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Soil microorganisms determine the fate of soil organic matter
(SOM), and their activities compose a major component of the
global carbon (C) cycle. We employed a multisubstrate, DNA-stable
isotope probing experiment to track bacterial assimilation of C
derived from distinct sources that varied in bioavailability. This
approach allowed us to measure microbial contributions to SOM
processing by measuring the C assimilation dynamics of diverse
microorganisms as they interacted within soil. We identified and
tracked 1,286 bacterial taxa that assimilated 13C in an agricultural
soil over a period of 48 d. Overall 13C-assimilation dynamics of bac-
terial taxa, defined by the source and timing of the 13C they assimi-
lated, exhibited low phylogenetic conservation. We identified
bacterial guilds composed of taxa that had similar 13C assimilation
dynamics. We show that C-source bioavailability explained signifi-
cant variation in both C mineralization dynamics and guild struc-
ture, and that the growth dynamics of bacterial guilds differed
significantly in response to C addition. We also demonstrate that
the guild structure explains significant variation in the biogeo-
graphical distribution of bacteria at continental and global scales.
These results suggest that an understanding of in situ growth
dynamics is essential for understanding microbial contributions to
soil C cycling. We interpret these findings in the context of bacterial
life history strategies and their relationship to terrestrial C cycling.
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Soil organic matter (SOM) represents the largest terrestrial
pool of organic carbon (C) on Earth (1), and SOM dynamics

have major impacts on the global C cycle. SOM is sensitive to
land management (2–4) and climate change (5), and SOM pools
influence soil health (6, 7), agricultural productivity (8), and cli-
mate stability (6, 9). However, the mechanisms that promote
SOM persistence and loss remain uncertain, and this introduces
variability into global C-cycle models (10–13). Microorganisms
are dominant drivers of SOM decomposition, stabilization, and
mineralization (14), and C-cycle models increasingly seek to
incorporate microbial traits to improve predictions of SOM
dynamics (15, 16). For example, microbially explicit C-cycle mod-
els, such as MEND (17), MIMICS (18), and CORPSE (19),
improve prediction of C-cycle dynamics when compared to models
that ignore microbial processing (20).

Soil microbes play a critical role in governing global C flux,
but the microbial mechanisms that determine SOM dynamics
remain poorly characterized (13). Microbial contributions to
soil C cycling are typically determined in the aggregate (e.g.,
soil respiration) without providing mechanistic insight into pro-
cesses of individual microbes. Determining the characteristics
of individual microbes typically requires laboratory cultivation,
but most soil microbes remain uncultivated and poorly charac-
terized (21–23). In the absence of cultivation, the characteristics
of uncultivated microbes are often inferred by assuming phylo-
genetic conservation with cultivated representatives (24–26).
However, phylogenetic conservation varies dramatically among

microbial traits and functionalities (27), and many soil microbes
lack closely related cultivated isolates (28). Microbial character-
istics are also often inferred through metagenomic analyses
that indicate the frequency of specific gene families and meta-
bolic pathways in the environment (29, 30).

Inferences based on phylogenetic conservatism and metage-
nomic analyses predict “potential metabolism,” but this infor-
mation cannot currently predict the ecological interactions that
govern realized activity in the environment. Microbe–microbe
and microbe–environment interactions alter patterns of gene
expression, activity, and growth, and so potential metabolism
tells us little of the actual microbial processes that drive soil C
cycling at any particular place and time. The “realized activity”
of a microbe in situ depends on a complex pattern of biotic and
abiotic interactions. Therefore, realized activity in the C cycle
might correlate only weakly with the metabolic potential of the
community as inferred from phylogenetic conservation and
metagenomic analyses (31, 32).

DNA-stable isotope probing (DNA-SIP) can assess the in situ
activity of microorganisms within complex habitats based on pat-
terns of C assimilation by identifying taxa that assimilate 13C
from labeled substrates (33). DNA-SIP can track the assimilation
of C from multiple substrates into thousands of microbial taxa in
soil (34–36) with high specificity and sensitivity (36). We used
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multiple-window high-resolution DNA-SIP (MW-HR-SIP) to
track 13C from nine distinct C sources through the soil bacterial
food web over a period of 48 d (Fig. 1). These nine sources of C
were selected because they varied in bioavailability and are com-
mon in soils. We initially defined bioavailability on the basis of
solubility and hydrophobicity, which predicts sorption to particu-
late organic matter (37) and availability for transport across the
cell membrane. The C sources we used were cellulose (a compo-
nent of plant cell walls), glucose and xylose (monomers of cellu-
lose and hemicellulose respectively), vanillin (a phenolic acid
derived from lignin), glycerol and palmitic acid (components of
plant lipids), an amino acid mixture (monomers of protein), and
lactate and oxalate (major fermentation products from soil bacteria
and fungi).

Our multisubstrate design, where only the identity of the 13C
substrate was varied (Fig. 1), allowed us to systematically investi-
gate C assimilation dynamics as a function of C source while
maintaining identical conditions across samples. In addition, by
sampling over time we focused on the ultimate fate of C within
the bacterial community and not just the bacteria responsible for
initial substrate assimilation. That is, our goal was not to differen-
tiate primary assimilation from later stages but rather to map
bacterial guild structure by examining how C from diverse
sources infiltrates the community over time. Guilds are groups of
organisms that access resources in a similar manner (38). We
used C assimilation dynamics to infer guild structure based on
the source and timing of the 13C assimilated by bacterial taxa,
such that bacteria within a guild exhibit similar patterns of C
assimilation over time. We predicted that variation in C assimila-
tion dynamics across bacterial taxa would be poorly explained by
phylogenetic relatedness but that bacteria within guilds would
have similar growth dynamics linked to shared life history
strategies.

