assessed whether over-expression of Mkp-1 inhibits IFN-β production. We 

established stable RAW264.7 clones (clones 15, 13, 21, 22) that express the rat Mkp-1 

protein in a doxycycline-inducible manner. RAW264.7 is a macrophage-like mouse cell 

line that can produce a variety of cytokines in response to pathogenic stimulation (57). 

Doxycycline treatment dramatically increased Mkp-1 expression in these cells (Fig. 6A, 

Upper panel). It is worth noting that in the absence of doxycycline these Mkp-1-inducible 

RAW264.7 clones exhibited an elevated basal Mkp-1 level that was comparable to the 

endogenous Mkp-1 level 1 h after LPS stimulation in the parental RAW264.7 cells (Fig. 
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6A, Middle panel). Interestingly, LPS stimulation further increased the levels of Mkp-1 

expression in these clones. Importantly, doxycycline treatment substantially inhibited IFN-β 
production in two of the tested Mkp-1-expressing clones (clones 15 and 22) following 

both LPS and E. coli stimulation (Fig. 6B). As there were substantial variability between 

the individual cell clones (Fig. 6B, note the differences in scales of the y-axis between 

clone 15 and clone 22), we assessed IFN-β production using pools of the stable doxycycline-

inducible clones. In the stable RAW264.7 pool transfected with an empty vector, both 

E. coli and LPS triggered a substantial increase in IFN-β production, and doxycycline 

pre-treatment has no effect on IFN-β production (Fig. 6C, Left graph). In contrast, 

in the pool stably transfected with the Tet-ON Mkp-1 plasmid, doxycycline-induced 

Mkp-1 expression dramatically inhibited IFN-β production, although IFN-β production was 

potently stimulated by either E. coli or LPS in the absence of doxycycline (Fig. 6C, Right 

graph).

The pharmacological inhibitor of p38, but not JNK, blocks IFN-β expression

Mkp-1 prefers p38 and JNK as substrates (21), and Mkp-1 deficiency resulted in a 

considerable prolongation of p38 and JNK activity in BMDM following LPS stimulation 

(26–29). We assessed whether p38 and JNK are involved in the production of IFN-β in 

BMDM stimulated with E. coli and other TLR ligands. First, we assessed the effects of p38 

and JNK inhibition on the production of IFN-β in BMDM stimulated with E. coli and LPS. 

Pre-treatment of BMDM with a pharmacological inhibitor of p38, SB203580, substantially 

attenuated IFN-β production in both Mkp-1+/+ and Mkp-1−/− BMDM stimulated with E. 
coli (Fig. 7A). Although the JNK inhibitor, JNK-IN-8, alone had little effect, combination 

of both SB203580 and JNK-IN-8 had a greater inhibitory effect on E. coli-induced IFN-β 
production than did SB203580 alone in Mkp-1−/− BMDM but not in Mkp-1+/+ BMDM 

(Fig. 7A). While SB203580 substantially inhibited LPS-stimulated IFN-β production in both 

Mkp-1+/+ and Mkp-1−/− BMDM, JNK-IN-8 had little effect (Fig. 7B). The addition of both 

JNK-IN-8 and SB203580 did not significantly enhance the inhibition of SB203580 alone 

on LPS-induced IFN-β production in either Mkp-1−/− or Mkp-1+/+ BMDM. These results 

clearly demonstrate that p38 is primarily responsible for the dramatic increase in IFN-β in 

stimulated Mkp-1−/− BMDM.

We then assessed the effect of p38 inhibition on kinetics of IFN-β production and IFN-β 
mRNA induction following E. coli stimulation. E. coli-induced IFN-β levels in the medium 

increased gradually over a 6-h period for both Mkp-1+/+ and Mkp-1−/− BMDM, although 

the increase was substantially greater for Mkp-1−/− BMDM (Fig. 7C). The increase in E. 
coli-induced IFN-β levels were detected within 2 h. IFN-β reached a peak level at ~4 h in 

Mkp-1+/+ BMDM, while IFN-β levels continued to increase for 6 h in Mkp-1−/− BMDM. 

Pre-treatment of both Mkp-1+/+ and Mkp-1−/− BMDM with SB203580 almost completely 

abolished E. coli-induced IFN-β production in both groups. IFN-β mRNA reached peak 

levels at 1–2 h in both Mkp-1+/+ and Mkp-1−/− BMDM following E. coli stimulation, then 

declined, although IFN-β mRNA reached substantially greater levels in Mkp-1−/− BMDM 

(Fig. 7D). SB203580 pre-treatment decreased IFN-β mRNA levels substantially in both 

