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Heterogeneous recruitment abilities to RNA
polymerases generate nonlinear scaling of gene
expression with cell volume
Qirun Wang1 & Jie Lin 1,2✉

While most genes’ expression levels are proportional to cell volumes, some genes exhibit

nonlinear scaling between their expression levels and cell volume. Therefore, their mRNA and

protein concentrations change as the cell volume increases, which often have crucial biolo-

gical functions such as cell-cycle regulation. However, the biophysical mechanism underlying

the nonlinear scaling between gene expression and cell volume is still unclear. In this work,

we show that the nonlinear scaling is a direct consequence of the heterogeneous recruitment

abilities of promoters to RNA polymerases based on a gene expression model at the

whole-cell level. Those genes with weaker (stronger) recruitment abilities than the average

ability spontaneously exhibit superlinear (sublinear) scaling with cell volume. Analysis of

the promoter sequences and the nonlinear scaling of Saccharomyces cerevisiae’s mRNA levels

shows that motifs associated with transcription regulation are indeed enriched in genes

exhibiting nonlinear scaling, in concert with our model.
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Homeostasis of gene expression level in a dynamically
growing cell volume is widely observed across the domains
of biology, namely, the concentrations of mRNAs and

proteins of most genes are approximately constant1–10. Since the
cell volume usually grows exponentially9,11,12, this implies expo-
nential growth of mRNA and protein copy numbers as well, and a
linear scaling between the gene expression level and cell volume
exists. Theoretical models have shown that the linear scaling
between gene expression level and exponentially growing cell
volume is a consequence of the limiting nature of gene expression
machinery: RNA polymerases (RNAPs) and ribosomes13, in
agreement with experimental observations10,14–16. However, along
with the constant concentrations of mRNAs and proteins of most
genes, there is a subset of genes exhibiting nonconstant con-
centrations as the cell volume increases. These genes are often
crucial for cell-cycle and size regulation. They allow cells to sense
their sizes based on the concentrations of proteins that have
different scaling behaviors with cell volume, such as Whi5 and
Cln3 in Saccharomyces cerevisiae17–21. Other examples include
DNA-binding proteins such as histone proteins, whose expression
levels scale with the total DNA amount instead of cell volume22.
Recent experiments show that proteins with changing concentra-
tion are often associated with cell senescence23. A fundamental
question then arises: if a linear scaling between gene expression
level and cell volume are by default for most genes, how can cells
achieve nonlinear scaling for a subset of genes with cell volume in
the meantime? In this paper, we show that the superlinear and
sublinear scaling of gene expression level is a direct consequence of
the heterogeneous recruitment abilities of promoters to RNA
polymerases. Given a unimodal distribution of recruitment abil-
ities, those genes with their promoters’ recruitment abilities below
(above) the average spontaneously exhibit superlinear (sublinear)
scaling with cell volume, while genes with recruitment abilities near
the average exhibit approximately linear scaling.

In the following, we first introduce a gene expression model at
the whole-cell level in which the promoters of all genes have the
same recruitment abilities to RNAPs, which is analytically sol-
vable. Then we consider a scenario in which all genes except a
small subset of genes have the same recruitment abilities and
show that the expression levels of those special genes can exhibit
superlinear or sublinear scaling with cell volume depending on
their relative magnitudes of recruitment abilities compared with
the majority of genes. Then we extend the simplified model to
allow a continuous distribution of recruitment abilities and
show that our simplified model can quantitatively capture this
more realistic scenario. Genes with recruitment abilities below
(above) the average value naturally exhibit superlinear (sub-
linear) scaling with cell volume. Finally, to verify our theoretical
predictions, we analyze the nonlinear scaling of mRNA numbers
vs. cell volume of S cerevisiae using the data from Ref. 21. Our
model predicts a positive correlation between the mRNA pro-
duction rates and nonlinear scaling degrees among genes, and
experimental data confirm this. We further analyze the pro-
moter sequences of all genes with measured nonlinear scaling
degrees and find that special motifs for transcription factor
binding are indeed enriched in the promoters of genes exhi-
biting nonlinear scaling, in concert with our theoretical pre-
dictions. Our results imply that the nonlinear scaling of gene
expression level can be under evolutionary selection through the
promoter sequences.

Results
Model of gene expression at the whole-cell level. We consider a
coarse-grained model of gene expression. The mRNA production
rate kn,i of one particular gene labeled by index i is proportional

to its gene copy number (gi) and the probability for its promoters
to be bound by RNAPs (Pb,i),

kn;i ¼ Γn;igiPb;i; ð1Þ
where

Pb;i ¼
cn;free

cn;free þ Kn;i
ð2Þ

Here Γn,i is the initiation rate of transcription of gene i: the rate
that a promoter-bound RNAP starts transcribing the gene and
producing mRNA. We assume the probability for one promoter
to be bound by an RNAP follows the Michaelis-Menten equation
where cn,free is the concentration of free RNAPs in the nucleus24

(see the schematic in Fig. 1). For simplicity, we consider all the
RNAPs to be in the nucleus and neglect the small fractions of
RNAP intermediates that may exist in the cytoplasm.

Kn,i is the Michaelis-Menten (MM) constant which is inversely
proportional to the binding rate of RNAPs on the promoters (see
detailed derivations in Supplementary Discussion A). In the
following, we use 1/Kn,i as a metric of the recruitment abilities of
genes to RNAPs: a larger Kn,i represents a smaller recruitment
ability. We assume the mRNA lifetime as τm,i so that given the
mRNA production rate, the mRNA copy number mi changes
according to Eq. (6) in Methods. Note that we mainly discuss
eukaryotic cells in this work in which the transcription and
translation processes are spatially separate, and nonspecific
binding of RNAPs to DNA are mostly irrelevant25,26. As we also
mainly discuss the transcription of mRNA, RNAP here refers to
RNAP II. Real transcription processes in eukaryotic cells are
complex and may involve transcription factors, mediators,
enhancers, and TATA-binding proteins27–29. Their effects are
coarse-grained into the Michaelis-Menten constant within our
model, e.g., a transcription factor that increases the expression
level of one gene is equivalent to reducing the Michaelis-Menten
constant in the RNAP binding probability Pb,i.