Results and Discussion
C Source Bioavailability Explains C Mineralization Rates. We tracked
C mineralization dynamics from each C source for up to 48 d
by measuring 13CO2 production. Peak 13C mineralization rates
occurred on day 1 for glucose and amino acids; day 2 for xylose,
glycerol, and vanillin; day 3 for lactate; day 7 for oxalate; day 10
for cellulose; and day 14 for palmitic acid (Fig. 2A, SI Appendix,
Fig. S1). Cumulative 13C mineralization varied substantially

between sources, being lowest for vanillin (42% C mineralized)
and highest for oxalate (88% C mineralized; Fig. 2B and SI
Appendix, Fig. S2). As expected, total C mineralization (13C +
12C) was similar across all treatments (SI Appendix, Fig. S1) since
all microcosms received the same set of substrates with only the
identity of the 13C-labeled substrate varied. These mineralization
dynamics were confirmed in an independent experiment with
soils from the same site (SI Appendix, Fig. S2).

Fig. 1. This experiment employed soil microcosms, each amended with all nine C sources (added at 0.4 mg C per gram of soil), only one of which was
>99% 13C-labeled in treatment microcosms. Control microcosms had all nine C sources added but none were isotopically labeled. Microcosms were
destructively sampled at multiple time points (black bars) based on mineralization rates from preliminary experiment. Headspace samples were taken
every 1 to 7 d. DNA extracted from microcosm soil was used both for DNA-SIP and whole bacterial community sequencing (unfractionated).

Fig. 2. C source mineralization dynamics varied based on bioavailability.
(A) 13C mineralization rates and (B) cumulative amounts of 13C mineralized
per gram dry weight of soil. (A, Inset) A finer-scale representation of the
13C mineralization rates over days 0 to 10. Error bars represent ± SD
among microcosm replicates (n = 3).
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Substrate bioavailability predicts degradation rate in soil (39),
and so we selected C sources that differed in their solubility and
hydrophobicity [as defined by octanol–water partition coefficients
predicted using the XLogP3 model (40)] as described in SI
Appendix, Supplemental Materials and Methods and indicated in
Fig. 1. We found a significant and strong positive correlation
between LogP and the day of peak C mineralization across C
sources (Pearson’s r = 0.932, P = 0.001; SI Appendix, Fig. S3A)
and a significant negative correlation between LogP and the max-
imum C mineralization rate (Pearson’s r = �0.855, P = 0.007; SI
Appendix, Fig. S3B). These findings suggest that C sources with
low bioavailability, such as cellulose (an insoluble polymer) and
palmitic acid (a waxy fatty acid), are degraded slowly, while those
with high bioavailability, such as glucose, xylose, amino acids, and
lactate are degraded rapidly. Vanillin (an aromatic molecule) had
intermediate bioavailability, allowing it to be mineralized rapidly;
however, its hydrophobicity favors adsorption to organic surfaces
in soil (41, 42). Hence, while vanillin in the aqueous phase
degrades rapidly, its sorption to organic matter may limit micro-
bial access over time. Highly oxidized compounds such as oxalate
favor allocation of C to catabolic processes, resulting in greater
cumulative mineralization (43, 44). Given that LogP cannot be
determined for cellulose (because of its insolubility), and that
there was a strong relationship between LogP and day of peak
mineralization (SI Appendix, Fig. S3A), we subsequently applied
an operational definition of bioavailability based on the observed
day of peak mineralization. This approach allowed quantification
of bioavailability for both soluble and insoluble substrates.

Uncultivated Bacteria Are Major Players in Soil C Cycling. We assessed
the temporal dynamics of bacterial C assimilation by perform-
ing MW-HR-SIP for each of the nine 13C-labeled C sources
over 48 d. Sampling times were selected based on the 13C min-
eralization dynamics for each substrate. A total of 12,394
unique bacterial operational taxonomic units (OTUs) were
observed and 6,613 of these passed independent filtering on
the basis of sparsity. From this set, MW-HR-SIP identified
1,286 “incorporators” (i.e., OTUs with significant evidence of
13C incorporation into DNA; Fig. 3 and Dataset S1). The vast
majority of these incorporators (86.4%) represented unculti-
vated taxa, and only 13.6% matched cultivated strains (i.e.,
> 97% 16S ribosomal RNA (rRNA) gene sequence identity to
cultivated isolates). In addition, 26.8% of the incorporators had
less than 90% 16S rRNA gene sequence identity to any culti-
vated strains. C from low and intermediate bioavailability
sources (i.e., cellulose, palmitic acid, and vanillin) was assimi-
lated primarily by uncultivated OTUs (SI Appendix, Fig. S4).
In contrast, C from high bioavailability sources (i.e., glucose,
xylose, amino acids, glycerol, oxalate, and lactate) was assi-
milated primarily by OTUs matching known isolates (SI
Appendix, Fig. S4). Microbes that access C from low bioavail-
ability sources are likely to have traits (e.g., slow growth, meta-
bolic dependency, and surface attachment) that diminish their
tolerance for laboratory growth media and may limit their rep-
resentation in culture collections (45, 46).

We also examined unfractionated DNA (i.e., DNA extracted
directly from soil and not subjected to MW-HR-SIP) in order
to evaluate overall change of microbial community composition
over time. The majority of incorporators were also detected in
unfractionated DNA (1,153, or about 90%), though 133 incor-
porators (∼10%) were not observed in unfractionated DNA.
This result indicates that rare OTUs, not readily detected in
16S rRNA gene surveys, are active participants in soil C cycling.
Density gradient centrifugation fractionates DNA by buoyant
density with sequencing performed across many gradient frac-
tions, and this approach translates into far greater sequencing
depth than is typical in microbial community analyses, allowing

for the detection of rare taxa not readily observed when
sequencing unfractionated soil DNA.