Mkp-1+/+ and Mkp-1−/− BMDM. We also assessed the effect of SB203580 on IFN-β mRNA 

induction in Mkp-1+/+ and Mkp-1−/− BMDM treated with LPS, poly (I:C), or herring sperm 
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DNA. LPS and poly (I:C) activate TLR4 (58) and TLR3 (59), respectively. Poly (I:C) is 

also recognized by cytosolic pathogen sensor RIG-I (60). Herring sperm double-stranded 

DNA has been shown to activate the cyclic GMP-AMP synthase (cGAS)-Stimulator of 

interferon genes (STING) pathway to stimulate IFN-β expression (61). Similar to what was 

seen in cells stimulated with E. coli, LPS-stimulated IFN-β mRNA expression in Mkp-1+/+ 

and Mkp-1−/− BMDM was abolished by SB203580 (Fig. 7E). SB203580 also abolished 

IFN-β mRNA induction by transfection of either poly (I:C) or herring sperm DNA in both 

Mkp-1+/+ and Mkp-1−/− BMDM (Fig. 7F). These results further highlight the critical role of 

p38 in the regulation of IFN-β induction during pathogenic infections.

Since p38 controls the production of many cytokines via regulating the stability of cytokine 

mRNAs, we assessed whether IFN-β mRNA stability is affected by Mkp-1 deficiency. 

BMDM were stimulated with heat-killed E. coli for 2 h, and then treated with actinomycin 

D to stop gene transcription. Cells were harvested at different times, and IFN-β mRNA 

levels in these samples were assessed by qRT-PCR (Fig. 8A). Half-life of IFN-β mRNA was 

calculated based on the rate of mRNA decay. The half-life of IFN-β mRNA in Mkp-1+/+ 

macrophages was ~4.1 h, while the half-life in Mkp-1−/− macrophages was moderately 

longer, ~5.9 h, suggesting that enhanced IFN-β mRNA stability contributes to the elevated 

IFN-β expression in Mkp-1−/− macrophages.

To address whether Mkp-1 affects IFN-β gene transcription, we stably integrated an IFN-
β-luciferase reporter into an RAW264.7 cell line harboring a Tet-ON Mkp-1 expression 

cassette. Cells were treated with doxycycline overnight or left untreated, and then stimulated 

with LPS or heat-killed E. coli for 6 h prior to harvesting for luciferase activity assays 

(Fig. 8B). Doxycycline treatment had no effect on the IFN-β-luciferase reporter in both 

unstimulated and LPS-stimulated cells, indicating that elevated Mkp-1 expression did not 

affect LPS-stimulated IFN-β promoter activity. However, doxycycline treatment slightly 

decreased IFN-β-luciferase reporter activity in E. coli-induced cells by approximately 20%, 

indicating a slight inhibition on IFN-β promoter activity.

IFN-β transcription is regulated by multiple transcription factors, including IRF3, IRF7, 

and NF-κB, through phosphorylation mediated by protein kinases (62, 63). We compared 

IRF3 and IRF7 phosphorylation in Mkp-1+/+ and Mkp-1−/− BMDM after LPS stimulation 

by Western blotting using phosphor-specific antibodies (Fig. 8C). IRF3 was rapidly 

phosphorylated in both Mkp-1+/+ and Mkp-1−/− BMDM following LPS stimulation, and 

there was no overt difference in the kinetics or magnitude of IRF3 phosphorylation 

between these cells. Phosphorylation of IRF7 was similar. We then assessed the activities 

of upstream kinases using phosphor-specific antibodies (Fig. 8D). LPS stimulation led to a 

transient TBK1 phosphorylation/activation in both Mkp-1+/+ and Mkp-1−/− BMDM. TBK1 

phosphorylation reached peak level at 30–90 min, and substantially declined by 3 h post 

LPS stimulation. There was no overt difference in TBK1 phosphorylation between the two 

groups. Activation of IKKα/β occurred within 15 min after LPS stimulation, and then 

IKKα/β phosphorylation rapidly declined. No obvious difference in IKKα/β activity was 

observed between Mkp-1+/+ and Mkp-1−/− BMDM, although IκB levels appeared to recover 

faster in Mkp-1−/− BMDM than in Mkp-1+/+ BMDM.
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Discussion

Previously, we have shown that Mkp-1−/− mice exhibited a significantly greater mortality 

after E. coli infection than Mkp-1+/+ mice (31, 32). The increased mortality is associated 

with enhanced production of three cytokines: TNF-α, IL-6, and IL-10, elevation of bacterial 

burden and greater organ damage. Here we showed that in addition to these three cytokines 

the production of at least another seven cytokines were enhanced in Mkp-1−/− mice 

following systemic E. coli infection, including IL-1α and β, IL-17A, IL-27, GM-CSF, 

IFN-β, and IFN-γ (Fig. 3), highlighting the pivotal role of Mkp-1 in the prevention of 

cytokine storms. Consistent with the significant increase in circulating IFNs, the expression 

of a large number of interferon-stimulated genes was substantially enhanced in the livers of 