Because the typical time scale for an RNAP to finish transcribing
a gene is around one minute30, much shorter than the typical
doubling times, we assume that the dynamics of RNAPs along each
gene is in the steady-state. Therefore, the outgoing flux of RNAPs
that finish transcribing a gene (vnni/Li) must be equal to the
initiation rate of transcription (Pb,iΓn,i) where ni is the number of
transcribing RNAPs on one copy of gene i. Here Li is the length of
the gene i in the number of codons and vn is the elongation speed
of RNAP, which we approximate as a constant. This leads to
the expression of ni as ni= Pb,iΛn,i where Λn,i= Γn,iLi/vn is
the maximum possible number of transcribing RNAPs on one
copy of gene i.

A similar model as transcription also applies to the transla-
tional process (Fig. 1 and Methods). In the following analysis, we
assume that most proteins are nondegradable, and our results
regarding nonlinear scaling are equally valid for degradable
proteins. The total protein mass of a cell is M=∑ipiLi, in the
number of amino acids where pi is the protein copy number of
gene i. The total protein mass is known to be proportional to the
cell volume1,31–33. Therefore, we assume a constant ratio between
the total protein mass and cell volume. We further assume that
the nuclear volume is proportional to the total cell volume,
supported by experimental observations34.

A simplified model in which all genes share the same recruit-
ment ability. In the following, we consider a simplified scenario
in which the promoters of all genes have the same recruitment
ability to RNA polymerases so that Kn,i= Kn for all i. Within this
scenario, we find that the mass fractions of proteins in the entire
proteome are approximately constant as the cell volume increases
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given fixed gene copy numbers (Supplementary Discussion B).
Therefore, the protein numbers of all genes, including RNAP, are
proportional to the total protein mass, and therefore also pro-
portional to the cell volume.

We also assume that almost all RNAPs are bound to a promoter
or transcribing, and we will discuss its validity later in this section.
Therefore, the total mRNA production rate of all genes is
proportional to the total number of RNAPs, which is also
proportional to the cell volume. Finally, using the fact that all
genes share the same recruitment ability to RNAPs, it follows that
the total mRNA production rate should be evenly distributed among
all genes. Therefore, each gene’s mRNA production rate is also
proportional to cell volume, which is the main result of this section.

Here, we also derive the mathematical expression of mRNA
production rates. As we show in Methods, the fraction of RNAPs
that are bound to a promoter or transcribing is very close to 1 if
n < nc where nc=∑igi(1+Λn,i), which is the maximum number
of RNAPs the entire genome can hold. In other words, the
fraction of free RNAPs, which are neither bound to a promoter
nor transcribing, is much smaller than 1 if n < nc. Given this, we
obtain the binding probability as Pb= n/nc (Methods). Using Eq.
(1), the mRNA production rate of gene i becomes

kn;i ¼ Γn;i
gi
nc

n; ð3Þ

which is proportional to the cell volume.
The above scenario of gene expression, which has been called

Phase 1 of gene expression13, is the typical state of cells in normal

conditions6,14,35 and the main focus of this work. In Phase 1, the
cell volume grows exponentially, and the homeostasis of mRNA
and protein concentrations of most genes are maintained13 (see
detailed discussions in Supplementary Discussion B). When the
total number of RNAPs exceeds the threshold value nc, the linear
scaling between mRNA numbers and cell volume breakdowns
and cells enter a different phase of gene expression (see detailed
discussions in Methods and Supplementary Discussion B).

Finally, since the mRNA lifetimes are typically much shorter
than the doubling time30, mRNA productions are in quick
equilibrium. Therefore according to Eq. (6) in Methods, the
mRNA copy numbers can be approximated as the products of
mRNA production rates and mRNA lifetimes, therefore propor-
tional to the cell volume as well.

A more realistic model in which genes can have different
recruitment abilities. We now consider a more realistic scenario
in which the recruitment abilities to RNAPs of different genes can
be different. We start from a simple scenario in which all genes
have the same recruitment ability 1/Kn except one special gene i
has a recruitment ability 1/Kn,i. We note that the only parameter
affecting mRNA production rates as the volume changes is the
concentration of free RNAPs, cn,free, which enters the binding
probability Pb,i (Eq. (2)). Since the contribution of the particular
gene to the global allocation of RNAPs is negligible, the pro-
portionality between the mRNA production rates of most genes
and the cell volume is still valid. It then follows that cn,free must
change in a way that ensures that the binding probability of

Fig. 1 A coarse-grained model of gene expression at the whole-cell level. Inside the nucleus, genes compete for free RNAPs to bind to their promoters
and for simplicity we only show two genes in this schematic. The binding probability of free RNAPs to the promoters depends on the free RNAP
concentration and the recruitment abilities of the promoters. In the cytoplasm, mRNAs compete for free ribosomes to bind to their ribosome binding sites
and the binding probability depends on the free ribosome concentrations and the recruitment abilities of the mRNAs to ribosomes. The cell volume V,
which includes the cytoplasmic volume (Vc) and nuclear volume (Vn), is proportional to the total protein mass M. The ratio between the nuclear volume
and cell volume is constant.
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RNAP Pb,i is proportional to cell volume for all genes except the
particular gene with a different MM constant. Therefore, if the
particular gene has a lower MM constant Kn,i than the typical Kn,
this gene is saturated earlier by the rising free RNAP con-
centration—it thus increases more slowly with increasing volume.
A gene with a higher Kn,i, on the other hand, is not so easily
saturated as the typical gene and hence increases superlinearly
with volume.

More quantitatively, given the probability for the promoters of
most genes to be bound is still Pb ≈ n/nc, the free RNAP
concentration can be expressed as a function of n/nc. Using the
expression of free RNAP concentration, we obtain the mRNA
production rate for the particular gene i with the MM constant
equal to Kn,i:

kn;i ¼ Γn;igi
Knn

Kn;inc � ðKn;i � KnÞn
: ð4Þ

As n gets closer to nc (with Fn≪ 1 still satisfied), we find that if
Kn,i > Kn (Kn,i < Kn) the mRNA production rate of gene i exhibits
a superlinear (sublinear) dependence on the RNAP number.
Because the RNAP number is proportional to cell volume, this
nonlinear relation is also valid between the mRNA production
rates and cell volume, which leads to the nonlinear scaling
between the mRNA copy numbers and cell volume. Furthermore,
if the corresponding proteins have short lifetimes, their copy
numbers will be proportional to the mRNA production rates as
well. More importantly, we find that the nonlinear scaling in
mRNA copy numbers also propagates to nondegradable proteins,
suggesting that the nonlinear scalings in protein copy numbers
are insensitive to their lifetimes (Methods).