Phylogenetic Conservation of C Assimilation Dynamics. The eco-
physiology of bacterial OTUs is often inferred from their phylo-
genetic relatedness (47–50). We therefore sought to determine
if C assimilation activity could be predicted by phylogenetic
similarity. We used two methods to test for the phylogenetic
conservation in C assimilation dynamics. First, we calculated
dissimilarity in assimilation dynamics between OTUs. Dissimi-
larity in C assimilation was calculated as Gower distance, which
has values between 0 (identity) and 1 (complete dissimilarity).
Phylogenetic signal is strong when closely related taxa have
highly similar assimilation patterns (Gower distance = 0),
absent when closely related taxa have completely dissimilar
assimilation patterns (Gower distance = 1), and weak when
closely related taxa have highly dissimilar assimilation patterns
(e.g., >0.7). Patterns of C assimilation were weakly conserved
among closely related taxa and dissimilarity increased rapidly
with phylogenetic distance (Fig. 4 A and B). Most variation was
explained at the species level with minimal phylogenetic signal
present at taxonomic ranks above the genus level. Even when
analyzing C assimilation dynamics independently for each C
source, phylogeny was a weak predictor of realized activity (SI
Appendix, Fig. S5). Second, we used consenTRAIT (49) to
measure the phylogenetic depth (i.e., 16S rRNA gene evolu-
tionary distance; τD) at which patterns of C assimilation were
conserved. We found τD values ranging from ∼0.001 to 0.025
across the nine C sources (Fig. 4C), consistent with τD values
of C substrate utilization measured by Martiny et al. (49). Phy-
logenetic depth varied with respect to C source, being highest
for taxa that assimilated C from vanillin, cellulose, and palmitic
acid, though this phylogenetic clustering was not statistically
significant when assessed across all time points (consenTRAIT;
cellulose day 14, P = 0.153; cellulose day 48, P = 0.647; palmitic
acid day 30, P = 0.906; vanillin day 48, P = 0.940; P values
adjusted for multiple comparisons; Fig. 4C). However, we also
observed significant correlation between τD and time of C
assimilation (Pearson’s r = 0.791, P < 0.001; Fig. 4C). For
example, phylogenetic clustering of taxa that accessed C from
cellulose, palmitic acid, and vanillin was higher for days 14 to
48 than it was for days 3 to 6 (Fig. 4C).

These results suggest a link between the bioavailability of C
sources and the phylogenetic conservation of assimilation
dynamics. For example, the assimilation of C from low bioavail-
ability sources (such as cellulose or palmitic acid) requires met-
abolic or ecological traits that are more deeply conserved than
those required to assimilate C from high bioavailability sources
(such as glucose, xylose, or amino acids). However, the results
also showed that the phylogenetic conservation of traits that
governed access to soil C were highly variable. Even within a
single substrate such as cellulose, the degree of phylogenetic
clustering depended on time of assimilation. The fact that the
phylogenetic clustering of incorporators varied depending on
the time of assimilation suggests that patterns of C assimilation
were not produced solely by the presence or absence of specific
catabolic pathways. Rather, we expect that shared ecological
characteristics (e.g., growth dynamics, predation, cross-feeding,
motility, attachment, secondary metabolite production, etc.)
explain considerable variation in access to soil C. As a conse-
quence, we expect traits that govern access to soil C to exhibit
considerable variation in their phylogenetic conservation (27).

C Assimilation Dynamics Define Bacterial Guild Structure. Since
phylogenetic relatedness was a weak and inconsistent predictor
of C assimilation dynamics in soil, we sought an alternative
means to group bacteria into ecologically relevant clusters. We
used unsupervised clustering to group incorporators into
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operationally defined guilds based on their 13C-labeling dynam-
ics. This approach generated 28 guilds (Fig. 4D). Each guild
contained between 15 and 122 incorporators and represented 3
to 13 different phyla (Dataset S1). We then examined the
growth and 13C assimilation dynamics of guilds and related
these characteristics with rRNA operon (rrn) copy number.
The rrn copy number of bacteria grown in culture correlates
with maximal growth rate as well as C use efficiency and has
been proposed as a component of microbial life-history strate-
gies (51, 52). In all cases, values were averaged across all OTU
within a guild (Dataset S2).

After adjusting for multiple comparisons (n = 4), we found a
positive correlation only between rrn copy number and the max-
imum log2 fold change in normalized abundance (max L2FC;
Pearson’s r = 0.503, P = 0.025; Fig. 5D). Max L2FC was defined
as the maximum change in differential abundance before and
after C sources were added to soil. High-copy-number guilds
exhibited large changes in normalized abundance in response
to C input, while low-copy-number guilds varied much less over
time. In other words, guilds with high copy number exhibited
highly dynamic populations while guilds with low copy number
were less dynamic. Since sequencing is compositional (53) and

since several of the bacterial groups with the largest growth
response had high copy number (Dataset S1), relative abun-
dance was normalized both by predicted rrn copy number and
DNA yield for each sample. Our observation links the rrn copy
number of guilds to their in situ population dynamics in
response to C addition. Two guilds (guilds 1 and 19) had con-
siderably higher rrn copy numbers than the other guilds, and
these two guilds could be driving much of the relationship
between rrn copy number and max L2FC. When these two
guilds were removed from the analysis the relationship with
maximum log2 fold change remained marginally significant
(Pearson’s r = 0.458, P = 0.074; SI Appendix, Fig. S6).