E. coli-infected Mkp-1−/− mice compared to E. coli-infected Mkp-1+/+ mice (Fig. 1). Since 

the mRNA levels of type I IFNs were very low in livers (Table S2), they are unlikely a major 

source of type I IFN production during sepsis. We think that the augmented expression 

of these numerous IFN-stimulated genes in the livers of E. coli-infected Mkp-1−/− mice is 

likely a cellular reflection of elevated circulating type I IFNs. In this study, we focus on 

the function of type I IFN during E. coli infection and the regulation of IFN-β expression 

by Mkp-1. We showed that neutralizing IFNAR1 increased morbidity without affecting 

TNF-α and IL-6 or bacterial burden, supporting a beneficial role of type I IFNs in this 

sepsis model (Fig. 4). The expression of Rsad2 protein in E. coli-infected Mkp-1−/− mice 

was almost abolished by IFNAR1 neutralization, illustrating the importance of type I IFN 

signaling in Rsad2 induction and a nearly complete neutralization of type I IFN signaling 

in these mice (Fig. 4C). Supporting the critical role of Mkp-1 in the regulation of IFN-β 
production in phagocytes, we found that Mkp-1−/− BMDM produced dramatically more 

IFN-β protein than did Mkp-1+/+ cells following stimulation with E. coli, LPS, poly (I:C), or 

herring sperm DNA (Figs. 5, 7F). Moreover, enhanced IFN-β induction in response to these 

agents were almost completely blocked by a p38 inhibitor, but not a JNK inhibitor (Fig. 

7), suggesting that enhanced p38 activity is primarily responsible for the increased IFN-β 
production in Mkp-1−/− macrophages. We found that the half-life of E. coli-induced IFN-β 
mRNA was modestly longer in Mkp-1−/− BMDM than in Mkp-1+/+ BMDM (Fig. 8A). We 

also found that over-expression of Mkp-1 had little effect on the activity of the proximal 

IFN-β promoter (Fig. 8B). Mkp-1 deficiency had little effect on IRF3 phosphorylation (Fig. 

8C), TBK1 or IKKα/β activation (Fig. 8D). Taken together, our results clearly show that 

Mkp-1 constrains the exaggerated production of many cytokines that are both beneficial and 

harmful to the host during microbial infections, establishing Mkp-1 as a critical gate keeper 

of the cytokine storm in sepsis. Our studies indicate that Mkp-1 regulates IFN-β expression 

primarily through a p38-mediated mechanism.

Mechanisms by which Mkp-1 regulates IFN-β expression

We found that 10 of the 13 cytokines examined in this study exhibited enhanced production 

following E. coli infection in Mkp-1−/− mice relative to Mkp-1+/+ mice (Fig. 3). The 

exaggerated production of these cytokines in Mkp-1−/− mice following E. coli infection is 

not surprising. These are typical inflammatory cytokines and their mRNA transcripts contain 

adenylate-uridylate (AU)-rich elements in the 3’ un-translated regions (64). However, the 

regulation of IFN-β by Mkp-1 in response to bacterial infection has not been previously 
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reported. The increased IFN-β production in E. coli-infected Mkp-1−/− mice and Mkp-1−/− 

BMDM following stimulation with E. coli, LPS, poly (I:C), and DNA clearly show an 

inhibitory role of Mkp-1 in IFN-β induction (Figs. 5, 7). The inhibitory action of Mkp-1 

on IFN-β production is further supported by the almost complete suppression of IFN-β 
production by over-expression of Mkp-1 in E. coli- and LPS-stimulated RAW264.7 cells 

(Fig. 6).

While it is clear that Mkp-1 inhibits IFN-β expression at both the mRNA and protein 

levels, the mechanism involved is unclear. In theory, Mkp-1 could regulate IFN-β induction 

through both transcriptional and post-transcriptional mechanisms (65). It has been well-

established that IFN-β transcription can be regulated by the transcription factors IRF3, 

IRF7, NF-κB, and AP-1 in a cooperative manner via binding to the positive regulatory 

domain (PRD) I-IV on the IFN-β promoter (62, 63). However, our results suggest that, 

at least in response to LPS, enhanced IFN-β expression by Mkp-1 deficiency is unlikely 

mediated by these transcription factors. Mkp-1 deficiency did not overtly enhance IRF3 

or IRF7 phosphorylation (Fig. 8C) or IKKα/β activity (Fig. 8D). The AP-1 transcription 

factor complex bound to PRD IV of the IFN-β promoter also does not appear to play a 

prominent role in the enhanced IFN-β expression in Mkp-1−/− macrophages, at least in 

response to LPS. PRD IV-bound AP-1 is composed of a c-Jun/ATF2 heterodimer (63). 