In the following, we discuss a more realistic scenario that is a
continuous distribution of Kn,i to reflect the promoter structures’
heterogeneity. In this case, we propose that the nonlinear scaling,
Eq. (4), is still approximately valid for any gene if Kn is replaced
by 〈Kn,i〉, the average value of Kn,i among all genes with some
appropriate weights. In Supplementary Discussion D, we show
that the appropriate weight can be well approximated by the
protein mass fractions, as we confirm numerically in the next
section. Therefore, those genes with Kn,i larger (smaller) than
〈Kn,i〉 exhibit superlinear (sublinear) scaling, while genes with Kn,i

near the average exhibit approximately linear scaling.
We remark that to ensure the linear scaling of the majority of

genes, the RNAP number and the ribosome number should be
proportional to the cell volume, which requires that the MM
constants of RNAP and ribosome are close to the average value.
These are the additional assumptions we make in the case of
continuously distributed Kn,i. For RNAP, it is supported by the
constant mRNA concentrations of RNAP related genes observed
in the experimental data from Ref. 21 (Supplementary Fig. 10).
For ribosome, we found a small deviation of ribosomal mRNA
number from linear scaling (Supplementary Fig. 9). However, as
we show later, our theoretical predictions on the nonlinear scaling
of gene expression level still work satisfyingly well in the presence
of a small deviation of the ribosome from linear scaling.

To quantify the nonlinear degree between the expression level
and the cell volume of each gene, we introduce a parameter β for
mRNAs (and also α for nondegradable proteins, see detailed
derivations and discussions in Methods), so that its scaling with
cell volume becomes

emiðtÞ ¼ eVðtÞ 1þ βi
1þ βieVðtÞ : ð5Þ

Here the mRNA are measured relative to their values at time
t= 0, e.g., emiðtÞ ¼ miðtÞ=mið0Þ. A similar formula hold for
proteins (Eq. (19) in Methods). Positive (negative) βi represent

sublinear (superlinear) scaling behaviors. They are related to the
recruitment abilities of their corresponding genes to RNAPs (see
the full expressions in Methods) and when Kn,i is close to the
average Michaelis-Menten constant 〈Kn,i〉, we find that
βi∝ 〈Kn,i〉− Kn,i.

Numerical simulations. We numerically tested our theoretical
predictions by simulating a cell with 2000 genes, including RNAP
and ribosome, which we coarse-grained as single proteins.
Simulation details are summarized in Methods, and parameter
values are shown in Supplementary Table 1. To avoid the effects
of the cell cycle, which is certainly important but also complicates
our analysis, we mainly considered the scenario in which the cell
volume grows without cell-cycle progress e.g., cells arrested in the
G1 phase, which is a common experimental protocol to study the
effects of cell volume on gene expression21,35. We also simulated
the case of the periodic cell cycle as we discuss later in the Dis-
cussion section.

We first simulated the simplified model with homogeneous
recruitment abilities to RNAPs. We confirmed the exponential
growth of cell volume and the linear scaling between mRNA copy
numbers, protein copy numbers, and cell volume (Supplementary
Fig. 2). We then simulated the case when all genes share the same
recruitment ability Kn, but two genes have different abilities that
are respectively smaller and larger than Kn. Our theoretical
predictions for the expression levels of mRNAs, nondegradable
proteins (Fig. 2a, b), and degradable proteins (Supplementary
Fig. 3), which assume short mRNA lifetimes, match the
simulation results reasonably well. We note that the lifetimes of
degradable proteins can be comparable to the duration of the cell
cycle, e.g., half of the cell-cycle duration36, in which case
deviations of numerical simulations from our theoretical predic-
tion are expected (Supplementary Fig. 3). The nature of nonlinear
scaling, whether superlinear or sublinear, is nevertheless inde-
pendent of the protein’s lifetime, as we show in Methods.

Finally, we simulated the more realistic scenario in which Kn,i

is continuously distributed, which we modeled as a lognormal
distribution. Our conclusions are independent of the specific
choice of the form of distribution. Examples of volume
dependence of several mRNAs and proteins are shown in
Supplementary Fig. 4. Nonlinear degrees of mRNAs and proteins
are measured based on Eqs. (5, 19).

The resulting distribution of mRNAs is shown in Fig. 3a, and
those of proteins are shown in Supplementary Fig. 4. To test our
theoretical predictions on the relations between the nonlinear
degrees and Kn,i (Eqs. (17, 20) in Methods), we also need the
expression of the appropriate average 〈Kn,i〉. We found that the
appropriate average Michaelis-Menten constant is the one
weighted by the initial protein mass fractions, 〈Kn,i〉=∑iϕiKn,i,
where ϕi is the mass fraction of proteins i in the entire proteome
at time t= 0. The above expression of 〈Kn,i〉 leads to a good
agreement between numerical simulations and theoretical pre-
dictions (Fig. 3b). We also used an alternative weight that is the
time-averaged protein mass fractions, which works equally well
(Supplementary Fig. 5). We set the Michaelis-Menten constants
of RNAP and ribosome as the average value to ensure that their
concentrations are approximately constant as the cell volume
increases.

In Fig. 3a, b, we set the coefficient of variation (standard
deviation/mean) of the MM constants as 0.5. To confirm the
validity of the model since the recruitment abilities of different
promoters can be widely different27,28,37,38, we also simulated a
larger coefficient of variation equal to 1 (Fig. 3c, d). The resulting
nonlinear degrees exhibit a broader distribution and appear more
similar to experiments as we show in the next section. Furthermore,
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the theoretical predictions of the nonlinear degrees of mRNA
numbers still match reasonably well with the simulations.