We did not find any correlation between rrn copy number of
guilds and the number of sources from which they derived their C
(Pearson’s r = 0.051, P = 0.797; Fig. 5A), the average bioavailabil-
ity of these C sources (Pearson’s r = 0.428, P = 0.093; Fig. 5B), or
the “latency” of 13C labeling (Pearson’s r = �0.339, P = 0.077;
Fig. 5C). We defined the latency of an OTU as the delay between
the time of peak 13C mineralization and the time that 13C labeling
was first detected. A lower value for latency indicates that C
assimilation took place when C mineralization was maximal, and
hence it is more likely that assimilation is coupled closely to the

Fig. 3. The dynamics of C assimilation varied across the 1,286 OTUs that exhibited significant 13C labeling. OTUs are ordered by their phylogeny with
phylum, or class for Proteobacteria, indicated by different colors in the phylogenetic tree. Only phyla/classes with 10 or more 13C-labeled OTUs are col-
ored, with others colored gray. Each vertical block indicates 13C-labeling results for a single day as specified at the top. Each column within a block indi-
cates results for a given substrate as specified along the bottom. Rows display 13C-labeling dynamics for each OTU as follows: red bars indicate 13C-label-
ing, light gray bars indicate OTU detection in the gradient but no evidence of labeling, white indicates the OTU was not detected in the gradient.
Phylum/class abbreviations: Bact. = Bacteroidetes, Acido. = Acidobacteria, Gemm. = Gemmatimonadetes, Chl-flx. = Chloroflexi, Firmi. = Firmicutes, Actino.
= Actinobacteria, Verruc. = Verrucomicrobia, Plancto. = Planctomycetes, Beta. = Betaproteobacteria, Gamma. = Gammaproteobacteria, Delta. = Deltapro-
teobacteria, Alpha. = Alphaproteobacteria.
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process of mineralization. A higher value for latency indicates
that C assimilation took place long after rates of C mineralization
began to decline. Hence, a high latency value makes it more likely
that an organism was assimilating C that had been transformed by
prior microbial processing.

To evaluate the ecological relevance of the observed guild
structure, we examined how the phylogenetic structure of guilds
varied with respect to their growth and 13C-assimilation dynam-
ics. Variation in selection pressure should alter the phylogenetic
structure of guilds, producing phylogenetic clustering when
selection pressure is low and overdispersion when selection
pressure is high (54). We predicted that competitive pressure
should vary with C source bioavailability such that competition
is greatest for less bioavailable C sources. This expectation is

based on the assumption that competition is maximal when
resources are limiting and that bacterial access to resources
depends upon diffusive transport in the aqueous phase, which
in turn is affected by resource bioavailability. We determined
the degree of phylogenetic clustering by using the nearest
taxon index (NTI). After adjusting for multiple comparisons (n
= 4), we found positive correlations between guild NTI and
both C source bioavailability (Pearson’s r = 0.64, P = 0.001; SI
Appendix, Fig. S7B) and max L2FC (Pearson’s r = 0.51, P =
0.022; SI Appendix, Fig. S7D). No correlation was observed
between guild NTI and either the number of C sources
(Pearson’s r = 0.453, P = 0.062; SI Appendix, Fig. S7A) or C
assimilation latency (Pearson’s r = �0.226, P = 0.994; SI
Appendix, Fig. S7C).

Fig. 4. (A) The Gower’s distance in C assimilation dynamics between OTUs increases rapidly in relation to their phylogenetic distance (branch length).
The vertical dashed lines indicate distance values that correspond to estimates of taxonomic ranks for genus, family, order, class, and phylum (from left to
right). OTU pairs are grouped into phylogenetic distance bins with error bars indicating ± SE. (B) There is a weak correlation between Gower’s distance in
C assimilation dynamics and phylogenetic distance (branch length) between OTUs, with more variance explained among closely related OTUs (Mantel
test, points colored by significance of correlation, note very low Mantel r). (C) Phylogenetic depth (Tau D, calculated with consenTRAIT) of incorporators
with respect to C source and time of labeling. All P values are globally adjusted with the Benjamini–Hochberg correction. There is a positive correlation
between Tau D and time (Pearson’s r = 0.79, P < 0.001). This linear relationship is represented by the red line with the ribbon representing the SE.
(D) OTUs were grouped into 28 guilds on the basis of their 13C-labeling patterns. Color intensity indicates the percentage of member OTUs who have
detectable 13C labeling from each substrate on each day.
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These results indicate that competitive interactions within
guilds are linked to the bioavailability of source C and the
growth dynamics of guild members (as measured by max
L2FC). More specifically, phylogenetic overdispersion, indicat-
ing that guilds were structured by competitive interactions, was
found in guilds that assimilated C more slowly, changed little in
normalized abundance, and accessed C from sources of low
bioavailability. In contrast, phylogenetic clustering, indicating
that guilds were structured by environmental factors (which in
this experiment is driven by the sudden overabundance of a
suitable resource), was found in guilds that assimilated C rap-
idly, changed dramatically in normalized relative abundance,
and accessed C from sources of high bioavailabilty.

While rrn copy number is one trait that can inform a guild’s
ecology and relationship to SOC, traits often impose trade-offs,
causing interactions that can confound simple correlations. We
therefore used a principal component analysis (PCA) to explore
variation in guild responses as a function of their growth and
assimilation dynamics (Fig. 5E). The first principal component
(PC1) explained 36.8% of variation in guild responses and this
axis corresponded with variation in rrn copy number (43.1% load-
ing), growth dynamics (max L2FC; 28.5% loading), latency
(14.1% loading), C source bioavailability (11.9% loading), and
number of C sources (2.48% loading). The second principal com-
ponent (PC2) explained 22.7% of the variation in guild
responses. This second axis largely corresponded with variation
in C source bioavailability (44.5% loading), latency (35.2% load-
ing), number of C sources (16.3% loading), growth dynamics
(max L2FC; 3.8% loading), and rrn copy number (0.3% loading).

The overall guild structure suggests three extremes in guild
characteristics, with certain characteristics maximized at each

vertex (Fig. 5E). For example, guilds with the highest rrn copy
number and the highest max L2FC (i.e., the most dynamic
growth response) had low PC1 but intermediate PC2. Guilds
assimilating C from the least bioavailable and fewest C sources
had high PC1 and low PC2. Guilds with the highest latency in
C assimilation and greatest diversity of C assimilation patterns
(i.e., those that access C from the most C sources) had high
PC1 and high PC2. These vertices represent the characteristic
extremes of the bacterial guild structure, though many interme-
diate guilds exist.