JNK is known to enhance the transcriptional activity of AP-1 through phosphorylation of 

c-Jun and ATF2, and p38 also phosphorylates ATF2 (66–69). Mkp-1 deficiency leads to 

enhanced JNK and p38 activity, which could, at least in theory, enhance AP-1 activity 

and enhanced IFN-β transcription. However, the following observations do not support this 

model. First, Mkp-1 over-expression in LPS-stimulated RAW264.7 cells had little effect on 

the activity of the proximal IFN-β promoter that contains PRD I-IV (Fig. 8B), although it 

almost completely inhibited IFN-β production from the endogenous gene after either LPS 

or E. coli stimulation (Figs. 6B, 6C). Second, a JNK-selective inhibitor had little effect on 

IFN-β expression following LPS stimulation (Figs. 7A, 7B), despite a substantial inhibition 

of c-Jun phosphorylation (data not shown). The role of AP-1 and JNK in IFN-β expression 

in response to E. coli stimulation appears to be more complicated (Figs. 7A, 8B). This is 

not surprising, because bacteria are bound to stimulate more signaling pathways due to the 

increased complexity of the stimulant. JNK appears to play a minor role in E. coli-induced 

IFN-β expression in Mkp-1−/− BMDM, since inhibition of both JNK and p38 led to a 

greater decrease in IFN-β expression than inhibition of p38 alone (Fig. 7A). This limited 

stimulatory effect of JNK could be mediated by AP-1 transcription factor via PRD IV of 

the proximal IFN-β promoter since E. coli-induced IFN-β-luciferase reporter activity was 

modestly inhibited by Mkp-1 over-expression (Fig. 8B). Unlike the limited role of JNK in 

IFN-β expression, p38 plays a critical role in IFN-β expression for all stimulations tested 

(Fig. 7). We postulate that if p38 positively regulates IFN-β transcription, the action is likely 

mediated by a transcription factor other than AP-1 through a distal element(s) on the IFN-β 
promoter.

We think that elevated p38 activity in Mkp-1−/− macrophages may also mediate IFN-β 
expression by stabilizing IFN-β mRNA and enhancing IFN-β translation (70). IFN-β mRNA 

contains several putative AU-rich elements (65, 71, 72). AU-rich elements have been 

shown to mediate mRNA decay through interaction with mRNA-binding proteins such 

Kirk et al. Page 13

J Immunol. Author manuscript; available in PMC 2022 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as tristetraprolin (TTP) (73). In the absence of Mkp-1, stronger p38 activity could lead 

to greater TTP phosphorylation, resulting in dissociation of TTP from the IFN-β mRNA 

decay machinery, leading to enhanced IFN-β mRNA stability and IFN-β translation. This is 

consistent with our observation that IFN-β mRNA half-life is longer in Mkp-1−/− BMDM 

than in Mkp-1+/+ BMDM (Fig. 8). Nevertheless, it is still puzzling whether a modest 

increase in IFN-β mRNA stability could explain the dramatic differences in IFN-β mRNA 

levels (Fig. 5).

Given the importance of IFN-β in host defense against viruses (41), we speculate that as 

a negative regulator of IFN-β production Mkp-1 could also be detrimental during certain 

viral infections, and inhibition of this phosphatase may represent a therapeutic treatment 

to contain viral spread. This is supported by the substantial enhancement in the expression 

of the large number of interferon-stimulated genes in the livers of Mkp-1−/− mice after E. 
coli infection (Fig. 1). It should be pointed out that IFN-γ likely also contributed to the 

induction of some of the genes, given the significant differences in IFN-γ levels between the 

E. coli-infected Mkp-1+/+ and Mkp-1−/− mice (Fig. 3).

IFN-β and the phenotype of Mkp-1−/− mice during E. coli sepsis

Mkp-1−/− mice exhibit enhanced cytokine production, elevated bacterial burden, and 

increased mortality following systemic E. coli infection relative to Mkp-1+/+ mice (31). 

Since IFN-β has been shown to play both beneficial and detrimental roles during bacterial 

infection (33, 74), we blocked the receptor for IFN-β, IFNAR1, and examined the effects 

on both mortality and morbidity after E. coli infection. Complete blockade of type I IFN 

signaling by the IFNAR1-neutralizing antibody was supported by the absence of Rsad2 

protein (Fig. 4C), a classic IFN-stimulated gene (75). Neutralizing IFNAR1 not only led to 

significantly greater disease severity but also appeared to increase the mortality in Mkp-1−/− 

mice (Figs. 4A, 4B). These results suggest that elevated IFN-β is beneficial to the animals 

in this sepsis model but how this occurs is unclear. Neutralizing IFN-β neither altered IL-6 

production, an inflammatory index, nor changed bacterial burden (Figs. 4C, 4D). IFN-β has 

been shown to influence the immune system through a number of processes and systems, 

including tissue and cell integrity, and barrier functions (74, 76). Regardless of the exact 

mechanism via which IFN-β influences the host response in our E. coli-induced sepsis 

model, it is clear that elevated IFN-β production is not responsible for the elevated bacterial 

burden and increased mortality of Mkp-1−/− mice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations used:

3

ATF2 activating transcription factor 2

AU adenylate-uridylate

BMDM bone marrow-derived macrophages

b.w. body weight

cGAS cyclic AMP-GMP synthase

Dox doxycycline

Fasn fatty acid synthase

IFN interferon

IFNAR1 IFN-α/β receptor 1

IKK IκB kinase

IRF interferon regulatory factor

Isg interferon-stimulated gene

JNK-IN-8 JNK inhibitor 8

Mkp-1 MAP kinase phosphatase-1

Mx myxovirus resistance

Nampt nicotinamide phosphoribosyltransferase

Oasl1 2’−5’-oligoadenylate synthase-like protein 1

poly (I:C) polyinosinic:polycytidylic acid

PRD positive regulatory domain

qRT-PCR quantitative RT-PCR

Rsad2 radical S-adenosyl methionine domain containing protein 2

STING stimulator of interferon genes

TTP tristetraprolin

TBK1 TANK-binding kinase 1

Usp 18 ubiquitin specific peptidase 18
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Key points

• Knockout of Mkp-1 exacerbates cytokine storms during E. coli-induced 

sepsis.

• Mkp-1 restrains IFN-β expression in macrophages by controlling p38 activity.

• Blocking type I IFN signaling during E. coli infection exacerbate disease 

severity.
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Figure 1. Mkp-1 deficiency dramatically enhanced hepatic expression of interferon-responsive 
genes in E. coli-infected mice.
Mkp-1−/− and Mkp-1+/+ mice on a C57/129 background were infected i.v. with live E. 
coli at a dose of 2.5 × 107 CFU/g b.w. or injected with PBS (controls). Mice were 

euthanized after 24 h, and total RNA was isolated from the livers using Trizol for RNA-

seq analyses. The copy numbers of RNA transcripts for each interferon-responsive gene 

were normalized to the average number in wildtype controls to calculate fold change. The 

interferon-responsive genes were ranked based on the fold change in RNA transcripts in 

wildtype mice following E. coli infection. These values were log2-transformed to generate 

the heat map. Log-transformation allows for a greater scale in the heat map. When the 

transcript number is 0 for a given gene in a specific animal, we gave an arbitrary number 

that is lower than the lowest value in that group. Each column represents a distinct animal. 

*, p<0.05, comparing E. coli-infected Mkp-1−/− and E. coli-infected Mkp-1+/+ mice (t-test, 

n=4).
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Figure 2. Increased Rsad2 protein expression and serum IFN-β production in Mkp-1−/− mice 
relative to Mkp-1+/+ mice following E. coli infection.
Mkp-1−/− and Mkp-1+/+ mice on a C57/129 background were infected i.v. with live E. coli at 

a dose of 2.5 × 107 CFU/g b.w. or injected with PBS (controls). Mice were euthanized after 

24 h to harvest blood and liver. Serum samples were used for measuring IFN-β by ELISA. 

Liver tissues were homogenized to extract protein for Western blot analysis using Rsad2 

or Isg15 antibody. A. Levels of Rsad2 proteins in the livers of control and E. coli-infected 

mice. Each lane represents a different animal. The same set of samples was also analyzed 

by Western blotting using a mouse monoclonal antibody against a house-keeping protein, 

fatty acid synthase (Fasn), to verify comparable loading (Lower panel). Liver Rsad2 (B) and 

Isg15 (C) protein levels in control and E. coli-infected Mkp-1−/− and Mkp-1+/+ mice. Same 

membranes were stripped and reprobed with a β-actin antibody. Images shown in B and C 

are representative Western blotting results.
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Figure 3. Mkp-1 deficiency resulted in greater serum cytokine levels in E. coli-infected mice.
Mkp-1−/− and Mkp-1+/+ mice on a C57/129 background were infected i.v. with live E. coli 
at a dose of 2.5 × 107 CFU/g body weight or left uninfected. Mice were euthanized at 3, 

6, and 24 h post infection (n=8 for all groups). Uninfected mice (n=10 for both groups) 

were also euthanized and regarded as 0 time point. The blood was collected through cardiac 

puncture, and serum cytokine levels were measured using a LEGENDplex inflammation kit 

(A-I) to quantify 13 pre-defined mouse cytokines. Cytokine levels are presented as mean 

± S.E. in the graphs. Only cytokines that displayed significant differences between the 

two groups of mice are presented in the graphs. ● represents Mkp-1+/+ group while ■ 
represents Mkp-1−/− group. A. TNF-α; B. IL-6; C. IL-10; D. IL-17A; E. IL-27; F. IL-1α; 