We note that the recruitment ability not only determines the
nonlinear degree of volume scaling but also affects the mRNA
production rate since a higher recruitment ability enhances the
binding probability of RNAPs to the promoter. This suggests that
there should be a positive correlation between the mRNA
production rate and the nonlinear degree. Meanwhile, we note
that the recruitment ability also depends on the transcription
initiation rate Γn,i (Supplementary Discussion A, Eq. (S2)): a higher
initiation rate reduces the recruitment ability (increases the MM

constant). For simplicity, in most of our simulations, we consider a
constant Γn,i for genes (except for ribosome and RNAP), and in
this case, we indeed found a strong positive correlation between the
mRNA production rates and the nonlinear degrees β (Supplemen-
tary Fig. 4e). However, in a more general model with heterogeneity
in Γn,i, a higher initiation rate increases the mRNA production rate
but also reduces the recruitment ability so that decreases the
nonlinear degree. Therefore, heterogeneity in the initiation rates
reduces the correlation between the mRNA production rates and
the nonlinear degrees. To confirm this prediction, we simulated the
case of heterogeneous initiation rates (see numerical details in

Fig. 2 We simulate the model with two special genes and their Michaelis-Menten constants are respectively Kn,i= 20Kn, Kn,i= 0.2Kn. All the other
genes have Kn,i= Kn. (a) The mRNA levels of the two special genes show superlinear and sublinear scalings with cell volume, in agreement with the
theoretical predictions (dashed lines). The mRNA numbers and cell volume are normalized by their initial values. b Same analysis as (a) for nondegradable
proteins. Deviations are expected since the actual mRNA lifetimes are finite.

Fig. 3 Simulation of the scenario in which Kn,i is continuously distributed. a Distribution of the measured nonlinear degrees β of mRNA numbers from
numerical simulations. The dashed line marks the location of the median value of the nonlinear degrees. b We compare the theoretically predicted
nonlinear degrees of mRNA numbers and the measured one from numerical simulations. In (a) and (b), the coefficient of variation of Kn,i is 0.5. c, d The
same analysis as (a, b) with the coefficient of variation of Kn,i equal to 1.
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Supplementary Discussion E), and our predictions are confirmed
numerically (Supplementary Fig. 6). We note that this may be a
plausible mechanism of the weak but positive correlation observed
in the experimental data, as we discuss in the next section.

Our results suggest that those genes with sublinear scaling and
smaller Kn,i contribute more in the weighted average of Kn,i,
therefore hKn;ii < Kn;i where Kn;i is the average over all genes
with equal weights. Therefore, genes with Kn;i � Kn;i are expected
to exhibit superlinear scaling. However, to have an estimation of
the nonlinear degree of most genes, the appropriate MM constant
to compare with 〈Kn,i〉 is the median value. For the lognormal
distribution we used in simulations, we found that the median
value of Kn,i is close and slightly larger than 〈Kn,i〉. Therefore, the
nonlinear degree of the median Kn,i is slightly negative compared
with the entire distribution (Fig. 3a, c), which is consistent with
the experimental observations (Fig. 4a).

Analysis of experimental data and searching for motifs in the
promoter sequences. We analyzed the genome-wide dataset from
Ref. 21 where the volume dependences of mRNA levels are
measured for S. cerevisiae. We calculated the nonlinear degrees of
mRNA scaling with cell volume using Eq. (5) and obtained the
resulting distribution (Fig. 4a). The calculated nonlinear degree β
is highly correlated with the nonlinear scale calculated in Ref. 21

(Supplementary Fig. 7). The median value of nonlinear degrees is
close to zero, suggesting that the majority of genes show
approximately linear scaling, similar to our numerical simula-
tions. We found that by choosing appropriate parameters, the
numerically simulated distribution of nonlinear degrees matches
the experimental measured distribution reasonably well (Sup-
plementary Fig. 8).

We also calculated the correlation between the mRNA
production rates and the nonlinear degrees β. We used the
mRNA amount at the smallest cell volume divided by the mRNA
lifetime as a proxy for the mRNA production rate according to
Eq. (6) (Methods). A weak but significant correlation is indeed
observed, as shown in Fig. 4b. As we discussed in the section of
numerical simulations, the heterogeneous initiation rates can
reduce the correlation between the mRNA production rates and
the nonlinear degrees. To further verify our model, we also
simulated a modified model in which the nonlinear scaling is
independent of the Michaelis-Menten constants (Supplementary
Discussion E) and found that the correlation between the mRNA
production rates and the nonlinear degrees becomes negative
(Supplementary Fig. 6).

We used Gene Set Enrichment Analysis (GSEA)39,40 to find
annotated functional gene sets that are enriched in the superlinear
and sublinear scaling regime (Methods, Supplementary Fig. 9).
Interestingly, we found that the ribosomal genes and other

Fig. 4 Analysis of experimental data. a Distribution of the nonlinear scaling degrees of mRNAs of S. cerevisiae among genes. The dashed line marks the
location of the median value of the nonlinear degrees. We consider genes with− 1 < β < 3.2, including 95% of all the measured genes. b The Pearson
correlation coefficient between the nonlinear degrees of mRNAs and the mRNA production rates is 0.17 (two-sided Pearson correlation test, p
value < 2.20e-16). The red data points are median values after binning. For the same data, the Spearman correlation coefficient is 0.35 (Spearman
correlation test, p value < 2.20e-16). c Genes annotated as negative regulation of cell cycle are enriched in the sublinear regime. In the bottom panel, genes
are ordered by the nonlinear degree β from positive (sublinear) to negative (superlinear). In the middle panel, the vertical lines represent the locations of
the cell-cycle inhibitors. The upper panel shows the running enrichment score (ES) for the gene set, where the score at the peak is the ES for this gene set.
The top-right legend includes the p value and the FDR q value of GSEA. d An example of a motif that is enriched in the sublinear regime. Here, the vertical
lines in the middle panel represent the locations of genes containing the particular motif in the promoter sequences. Note that the motif also appears in the
weakly superlinear regime but diminishes in the strongly superlinear regime. e We pick out all 77 motifs enriched in the promoters of sublinear genes and
calculate the average β over genes with at least n motifs. f The functions of transcription factors associated with the 77 motifs enriched in the sublinear
regime. Positive regulation of transcription by RNA polymerase II (GO:0045944) is enriched with p value = 2.41e-32. The 76% positive regulation is not
likely generated from random sampling (single-sided hypergeometric test, p value = 5.29e-4).
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translation-related genes, which correspond to the coarse-grained
ribosomal genes in our model, are enriched in the superlinear
regime with the average β over ribosomal genes about− 0.2.
Similar observations were reported in Ref. 21. However, the
superlinear scaling of ribosomal genes was also observed in the
control cases in which the nonlinearities of other known
nonlinear scaling genes were suppressed. Therefore, it was argued
that the superlinear scaling of ribosomal genes may be an artifact
due to the drug that blocks cell-cycle progress. Interestingly,
recent experiments of mammalian cells found weak sublinear
scaling of ribosomal proteins23. For RNAP related genes, we
found that they indeed show linear scaling with cell volume as we
assume in our coarse-grained model, which is crucial for the
linear scaling between the mRNA copy numbers and cell volume
(Supplementary Fig. 10). To confirm the validity of our
conclusions in the presence of weakly superlinear scaling of
ribosomes, we numerically simulated our gene expression model
with the recruitment ability of ribosomal gene weaker than the
average value and found that even with the small deviation of
ribosome number from linear scaling, our theoretical predictions
still agree well with the numerical simulations (Supplementary
Fig. 11).