We selected the most abundant OTUs (based on the summed
normalized abundance across time) that represented these three
vertices to illustrate the maximal differences between guilds. The
most abundant OTU from guild 19 was OTU.7163, classified as a
Pseudomonas species. This pseudomonad was estimated to have
5 rrn operons, it had very low initial abundance, increased rapidly
after C input reaching maximal abundance within 1 d followed by
a dramatic decline over time, and it assimilated C at early time
points (Fig. 6). Correspondingly, guild 19 had a high max L2FC,
intermediate C source bioavailability and low latency (Fig. 5).
The most abundant OTU from guild 14 was OTU.22, classified
as an Agromyces species. This microbacterium was estimated to
have 1 rrn operon, it had high initial abundance, increased more
slowly after C input reaching maximal abundance after 6 d
followed by a rapid decline over time, and it was consistently
13C-labeled throughout the experiment assimilating C from
diverse sources (Fig. 6). Correspondingly, guild 14 had an inter-
mediate max L2FC, many C sources, and high latency (Fig. 5).
The most abundant OTU from guild 2 was OTU.197, classified
as a species of Verrucomicrobia. This verrucomicrobium was esti-
mated to have 2 rrn operons, it increased in abundance very

Fig. 5. We tested whether the average rrn copy number of guilds was correlated with other guild characteristics. (A) The average number of C sources
from which C was assimilated by each guild. (B) The average bioavailability of the sources from which C was assimilated by each guild. Bioavailability is
defined here as a unitless value determined operationally based on mineralization dynamics for each substrate, with higher values for more rapidly min-
eralized substrates. (C) The average latency of C assimilation for each guild. Latency is defined operationally and it indicates the time delay between peak
13C mineralization and the time of 13C assimilation into DNA for each C source. (D) The dynamic growth response (max L2FC) of each guild as measured
by increase in normalized abundance in response to C addition. The values provided are for Pearson’s correlation with lines indicating linear regression
and shading indicating SE (significant results are in red). All P values were corrected for multiple comparisons with Benjamini–Hochberg procedure (n =
4). Error bars for points indicate ± SE across OTUs within each guild. (E) PCA differentiates guild structure on the basis of rrn copy number [ln(rrn)], C
source bioavailability, latency of C assimilation, dynamic growth response (Max l2FC), and number of C sources (C sources). Circles represent guilds with
numbers indicating guild identity and arrows represent loadings of each variable onto the principal component axes (PC1 and PC2).
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slowly reaching maximal abundance after 30 d, remaining at rela-
tively low abundance throughout, and it assimilated C from glu-
cose, vanillin, and cellulose at mostly later time points (Fig. 6).
Correspondingly, guild 2 had a low max L2FC, low C source bio-
availability and low latency (Fig. 5). Generalized growth
responses for all guilds are provided in SI Appendix, Fig. S8. It is
clear from Figs. 5 and 6 and SI Appendix, Fig. S8 that guilds dif-
fer in their growth dynamics (max L2FC), and access to C
(latency, C sources, and bioavailability), and these differences
suggest trade-offs between growth dynamics and the ability to
access C in the soil environment over time.

The guild structure we identified can be interpreted in the
context of life-history theory, specifically Grime’s C-S-R frame-
work (55). While Grime’s framework was conceived to describe
plant life-history strategies, it has recently been applied to
microbial systems (56–58). Ruderal (R) strategists of the C-S-R
framework have little investment in resource acquisition, being
adapted for rapid growth in response to a sudden influx of
nutrients. From our guild structure, ruderal bacteria are exem-
plified by the pseudomonads and bacilli of guild 19. These taxa
had high rrn copy number, highly dynamic growth response
(max L2FC), and low latency, and 13C labeling tends to occur
immediately following nutrient addition, all together suggesting
the ability to grow rapidly as a strategy for exploiting episodic
nutrient pulses. Competitive (C) strategists are adapted for
resource acquisition, likely allocating energy to features such as
mycelia, biofilms, extracellular enzymes, siderophores, and anti-
microbials that require substantial investment of energy but
increase fitness under conditions defined by prolonged compe-
tition for resources. Thus, competitors should grow more slowly

(i.e., lower maximum growth rate) with less-dynamic swings in
population size. In our guild structure, competitors were exem-
plified by the Agromyces from guild 14. These taxa had higher
latency suggesting the ability to access 13C following metabolic
processing by other microbes, and they accessed C from a
greater diversity of sources and over longer periods of time
than ruderals. Both ruderals and competitors can be considered
copiotrophs because of their ability to quickly respond to nutri-
ent inputs (56), but these strategies would manifest differently
in their population dynamics and sensitivity to nonequilibrium
states (e.g., disturbance). Stress tolerators (S) were defined by
Grime on the basis of abiotic stress (55), but we propose that
for soil bacteria these organisms are adapted for life at low
energy flux (i.e., conditions that would be stressful and result in
starvation or dormancy for copiotrophs). We therefore propose
that for bacteria in soil, stress tolerators are synonymous with
oligotrophs. These stress-tolerant soil bacteria are adapted to
access low-bioavailability C sources that would be less competi-
tive resources for growth-adapted copiotrophic organisms.
Thus, in our guild structure, stress tolerant (S) strategists were
those exemplified by the Verrucomicrobia of guild 2. These
taxa had low rrn copy number and very slow growth response
but also low latency and a tendency to access C from low bio-
availability sources. While we focus on guilds 19, 14, and 2 to
illustrate the presence of trade-offs, Fig. 5 illustrates that there
is a wide diversity of strategies for accessing C from soil, includ-
ing intermediate strategies not well binned strictly as ruderals,
competitors, or stress tolerators (Fig. 5 and SI Appendix, Fig.
S8). Similarly, members from the same taxonomic group may
display dissimilar strategies. For example, while some Pseudo-
monas species exemplify the ruderal strategy others can be
found in guilds representing competitors or stress tolerators
(Dataset S1), demonstrating the physiological diversity and ver-
satility of this genus.