G. IL-1β; H. GM-CSF; I. IFN-γ; J. IFN-β; K. Serum IFN-β concentration measured by 

ELISA. *, p<0.05, compared to cytokine levels in E. coli-infected Mkp-1+/+ mice at the 
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same time-point (t-test, n=5–10). #, p<0.05, compared to control of the same phenotype 

(t-test, n=3–10).
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Figure 4. Neutralizing IFN-β exacerbated the severity of disease in E coli-infected Mkp-1−/− 

mice.
Mkp-1−/− mice of the C57/129 background were given i.p. 100 μg (per mouse) of either 

a monoclonal anti-mouse IFNAR1 or an isotype control (IgG1) antibody 1 h prior to 

E. coli infection. These mice were subsequently infected i.v. with live E. coli (O55:B5) 

at a dose of 3.2×106 CFU/g body weight. Mice were monitored for 7 days to evaluate 

mortality and morbidity. To assess IFNAR1 neutralization on liver protein levels, blood 

cytokines, and bacterial burdens, mice were sacrificed 24 h post E. coli infection. Livers, 

blood, and spleens were collected aseptically. A. Survival curves of the Mkp-1−/− mice 

receiving either the isotype control or the anti-IFNAR1 antibody. B. Morbidity scores 

for the Mkp-1−/− mice receiving either the isotype control or the anti-IFNAR1 antibody. 
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The morbidity scores increased over time in both groups and were significantly greater 

in the group that got anti-IFNAR1 antibody than in the group that got isotype control. 

By two-way ANOVA the morbidity scores were significantly different for both the group 

(p<0.05) and time (p<0.001), and there was a significant interaction between group and 

time, p<0.001. In Panels A and B: n isotype ctrl=9; n IFNAR1=11. C. IFNAR-1 neutralizing 

antibody blocks Rsad2 induction in E. coli-infected mice. Livers were homogenized to 

extract soluble proteins for Western blot analysis using a monoclonal antibody against 

Rsad2. The membrane was stripped and blotted with a monoclonal antibody against Fasn. 

D. Serum TNF-α and IL-6 levels. Serum TNF-α and IL-6 levels were measured by ELISA. 

Results represent the means ± SE (n=6). E. Bacterial burdens. Bacterial load in the blood 

and spleen homogenates were determined by culture. Each dot represents an individual 

animal. Horizontal line represents mean value of CFU.
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Figure 5. Mkp-1-deficient BMDM produced significantly more IFN-β than did wildtype BMDM 
after LPS and E. coli stimulation.
BMDM derived from Mkp-1−/− and Mkp-1+/+ mice of a C57BL/6J background were treated 

with heat-killed E. coli at a dose of 10 bacteria per macrophage or 100 ng/ml LPS (O55:B5). 

Medium was harvested at different time-points to measure IFN-β concentration by ELISA. 

Total RNA was isolated from the cells to assess IFN-β mRNA levels by qRT-PCR. A. 
IFN-β production by Mkp-1−/− and Mkp-1+/+ macrophages following E. coli stimulation. 

Values represent mean ± SE (n=4). *, p<0.05, compared to Mkp-1+/+ macrophages at the 

same time point (t-test). B. IFN-β production by Mkp-1−/− and Mkp-1+/+ macrophages 

following LPS stimulation (t-test). Values represent mean ± SE (n=4). *, p<0.05, compared 

to Mkp-1+/+ macrophages at the same time point (t-test). C. Kinetics of IFN-β mRNA 

levels in macrophages stimulated with heat-killed E. coli. IFN-β mRNA expression was 

presented as fold of change relative to the control cells. Values represent mean ± SE (n=3). 

IFN-β mRNA significantly changed over time in both genotypes and those changes were 
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significantly greater in the Mkp-1−/− mice than in the Mkp-1+/+ mice. By two-way ANOVA 

both time and genotype were significantly different, p<0.001 and there was an interaction 

between genotype and time, p<0.001.
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Figure 6. Over-expression of Mkp-1 potently inhibited IFN-β production in LPS-stimulated 
RAW264.7 macrophages.
RAW264.7 cells were stably transfected with a Tet-ON expression cassette to express 

a rat Mkp-1 protein. Stable clones represent individual colonies after drug selection. A. 
Expression of Mkp-1 in different clones after treatment with or without LPS in the absence 

or presence of doxycycline (Dox). RAW264.7 cells or individual clones were pretreated with 

or without 500 ng/ml doxycycline overnight, and the stimulated with or without LPS (100 

ng/ml) for 1 h. Cells were harvested for Western blot analysis. Upper panel represents a 

short exposure, and the lower panel is a longer exposure to show induction of endogenous 