In Ref. 21, the expression of pre-selected activators for the cell
cycle were shown to be superlinear, while pre-selected inhibitors
were shown to be sublinear. So we next checked the nonlinear
degrees of all cell-cycle regulators using GSEA. We found that
inhibitors are indeed enriched in the sublinear regime (Fig. 4c),
but activators were not enriched in the superlinear regime. We
remark that the inconsistency may be due to the preselection of
regulators, but the conclusion of Ref. 21 that the interplay of
inhibitors and activators can trigger cell-cycle progress is still
valid as long as they have different scaling behaviors.

To further support our theoretical predictions, we investigated
the promoter sequences of all genes included in our analysis. We
expect that those genes with nonlinear scaling should have some
special patterns in their promoter sequences, which render them
stronger or weaker recruitment abilities to RNAPs than the
others. If this is the case, specific motifs should be enriched in the
superlinear or sublinear regime. We detect the transcription
factors binding motifs in the promoter sequences and then used
GSEA to identify those motifs that are enriched in the nonlinear
regime. We found 77 motifs enriched in the sublinear regime
(see one example in Fig. 4d and Supplementary Table 2).
To further validate our results, we computed the average β for
genes containing at least n motifs that are enriched in the
sublinear regime and found that the average β indeed increases as
a function of n (Fig. 4e). Consistent with our theoretical
predictions, 76% of the 49 corresponding transcription factors
exhibit positive regulation and therefore enhance the recruitment
abilities to RNAPs of their target genes (Fig. 4f). However, we did
not find motifs enriched in the superlinear regime. Considering
the cumulative effect of motifs on β as shown in Fig. 4e, we
propose that antagonistic effect may also exist among motifs,
which suggests that motifs reducing the recruitment ability to
RNAPs may reside in most genes. But in genes without
superlinear scaling, their effects are counteracted by other motifs
that enhance the recruitment ability.

Discussion
For abnormally large cells, the number of RNA polymerases or
ribosomes may exceed some threshold values so that the bottle-
necks of gene expression become the templates of gene expres-
sion: gene copy numbers and mRNA copy numbers14,35.
However, in typical cellular physiological states, cells are far
below the thresholds, and the limiting bottlenecks of gene

expression are the copy numbers of RNAPs and ribosomes10,15,16.
In this case, if the promoters of all genes share the same
recruitment ability, the expression levels of all genes should
exhibit linear scaling with cell volume both at the mRNA and
protein levels13. We extended this simple scenario to a more
realistic case in which the recruitment abilities among genes are
continuously distributed. We derived the dependence of the
mRNA production rate on cell volume. We show that genes with
recruitment abilities below (above) the average exhibit superlinear
(sublinear) scaling with cell volume, a natural consequence of the
heterogeneous distribution of recruitment abilities. We further
show that the nonlinear scaling between the mRNA production
rates and cell volume propagates to the mRNA copy numbers and
proteins copy numbers. All of our theoretical predictions were
confirmed by numerical simulations.

Nonlinear scaling of protein levels is crucial to cell-cycle
regulation21. Time-dependent protein concentrations allow cells
to determine the timing of various cell-cycle events, e.g., based on
the ratio of two proteins with different scaling behaviors. To
confirm this scenario, we also simulated the case of the periodic
cell cycle and let the cell divide when the ratio of the con-
centrations of one superlinear protein and one sublinear protein
exceeds some threshold value. We found that periodic patterns of
mRNA and protein concentration emerge. For superlinear genes,
their mRNA and protein concentrations decrease initially at the
beginning of the cell cycle due to the halved RNAP number at cell
birth, but quickly increases as the RNAP number increases (vice
versa for sublinear genes). As the cell gets the periodic steady-
state, all mRNAs and proteins double their numbers at cell
division compared with cell birth13,41 (Supplementary Discus-
sion F and Supplementary Fig. 12).

Our model shares some similarities with the model introduced
in the Methods section of Ref. 13, but also with key differences.
This work focuses on the effects of heterogeneous MM constants
and the resulting nonlinear scaling of gene expression levels,
including both the mRNA and protein. In contrast, the model in
the Methods of Ref. 13 only consider transcription process and
homogeneous MM constants. Furthermore, the previous model
mainly considers the effects of nonspecifically bound RNAPs,
which is believed to be important in bacterial gene expression24.
The model in this work mainly considers eukaryotic cells, and the
experimental data we analyze is from S cerevisiae21.