Finally, we emphasize that the ecological trade-offs that define
fitness in soil are surely different from those that define fitness in
other habitats (e.g., aquatic environments). To illustrate this idea,
consider the copiotroph–oligotroph framework, which was first
used to describe the life history strategies of aquatic bacteria.
Aquatic oligotrophs thrive at low substrate concentrations where
substrate flux across the membrane is low and this imposes selec-
tion for high metabolic efficiency (59–66). Aquatic oligotrophic
habitats are typically characterized by substrates that have low
concentration at steady state (67). Under such equilibrium condi-
tions, oligotroph growth rates are governed by substrate affinity
as described by Michaelis–Menton kinetics (59). Soils, however,
represent a highly dynamic, nonequilibrium system in which sub-
strate availability varies over time and space in response to nutri-
ent inputs, water availability, and sorption/desorption processes
(68). Hence, the characteristics of “soil oligotrophs” are likely to
differ from those of “aquatic oligotrophs.” While both groups
seek to optimize metabolic efficiency, the path to efficiency is
different in soil and aquatic habitats.

Substrate bioavailability is likely a major determinant of
microbial access to soil C. Insoluble substrates, and sorbed sub-
strates, cannot cross the cytoplasmic membrane. Growth on
these substrates is limited by the diffusion of enzymes and
enzyme products between cells and their substrates. As a result,
we predict that access to C from low bioavailability substrates
favors oligotrophs in soil, because limitations on diffusion and
transport should select for metabolic efficiency. Furthermore,
diffusive fluxes in soil environments are favored by intimate
contact between organism and substrate. Such close contacts
persist in water films that coat soil aggregates and remain in
place as soils dry and diffusion is limited by increasing tortuos-
ity. Hence, we predict that oligotrophic activity persists over a
wide range of moisture availability in soils and that such activity
is mediated by diverse collections of interacting organisms. In

Fig. 6. Growth and 13C-labeling dynamics of the most abundant OTUs
representing guilds 2 (OTU.197), 14 (OTU.22), and 19 (OTU.7163), which
are the guilds most differentiated by PCA (Fig. 5E). (A) The 13C-labeling
pattern differs between the three exemplar OTUs. Circles show times
when 13C labeling was detected for each substrate and OTU responses are
identified by circle color as defined in B. Black rectangles indicate the
times when DNA-SIP was performed for each 13C-labeled substrate and
red rectangles indicate the time of peak C mineralization for each C
source (Fig. 2). (B) Growth dynamics differ between the three exemplar
OTUs. Normalized abundance (expressed as micrograms of DNA) is calcu-
lated from relative abundance values normalized by rrn copy number and
DNA yield.
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addition, we predict that access to highly soluble substrates in
soil favors copiotrophs with ruderal or competitive strategies.
These substrates are ephemeral in soils outside of the rhizo-
sphere, being transiently available at high concentration follow-
ing wetting events or nutrient input. The pulsed nature of
soluble organic matter in soil pore water should favor rapid uti-
lization of the C when nutrients are transiently present in
excess, because the benefits of high affinity should matter most
when resources are present at low concentration and the bene-
fits of high efficiency should matter most when resources are
present at steady state.

High Turnover of Bacterial Biomass. In terms of understanding
microbial contributions to soil C cycling, much focus has been
placed on primary microbial degradation of C derived from
plants, and the degradation of plant biomass and exudates is typi-
cally considered in relation to microbial catabolism (24–26, 32,
42). However, recent evidence suggests that persistent SOM is
largely composed from the products of microbial anabolic reac-
tions (69). Hence, microbial turnover and mortality is likely of
considerable importance in soil C cycling. We observed rapid
growth in response to C inputs, CO2 flux peaked at 2 d, and soil
DNA increased over 6 d (a 52% increase), but there was also evi-
dence of substantial turnover and mortality. For example, soil
DNA declined considerably from day 6 through day 48 (a
20% decrease), and the normalized abundance of many taxa
decreased over time. Of the 13C-labeled taxa, 387 were observed
at high frequency over time (detection in six of seven time points)
in unfractionated soil DNA. Of these high-frequency OTUs only
59 (15%) were observed to have a maximum in normalized rela-
tive abundance at the end of the experiment (i.e., no evidence of
mortality), while 221 (57%) decreased by more than 50% in nor-
malized abundance from an early peak in abundance. Decreases
in normalized abundance were often dramatic and rapid (Fig. 6),
particularly for guilds having high max L2FC (Fig. 5). In addition,
among the frequently observed 13C-labeled taxa, a total of 202
(52%) were 13C-labeled at an early time point but were unlabeled
by that same source at later time points. Loss of 13C label can
result from growth and isotope dilution over time, but when cou-
pled to evidence of decreases in mineralization rate, decreases in
DNA yield, and decreases in normalized abundance of most taxa
over time, this result suggests mortality and turnover of 13C
DNA. Finally, the high latency for many 13C-labeled taxa (Fig. 5)
indicates that many taxa became 13C-labeled indirectly by con-
suming microbial products rather than by direct assimilation of
added C. The operation of a viral shunt in soil (70) would explain
well these growth and assimilation dynamics. It also seems likely
that fungi, which are not measured here, contribute significantly
to C mineralization dynamics, and hence bacteria with high
latency are likely to be assimilating the products of both fungal
and bacterial metabolism. Collectively these results argue that
secondary processing, fueled by the products of microbial ana-
bolic metabolism, comprises a major component of the C that
cycles through soil communities. Based on our guild structure we
would predict that much of this microbial biomass C ultimately
flows through taxa having “competitive” life-history strategies
(those with high latency in Fig. 5).