Mkp-1 by LPS. B. Inhibition of IFN-β production by doxycycline-induced Mkp-1. Cells 

(106) of clone 15 and clone 22 were cultured on 24 well plates in 1 ml medium containing 0 

or 100 ng/ml doxycycline overnight, and then stimulated with 100 ng/ml LPS or heat-killed 

E. coli at a dose of 10 bacteria per macrophage for 6 h. Media were harvested for ELISA. 

Values represent mean ± SE (n=4). *, p<0.05, compared to untreated cells. †, p<0.05, 
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compared to cells treated with LPS or E. coli in the absence of doxycycline. C. The effect 

of doxycycline pretreatment on IFN-β production in control and Tet-ON Mkp-1-expressing 

pool. RAW264.7 pools stably transfected with a Tet-ON Mkp-1 expression cassette (Tet-

ON-Mkp-1 pool) or an empty vector (Control pool) were first pre-treated with 0 or 100 

ng/ml doxycycline overnight, and then stimulated with 100 ng/ml LPS or heat-killed E. coli 
at a dose of 10 bacteria per macrophage for 6 h. *, p<0.05, compared to cells that received 

no doxycycline pre-treatment (- Dox) and were not treated by either LPS or E. coli. Values 

were compared between groups by t-test.
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Figure 7. Enhanced IFN-β induction by E. coli and TLR ligands caused by Mkp-1 deficiency is 
substantially inhibited by the pharmacological inhibitor of p38 but not JNK.
Mkp-1−/− and Mkp-1+/+ BMDM were pre-treated with DMSO (vehicle) or 10 μM 

SB203580 or 3 μM JNK-IN-8 for 30 min, and then stimulated with heat-killed E. coli at 

a dose of 10 bacteria per macrophages or with various TLR ligands. Media were harvested 

for ELISA to measure IFN-β concentration. Cells were harvested to isolate total RNA for 

qRT-PCR analysis on IFN-β expression. A. The effects of p38 and JNK inhibition on IFN-β 
production by Mkp-1+/+ and Mkp-1−/− BMDM following 6 h of E. coli stimulation. B. 
The effects of p38 and JNK inhibition on IFN-β production by Mkp-1+/+ and Mkp-1−/− 

BMDM following 6 h of LPS stimulation (100 ng/ml). C. Kinetics of IFN-β production 

by E. coli-stimulated Mkp-1−/− and Mkp-1+/+ BMDM in the presence and absence of p38 

inhibitor. BMDM (106 cell) were cultured in 1 ml medium in 12 well plates. D. Kinetics 

of IFN-β mRNA induction in Mkp-1−/− and Mkp-1+/+ BMDM by E. coli in the presence 

and absence of p38 inhibitor. E. The effect of SB203580 on the IFN-β mRNA expression 

Kirk et al. Page 31

J Immunol. Author manuscript; available in PMC 2022 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in Mkp-1−/− and Mkp-1+/+ BMDM stimulated with E. coli or LPS for 3 h. BMDM (9×105 

cell) were cultured in 3 ml medium in 60 mm plates. F. The effect of SB203580 on the 

IFN-β mRNA expression in Mkp-1−/− and Mkp-1+/+ BMDM transfected with 1.8 μg poly 

(I:C) or 1.8 μg herring sperm DNA for 3 h. BMDM (9×105 cell) were cultured with 3 ml 

of medium in 60 mm plates were transfected with the indicated amounts of nucleic acids 

using polyethylenimine. Data in A, B, and C are presented as mean ± SE (n=3) of the 

IFN-β concentrations. Data in D, E are presented as mean ± SE (n=3) of fold change over 

the average levels in unstimulated Mkp-1+/+ cells. Data in F are presented as mean ± SE 

(n=3) of fold change over the average levels in mock-transfected (with polyethylenimine) 

Mkp-1+/+ macrophages. *, p<0.05, compared to E. coli or TLR ligand-stimulated Mkp-1+/+ 

cells in their respective treatment group (t-test). ‡, p<0.05, compared to E. coli or TLR 

ligand-stimulated Mkp-1−/− cells in their respective treatment group (t-test). #, p<0.05, 

compared to SB203580-pre-treated, E. coli-stimulated Mkp-1−/− cells (t-test).
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Figure 8. Mkp-1 modestly shortened the stability of IFN-β mRNA but had little effect on IFN-β 
promoter activity or upstream signaling.
A. Decay of IFN-β mRNA in E. coli-stimulated Mkp-1+/+ and Mkp-1−/− BMDM after the 

addition of actinomycin. Mkp-1+/+ and Mkp-1−/− BMDM (5×106 cells on 60 mm plates in 