The recruitment abilities not only determine the nonlinear
degrees of gene expression but also determine the mRNA pro-
duction rates. Therefore, our model predicts that genes with
higher (lower) mRNA production rates are more likely to exhibit
sublinear (superlinear) scaling with cell volumes. We also note
that heterogeneity in the transcription initiation rates can reduce
the positive correlation between the mRNA production rates and
the nonlinear scaling degrees, in concert with the small but
positive correlation observed in the experimental data of S.
cerevisiae21. Furthermore, according to our theoretical models,
motifs that enhance or reduce the promoters’ recruitment abilities
should exist in the superlinear or sublinear scaling genes. Indeed,
we found a group of motifs enriched in the sublinear regime, and
these motifs are associated with transcription factor (TF) binding
sites that have positive regulation on the target genes. We note
that other mechanisms of nonlinear scaling of gene expression
levels are possible, such as time-dependent transcription factor
concentrations21, or time-dependent initiation rates. A time-
dependent transcription factor concentration is equivalent to a
time-dependent MM constant Kn,i within our model. However,
we note that our GSEA analysis showed that TF-related terms
were not enriched in the nonlinear regime (Supplementary
Fig. 9), which means TFs do not change their concentrations in
general. Therefore, we argue that a changing TF concentration is
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more specific to certain genes instead of a general situation. Also,
we remark that our model does not require time-dependent
variables to achieve changing concentrations, and the changing
concentrations of mRNAs and proteins are the result of the
competition between the genes to the limiting resource of RNAPs.
We note that in Ref. 21, the numbers of binding sites for specific
cell-cycle transcription factors in the target genes were found to
be positively correlated with the superlinear degrees of their
mRNA levels, which may be due to other mechanisms not related
to our model.

Our results can have far-reaching implications: the nonlinear
scaling of gene expression level allows cells to sense their sizes
based on the ratio of concentrations of different proteins,
enabling cells to decide the timing of multiple cell-cycle events
such as cell division. Our results suggest that sensing the con-
centration differences among a group of proteins as a measure
of cell volume can be the most accessible option cells can take
to achieve cell size regulation. The promoter sequences can also
be under evolutionary selection to achieve desired nonlinear
scalings of particular genes and robust cell-cycle regulation.
Finally, the gene expression model proposed in this work is by
construction at the whole-cell level. Therefore, it can be a
valuable platform for mathematical modeling of gene expres-
sion, especially for problems in which the competition among
genes for the limiting resources of RNAPs and ribosomes are
crucial.

Methods
A summary of the variables used in the main text.

Variables Meaning
V cell volume
M totle protein mass
Vc cytoplasmic volume
Vn nuclear volume
ρ protein mass per cell volume
a ratio between cell volume and nuclear volume
kn,i mRNA production rate of gene i
Γn,i transcriptional initiation rate of gene i
gi gene copy number of gene i
Pb,i RNAPs binding probability on the promoter of gene i
cn,free free RNAPs concentration
Fn free RNAPs fraction
Λn,i maximum number of RNAPs one copy of gene i can hold
nc maximum number of RNAPs the entire genome can hold
Li length of gene i
vn RNAP elongation speed
Kn,i transcriptional MM constant of gene i
〈Kn,i〉 weighted average of MM constant
n RNAPs number
τm,i lifetime of mRNA i
mi mRNA number of gene i
kr,i protein production rate of gene i
Γr,i translational initiation rate of gene i
cr ribosomes concentration
Fr free ribosomes fraction
Kr,i translational MM constant of gene i
τp,i lifetime of protein i
pi protein number of gene i
βi nonlinear degree of mRNA i
αi nonlinear degree of protein i
ϕn RNAPs mass fraction
ϕr ribosomes mass fraction

Details of the gene expression model. We explain more details of the gene
expression model in this section. Given the mRNA production rate, the mRNA
copy number mi changes as

dmi

dt
¼ kn;i �

mi

τm;i
ð6Þ

where τm,i is the mRNA lifetime.

Regarding protein production, the protein production rate of one particular
gene is proportional to its corresponding mRNA number (mi), the translation
initiation rate (Γr,i), and the probability for the ribosome binding site of mRNA to
be bound by ribosome:

kr;i ¼ Γr;imi

cr;free
cr;free þ Kr;i

: ð7Þ

Here cr,free is the concentration of free ribosomes in the cytoplasm and Kr,i is the
Michaelis-Menten constant of ribosome binding on the mRNAs (see an alternative
formulation of translation model in Ref. 42).

Because the total number of RNAPs can be separated to free RNAPs, initiating
RNAPs, and transcribing RNAPs, we obtained a self-consistent equation to
determine the fraction of free RNAPs in all RNAPs:

nc
cnFn

cnFn þ Kn
¼ n� nFn: ð8Þ

Here n is the total number of RNAPs, nc=∑igi(1+Λn,i), and Fn is the fraction of
free RNAPs. cn is the concentration of total RNAPs in the nucleus and here we
consider the simplified model in which all genes have the same MM constant Kn to
RNAPs. The left side represents the number of RNAPs bound to promoters or
transcribing. The right side represents the difference between the total number of
RNAPs and free RNAPs, which should be equal to the left side. Meanwhile, we
assume that cn≫ Kn, namely, the total RNAP concentration is much larger than
the MM constant of a typical promoter, supported by observations in bacteria43.
We argue that this assumption is biologically reasonable because if all RNAPs
suddenly become free so that cn,free= cn, one would expect that these free RNAPs
will have a strong tendency to rebind to the promoters; otherwise, a large fraction
of RNAPs will be idle, which is clearly inefficient in normal cellular physiological
states. We remark that although the assumption appears reasonable, it remains to
be tested in yeast. Using the assumption that Kn/cn≪ 1, we find that the fraction of
free RNAPs Fn that solves Eq. (8) must be much smaller than 1 if n < nc (see the
illustration in Supplementary Fig. 13). Therefore, we can take Fn= 0 in Eq. (8) and
obtain the binding probability as Pb= n/nc.

When the number of RNAPs exceeds the threshold value nc, the linear scaling
between the mRNA numbers and cell volume breakdowns for all genes, and the
growth mode of cell volume also deviates from exponential growth (Phase 2). If the
ribosome number exceeds some threshold value, the cell volume eventually grows
linearly, which has been observed in budding yeast35 (Phase 3, see Ref. 13 and
detailed derivations in the Supplementary Discussion B). We note that the main
purpose of the assumption cn≫ Kn is to make the condition of the negligible
fraction of free RNAPs more well defined as n/nc < 1. Our conclusions on the
relation between the nonlinear scaling and the recruitment abilities do not rely on
this assumption. Since we mainly focus on the scenario in which RNAP is limiting
with Fn≪ 1, the transition details from Phase 1 to Phase 2 is not important to our
conclusions. We also discuss the effects of nonspecific binding of RNAPs on the
transition between Phase 1 and Phase 2 in Supplementary Discussion C and show
that the condition of Phase 1 becomes more stringent in the presence of nonspecific
binding.