Guild Structure Explains Bacterial Biogeography. To test for a link-
age between guild structure and biogeography, we mapped
incorporators to global bacterial surveys to determine whether
guild membership explained variation in biogeography of soil
bacteria. We employed RLQ analysis, a multivariate approach
that finds correspondence between organism properties (R)
and environmental parameters at various sites (Q; e.g., habitat
or soil pH) based on organismal abundance within sites (L)
(71, 72). We mapped incorporator OTUs and their guild mem-
bership to two 16S rRNA gene surveys of soil bacterial diversity

spanning continental (QIITA study 619) and global scales
(QIITA study 928) (73). Guild membership explained signifi-
cant variation in microbial relative abundance across environ-
mental parameters (SI Appendix, Table S1 and Fig. S9). For
simplicity, guilds were divided into three groups based on C
assimilation profile. Group D assimilated C primarily from dis-
solved substrates of high bioavailability (glucose, xylose, amino
acids, glycerol, lactate, and oxalate). Group P assimilated C pri-
marily from particulate substrates of low bioavailability (cellu-
lose and palmitic acid). Group V assimilated C from vanillin;
this group was treated separately as it was likely present in both
aqueous and nonaqueous forms with transition between these
two states changing over time (owing to its insolubility and ten-
dency to sorb to SOM). Guilds were further grouped by time of
labeling: early (E) and late (L). At continental scales, guilds
that primarily used dissolved substrates at late time points were
associated with forest soils and soils having high organic C and
N (DL; SI Appendix, Fig. S9A). At global scales, these guilds
were positively associated with latitude (DL; SI Appendix, Fig.
S9B), likely as a result of the northern concentration of forest
ecosystems and SOM at global scales. The guilds most strongly
associated with tropical and subtropical broadleaf forests were
those that assimilated C from particulate substrates early (PE;
SI Appendix, Fig. S9B). The guilds that were most strongly asso-
ciated with temperate grasslands, savannas, and shrubland were
those that assimilated C from diverse substrates (DL, PL, and
VL; SI Appendix, Fig. S9B). Guilds that used C from particulate
substrates and vanillin at later timepoints were most closely
associated with desert biomes (PL and VL; SI Appendix, Fig.
S9A). These results show that patterns of microbial C assimila-
tion can be linked to patterns of microbial biogeography and
that guild structure has relevance across large biogeographical
scales.

Conclusions
We conducted a multisubstrate DNA-SIP experiment to mea-
sure the in situ activities of bacteria in the soil C cycle. We
show that degradation dynamics and patterns of bacterial C
assimilation depended on the bioavailability of C inputs. In
total, 1,286 bacteria were found to incorporate C derived from
nine different sources, and most of these bacteria were distantly
related to cultivated isolates. We found that C assimilation
dynamics in soil had low phylogenetic conservation among bac-
teria. Instead, C assimilation dynamics allowed us to group bac-
teria into guilds whose properties were generally consistent
with well-known life-history strategies. We also show that this
guild structure can explain variation in bacterial biogeography.
Our results demonstrate that life-history strategies are likely
linked to C assimilation dynamics. SOM is largely derived from
the products of anabolic microbial metabolism (14), and there-
fore microbial assimilation and turnover of C is a primary
determinant of C fate in soil. Based on our results, we hypothe-
size that C fate in soil is not determined solely, or even primar-
ily, by the metabolic pathways that enable its catalysis but
rather by the life history traits that govern microbial growth
and C acquisition in situ. As a result, life-history theory could
be useful in predicting the C-cycle activity of microbial commu-
nities (18). While more research is necessary to better under-
stand the genetic and ecological underpinnings of life history
strategies in soil bacteria, our results add to the growing body
of knowledge indicating the importance of life-history theory to
bacterially mediated terrestrial C cycling.

Materials and Methods
Soil Microcosm Experiments. Soil microcosms were designed and incubated
with 13C-labeled and unlabeled substrates as previously described (35) except
that C amendment consisted of nine substrates: cellulose, xylose, glucose,
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glycerol, vanillin, palmitic acid, amino acid mixture, lactate, and oxalate (SI
Appendix, Table S2). For most substrates, octanol–water partition coefficient
(LogP) was determined using XLogP3 through PubChem (40). Since amino
acids were added as a mixture, this substrate LogP was averaged across the 20
common amino acids. LogP is not available for cellulose as it is insoluble. Each
substrate was added at 0.4 mg C�g�1 soil, corresponding to a total addition of
3.6 mg C�g�1 soil. The soils had 1.22% total soil C (35, 74), and so the total C
addition represents about 30% of native soil C. Only one of the nine sub-
strates was 13C-labeled in each treatment and the remainder were unlabeled
(Fig. 1). Soil was from Penn Yan, NY, with site and collection methods previ-
ously described (35, 74) and outlined in SI Appendix. 13C and 12C mineraliza-
tion dynamics were determined based on concentrations of 12CO2 and

13CO2

in microcosm headspace measured over time as detailed in SI Appendix. Soil
frommicrocosms were destructively sampled depending on substrate mineral-
ization dynamics over days 1, 3, 6, 14, 30, and 48 after substrate addition.

DNA Extraction and Isopycnic Centrifugation. DNA extraction and isopycnic
centrifugation was conducted as previously described (35) and detailed in SI
Appendix. In short, for each treatment, size-selected DNA (≥4 kb) (75) was
centrifuged in a CsCl density gradient and 100-μL fractions were collected. An
aliquot of DNA taken before isopycnic centrifugation was used for whole-
microcosm bacterial community sequencing (i.e., unfractionated DNA).

16S rRNA Gene Amplification and Sequencing. We amplified and sequenced
the V4 region of the 16S rRNA gene as previously described (76) and detailed
in SI Appendix using dual indexed primers (515f and 806r) developed by
Kozich et al. (77). The 16S rRNA amplicon libraries were processed as described
previously (35) and detailed in SI Appendix. OTUs were clustered at 97%
sequence similarity. Raw sequencing reads can be accessed at the National
Center for Biotechnology Information (NCBI) Sequence Read Archive (acces-
sion no. PRJNA668741).