3 ml medium) were first stimulated with heat-killed E. coli for 2 h. Actinomycin D was 

then added into the culture medium (time 0) to a concentration of 2 μg/ml. Total RNA 

was harvested from the cells after 2, 4, and 8 h. IFN-β mRNA levels were quantified 

by qRT-PCR to assess IFN-β mRNA decay. IFN-β mRNA levels were normalized to 18S 

ribosomal RNA. The average levels of IFN-β mRNA at time 0 (no actinomycin D treatment) 

was set as 100%. The remaining mRNA levels (%) at other time points were calculated 

relative to the average level of the same genotype at time 0, and presented in the graph 

as mean ± SE (n=3). Note, y-axis is set in log scale. The half-life (t1/2) of IFN-β mRNA 

were calculated using the formula N (t) = N0 e−λt, where t1/2 = ln 2
λ , N (t) represents 
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level at time t, N0 represents level at time 0. B. The effect of Mkp-1 over-expression on 

IFN-β promoter activity. RAW264.7 cells stably integrated with a Tet-ON Mkp-1 expression 

cassette (Clone 22) were treated with 100 ng/ml overnight or left untreated. Cells were either 

stimulated with LPS (100 ng/ml) or with heat-killed E. coli at a dose of 10 bacteria per 

macrophage for 6 h or left unstimulated. Cells were harvested to measure luciferase activity. 

The activity was normalized to lysate protein contents. Values are expressed as mean ± 

SE (n=4). *, p<0.05 (t-test). C. The effect of Mkp-1 deficiency on phosphorylation of 

IRF3 and IRF7 following LPS stimulation. Mkp-1+/+ and Mkp-1−/− BMDM were stimulated 

with 100 ng/ml LPS for the indicated times and harvested for Western blot analysis using 

antibodies against phosphor-IRF3, IRF3, phosphor-IRF7, and Mkp-1. The membrane was 

stripped and blotted using an antibody against β-actin to control for sample loading. D. The 

effect of Mkp-1 deficiency on TBK1 and IKKα/β activation following LPS stimulation. 

Mkp-1+/+ and Mkp-1−/− BMDM stimulated with 100 ng/ml LPS were analyzed by Western 

blotting using antibodies against phospho-TBK1, TBK1, phosphor-IKKα/β, IKKα/β, and 

IκB. The membrane was stripped and blotted using an antibody against β-actin to control 

for sample loading. The densities of the individual bands were quantitated by densitometry. 

The phosphorylated protein was normalized to total protein. IκB was normalized to β-actin. 

The fold change in protein phosphorylation (TBK1 or IKKα/β) or protein level (IκB) was 

calculated relative to the value in unstimulated Mkp-1+/+ cells and is marked underneath 

each lane. Representative results were presented in C and D.

Kirk et al. Page 34

J Immunol. Author manuscript; available in PMC 2022 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kirk et al. Page 35

Table I.

Morbidity sepsis score (MSS) to assess the severity of disease

Variable Score Description

Appearance

0 Coat is smooth

1 Patches of hair piloerected

2 Majority of back is piloerected

3 Piloerection may or may not be present, mouse appears “puffy”

4 Piloerection may or may not be present, mouse appears emaciated

Level of consciousness

0 Mouse is active

1 Mouse is active but avoids standing upright

2 Mouse activity is noticeably slowed. The mouse is still ambulant.

3 Activity is impaired. Mouse only moves when provoked, movements have a tremor

4 Activity severely impaired. Mouse remains stationary when provoked, with possible tremor

Activity

0 Normal amount of activity. Mouse is any of: eating, drinking, climbing, running, fighting

1 Slightly suppressed activity. Mouse is moving around bottom of cage

2 Suppressed activity. Mouse is stationary with occasional investigative movements

3 No activity. Mouse is stationary

4 No activity. Mouse experiencing tremors, particularly in the hind legs

Response to stimulus

0 Mouse responds immediately to auditory stimulus or touch

1 Slow or no response to auditory stimulus; strong response to touch (moves to escape)

2 No response to auditory stimulus; moderate response to touch (moves a few steps)

3 No response to auditory stimulus; mild response to touch (no locomotion)

4 No response to auditory stimulus. Little or no response to touch. Cannot right itself if pushed over

Eyes

0 Open

1 Eyes not fully open, possibly with secretions

2 One eye at least half closed, possibly with secretions

3 Both eyes half closed or more, possibly with secretions

4 Eyes closed or milky

Respiration rate

0 Normal, rapid mouse respiration

1 Slightly decreased respiration (rate not quantifiable by eye)

2 Moderately reduced respiration (rate at the upper range of quantifying by eye)

3 Severely reduced respiration (rate easily countable by eye, 0.5 s between breaths)

4 Extremely reduced respiration (>1 s between breaths)

Respiration quality

0 Normal

1 Brief periods of labored breathing

2 Labored, no gasping

3 Labored with intermittent gasps

4 Gasping
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