Derivation of the nonlinear scaling. We consider a simple model assuming all
genes have the same MM constant Kn except one special gene i has a MM constant
Kn,i. Since the contribution of the particular gene to the global allocation of RNAP
is negligible, Eq. (8) is still valid. We focus on Phase 1 so that Fn≪ 1 and express
cnFn as a function of n/nc. The mRNA production rate for the particular gene with
the MM constant equal to Kn,i therefore becomes Eq. (4).

If Kn,i > Kn, we find that the mRNA production rate of gene i exhibits a
superlinear dependence on the RNAP number, therefore also the cell volume.
If Kn,i < Kn, the mRNA production rate of gene i exhibits a sublinear behavior.
The general solution for Eq. (6) becomes

miðtÞ ¼ mið0Þe�t=τm;i þ
Z t

0
e�Δt=τm;i kn;iðt � ΔtÞdΔt: ð9Þ

In the limit that the lifetime of mNRA goes to zero, the number of mRNA becomes
strictly proportional to the mRNA production rate

miðtÞ ¼ τm;ikn;iðtÞ: ð10Þ
We now consider the dynamics of protein number which is

dpi
dt

¼ Γr;i
crFr

crFr þ Kr;i
mi �

pi
τp;i

: ð11Þ

The general solution for Eq. (11) is

piðtÞ ¼ pið0Þe�t=τp;i

þ
Z t

0
e�Δt=τp;iΓr;i

crFr

crFr þ Kr;i
miðt � ΔtÞdΔt: ð12Þ

In the following, we assume crFr to be constant, which is a good approximation in
Phase 1 (Supplementary Discussion B) and consider two limiting cases, τp,i→ 0
and τp,i→∞.
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When τp,i→ 0, the protein number becomes strictly proportional to the protein
production rate, which is proportional to the mRNA number,

p iðtÞ ¼ Γr;i
crFr

crFr þ Kr;i
miðtÞτp;i

¼ Γr;i
crFr

crFr þ Kr;i
τm;iτp;ikn;iðtÞ:

ð13Þ

Note that the second identity is valid when τm,i→ 0 which is a good approximation
when the lifetime of mRNA is much shorter than the doubling time.

When τp,i→∞ and τm,i→ 0 the dynamics of protein number becomes

piðtÞ � pið0Þ ¼
Z t

0
Γr;i

crFr

crFr þ Kr;i
miðt0Þdt0

¼ Γr;i
crFr

crFr þ Kr;i
Γn;igiτm;i

Z t

0

Knn
Kn;inc � ðKn;i � KnÞn

dt0:
ð14Þ

In Phase 1, the number of RNA polymerase increases exponentially n(t)= n(0)eμt,
therefore the integral in Eq. (14) can be analytically calculated

piðtÞ � pið0Þ

¼ Γr;iΓn;igiτm;i
crFr

crFr þ Kr;i

Kn

ðKn � Kn;iÞμ

´ ln
Kn;inc � ðKn;i � KnÞnðtÞ
Kn;inc � ðKn;i � KnÞnð0Þ

 !
:

ð15Þ

The nonlinear scaling of mRNA copy number also propagates to nondegradable
proteins.

To quantify the nonlinear degrees of mRNA copy number, we investigate the
volume dependence of mRNA copy number and normalize the volume and mRNA
number by their initial values. Using Eqs. (4), (10)), we obtain

emiðtÞ ¼ eVðtÞ
1� ΔKn;inð0Þ

Kn;inc

1� ΔKn;inð0Þ
Kn;inc

eVðtÞ
: ð16Þ

Here emiðtÞ ¼ miðtÞ=mið0Þ, eVðtÞ ¼ VðtÞ=Vð0Þ, ΔKn,i= Kn,i− Kn. We have used the
fact that the RNAP concentration is constant therefore n(t)/n(0)= V(t)/V(0). Note
that when Kn,i is continuously distributed, we should replace Kn by 〈Kn,i〉.
Comparing with Eq. (5) in the main text, we find that

βi ¼ �ΔKn;inð0Þ
Kn;inc

: ð17Þ

When ΔKn,i= 0, βi= 0 as expected. For proteins with short lifetimes, the above
analysis is equally valid.

We also study the nonlinear degree of nondegradable proteins, and using
Eq. (15), we find that

ΔepiðtÞ ¼ Ciln 1� ΔKn;iðnðtÞ � nð0ÞÞ
Kn;inc � ΔKn;inð0Þ

 !

¼ Ciln 1� ΔKn;inð0Þ
Kn;inc � ΔKn;inð0Þ

ΔeVðtÞ
 !

:

ð18Þ

Here we combine all the constants divided by pi(0) before the logarithmic term in
Eq. (15) to Ci and ΔeVðtÞ ¼ eVðtÞ � 1. Therefore, we can write Eq. (18) as

ΔepiðtÞ ¼ Ciln 1þ αiΔeVðtÞ� �
; ð19Þ

where

αi ¼ � ΔKn;inð0Þ
Kn;inc � ΔKn;inð0Þ

: ð20Þ

In the limit ΔKn,i→ 0, we find that

Δpi ¼ Γr;iΓn;igiτm;i
crFr

crFr þ Kr;i

1
μ

nðtÞ � nð0Þ
nc

; ð21Þ

which is consistent with Eq. (14) in the case of Kn,i= Kn.