Identifying Incorporators. OTUs that incorporated 13C into their DNA (i.e.,
incorporators) were identified with MW-HR-SIP (36) using development code
for the HTSSIP R package (78). In short, we used DESeq2 (79) to identify OTUs
significantly enriched in the “heavy” gradient fractions of the 13C-labeled
treatments compared to the “heavy” gradient fractions in corresponding 12C
control. Incorporators were defined as OTUs with a log2 fold enrichment
greater than 0.25 and a Benjamini–Hochberg adjusted P value less than 0.1.
We used the overlapping BD windows 1.70 to 1.73, 1.72 to 1.75, and 1.74 to
1.77 g/mL, which were shown via simulations to have the highest sensitivity
across all tested scenarios while not losing specificity (36). Independent spar-
sity filtering was conducted for each BD window to minimize the number of
comparisons performed.

The taxonomic novelty of incorporators was determined by aligning OTU
representative sequences to the SILVA All-Species Living Tree project small
subunit database version 123, representing all sequenced type strains curated
at that time (80). Alignment was performed using nucleotide BLAST (81) with
an expected value cutoff of 1E-20. Incorporators with no hits ≥97% sequence
identity were considered to have no closely related isolates, while those with
no hits ≥90% were considered to have no related isolates. Statistical analyses
were conducted in R version 3.1.2 (82).

Analyses of Phylogenetic Conservation. Fasttree v2.1.9 (83) was used to infer
a maximum likelihood phylogeny from the 16S rRNA sequence alignment of
representative OTUs. The phylogeny was rooted with Sulfolobus solfataricus
DSM1616 (GenBank accession no. X90478) as the outgroup. Phylogenetic con-
servation of realized function was examined both by comparing functional
distance with phylogenetic distance and testing for a phylogenetic signal with
a modified version of consenTRAIT (49).

Analysis of Guild Structure. Incorporators were grouped into guilds based on
their 13C-labeling patterns as determined by log2 fold change in 13C-labeled
treatment fractions versus corresponding unlabeled control fractions. Specifi-
cally, clustering was performed by 1) calculating pairwise Gower distances for
each OTU pair, 2) hierarchically clustering (UPGMA agglomeration method)
based on the resulting distance matrix, 3) generating a dendrogram of the
hierarchical associations, and 4) detecting clusters in the dendrogram using

the cutreeHybrid function in the DynamicTreeCut R package (84). The rrn
copy number of each OTU was predicted as described previously (85). Briefly,
pplacer v1.1 (86) was used to insert OTU representative sequences into a 16S
rRNA gene reference phylogeny of bacteria with known rrn copy number. The
resulting phylogeny was used by guppy v1.1 to predict rrn copy numbers of
each OTU based on its relatedness to the reference taxa. The natural log of
the copy number was used for all comparisons (51). NTI of guilds was calcu-
lated using the R package picante (87).

Four guild characteristics were calculated with respect to C assimilation and
growth dynamics. All characteristics were calculated for individual OTUs and
then averaged by guild. The number of C sources fromwhich Cwas assimilated
was simply the number of C sources fromwhich an OTU was 13C-labeled at any
time point. Since logP is not available for cellulose, C source bioavailability was
defined operationally based on the day of maximal 13C mineralization rate for
each substrate (as detailed in SI Appendix). The C source bioavailability was
determined as the average of all sources from which 13C was assimilated.
Latency of C assimilation was determined by the natural log of the ratio
between the first day of 13C labeling and the day of peak C mineralization for
each C source. This value was then averaged across all sources from which C
was assimilated. The maximum log2 fold change in OTU abundance in the
unfractionated DNA was calculated following abundance normalization to
minimize bias due to compositional data. Normalization included two steps:
normalizing for predicted rrn copy number and normalizing by sample DNA
yield. OTU relative abundances were first divided by their predicted rRNA
operon copy number, then by the estimate copy number for the entire commu-
nity. Within each timepoint, normalized abundances were then multiplied by
the average DNA yield across the replicate microcosms. The extracted DNA
yield (micrograms of DNA per gram of dry weight soil) was quantified with the
Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific). We recognize
that this calculation does not take into account inflation in DNA yield due to
the growth of fungi and other organisms not accounted for in our study; how-
ever, we believe that these effects will be small compared to the effects of bac-
terial growth, particularly as we are simply comparing between bacterial OTUs
within this study. Untreated bulk soils were used as our baseline abundance,
with OTUs undetected in these soils assigned the lowest abundance measured.
For each OTU, the maximum log2 fold change in abundance was calculated as
the difference between this baseline and the maximum abundance that was
recorded after C addition. If abundance at all time points was less than the
baseline or undetected, the maximum abundance was assigned the baseline
abundance, making the maximum log2 fold change = 0 for such OTUs. An OTU
must be growing if 13C labeling is detected; hence, a decrease in abundance at
times when taxa are labeled indicates either that the rate of mortality for the
population exceeds the division rate (deaths > births), that labeling occurred
prior to growth decline, or that normalization was not entirely successful at
eliminating compositional sequencing bias.

Mapping Incorporators to Biogeography Datasets. Detailed descriptions of
the independent datasets and their analysis for this study are found in SI
Appendix. In short, OTU count tables, representative 16S rRNA gene sequences,
andmetadata was downloaded fromQiita (88) for QIITA studies 619 (continen-
tal dataset) and 928 (global dataset). Incorporators were mapped to external
dataset OTUs separately for each study with the mothur alignment tool (89)
using the SILVA reference alignment as a template. To examine the biogeogra-
phy of guilds at continental (QIITA 619) and global (QIITA 928) scales, guilds
were grouped by assimilation dynamics (as described in Results and Discussion).
Then, for each QIITA dataset, guild designations (R) of mapped OTUswere used
in combination with their OTU count tables (L) and sample metadata (Q) for
RLQ and forth corner analyses (72, 90) as detailed in SI Appendix.

Data Availability. DNA sequence data have been deposited in NCBI Sequence
Read Archive (BioProject accession no. PRJNA668741).
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