Details of numerical simulations. All simulations were done in MATLAB (ver-
sion R2020b and R2021a). We summarize some of the parameters we used in the
numerical simulations in Supplementary Table 1. The gene copy numbers are time-
independent which we set as 1 for all genes except the ribosome gene which we set
as 5. Given an attempted growth rate μ0, we set the attempted mass fraction of
ribosomes in the entire proteome as

ϕr ¼ μ0Lr=vr : ð22Þ
Here, Lr is the length of the ribosome gene in the unit of codons. Note that the
actual mass fraction is slightly time-dependent and deviates from the attempted
value. To get Eq. (22), we assume that all ribosomes are actively translating and
neglect the correction due to free ribosomes and initiating ribosomes. Given the

mass fraction of ribosomes, we assume that the copy number of RNAPs is about
10% of that of ribosomes and set the attempted mass fraction of RNAP as

ϕn ¼ 0:1ϕrLn=Lr : ð23Þ

Here Ln is the length of the RNAP gene. In Fig. 2, we set Kn= 6 × 103/μm3, and the
two special genes with Kn,i= 20Kn and Kn,i= 0.2Kn. We also set the lifetimes of all
mRNAs as 10 mins. In Fig. 3, we set Kn,i following a lognormal distribution so that
it’s average Kn;i ¼ 6 ´ 103=μm3. We also set the lifetimes of mRNA following a
lognormal distribution with a mean equal to 10 min and a coefficient of variation
equal to 1. In all simulations, we set the initial attempted total protein mass as
Mb= 109 in the unit of amino acid number and the attempted critical RNAP
number as nc=∑igi(1+Λn,i)= 104.

To find the appropriate value of Γn,i that leads to the attempted nc, we assume
cnFn≪ Kn,i so that

ϕn
ϕr

�
Γn;n

gn
Kn;n

τm;nLn

Γn;r
gr
Kn;r

τm;rLr
; ð24Þ

from which we can find that Γn,n= yΓn,r where Γn,r and Γn,n are respectively the
transcription initiation rates of ribosomes and RNAPs. y can be found using the
above equation. We also set Γn,i= xΓn,r for all i except the genes for RNAP (i= 1)
and ribosome (i= 2), so that

ϕr �
Γn;r

gr
Kn;r

τm;rLr

Γn;r
gr
Kn;r

τm;rLr þ yΓn;r
gn
Kn;n

τm;nLn þ xΓn;r∑i > 2
gi
Kn;i

τm;iLi
ð25Þ

from which we can find the expression of x. Finally, using∑igið1þ Γn;i
Li
vn
Þ ¼ nc , we

find that

Γn;r ¼
ðnc �∑igiÞvn

grLr þ ygnLn þ x∑i > 2giLi
ð26Þ

from which we find Γn,n and Γn,i for i > 2. Note that the approximation cnFn≪ Kn,i

for all i is merely to find the values of Γn,i, which do not affect our conclusions.
Before we run the simulations, we use the attempted ϕn, initial cell mass, and

Γn,i with gi and Kn,i to calculate the mRNA production rates for all genes using
Eqs. (1, 2), from which we use mi= kn,iτm,i as the initial condition. Using the initial
mi, we compute the initial protein mass fractions as ϕi=miLi/∑imiLi and also
update the mass fractions of RNAP and ribosome. The actual initial mass fraction
of RNAP can slightly deviate from the attempted value. To make sure the RNAP
copy number is continuous from the beginning of simulations, we also slightly shift
the total protein mass from the attempted value so that ϕn(actual)
Mb(actual)= ϕn(attemped)Mb(attempted).

To remove the transient effects, we take the simulation results at t= 20 as the
initial values when we compare our results with theoretical predictions. To simulate
degradable proteins, we choose 200 of the genes as degradable proteins with
lifetimes τp= 10 mins and for degradable proteins, we take the simulation results at
t= 100 as the initial values. The simulation is stopped when the total protein mass
is larger than 9Mb.

Details of the mRNA production rates. For the mRNA production rate, we used
the mRNA amount (the product of RPKM and cell volume) at the smallest cell
volume divided by the mRNA lifetime from Ref. 44 as a proxy according to Eq. (6)
in Methods.

Details of motif searching in the promoters of genes. Promoters are defined as
500 bp upstream of transcription start sites in the main text. Sequences of pro-
moters for every gene were downloaded from the Yeastract database45. Then we
used the online tool CentriMo46 of MEME suite (version 5.3.2)47 to detect the
transcription factors binding motifs annotated in the Yeastract database in these
sequences with default parameters.

Details of GSEA. We performed enrichment analysis using GSEA using package
clusterProfiler (version 3.12.0)48 in R (version 3.6.1). Genes were ordered by
nonlinear degree β. The cut-off criteria were set as both the p value and the false
discovery rate (FDR) q value < 0.05. The number of permutations used in the
analysis is 1e5.

In the analysis of functions, the gmt file was generated from KEGG BRITE
hierarchy files containing KEGG objects (KO) for budding yeast in Kyoto
Encyclopedia of Genes and Genomes (KEGG) database49–51. In the analysis of cell-
cycle regulators, we generated a gmt file containing only two terms, negative
regulation of cell cycle (GO:0045786) and positive regulation of cell cycle
(GO:0045787), obtained from Gene Ontology (GO) database with AmiGO (version
2.5.15)52–54.

In the analysis of motifs, the gmt file was generated based on the CentriMo
results. Every motif was considered as a gene set, including multiple genes that
contain this motif in their promoters.
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Details of functional enrichment analysis of TFs. Transcription factors corre-
sponding to the motifs enriched in GSEA were picked out. Functional enrichment
analysis for budding yeast was done using Metascape (version 3.5)55 with default
parameters. In 641 genes whose function are regulation of transcription, DNA
templated (GO:0006355), 303 genes are annotated as positive regulation of tran-
scription by RNA polymerase II (GO:0045944). In our analysis, all the 49 TFs
corresponding to the motifs enriched in GSEA (except one gene ABF2) are
annotated as GO:0006355 and 34 of them are annotated as GO:0045944. Based on
this situation, single-sided hypergeometric test was performed using R function
phyper.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding author upon
reasonable request. All data analyzed in this study are available in publicly accessible
repositories. The RNA-seq data (GSE145206) has been published in21. Promoter
sequences of the yeast genome are available from Yeastract [http://www.yeastract.com/
formseqretrieval.php] database45. The nonlinear degree data are included in the
repository of GSEA codes.

Code availability
Codes for GSEA are available at https://github.com/QirunWang/R-codes-for-GSEA.
Codes for mathematical simulations are available at https://github.com/QirunWang/
MATLAB-code-for-simulation.
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