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A prevailing paradigm suggests that species richness increases
with area in a decelerating way. This ubiquitous power law scal-
ing, the species–area relationship, has formed the foundation of
many conservation strategies. In spatially complex ecosystems,
however, the area may not be the sole dimension to scale biodi-
versity patterns because the scale-invariant complexity of fractal
ecosystem structure may drive ecological dynamics in space. Here,
we use theory and analysis of extensive fish community data from
two distinct geographic regions to show that riverine biodiversity
follows a robust scaling law along the two orthogonal dimensions
of ecosystem size and complexity (i.e., the dual scaling law). In
river networks, the recurrent merging of various tributaries forms
fractal branching systems, where the prevalence of branching
(ecosystem complexity) represents a macroscale control of the eco-
system’s habitat heterogeneity. In the meantime, ecosystem size
dictates metacommunity size and total habitat diversity, two fac-
tors regulating biodiversity in nature. Our theory predicted that,
regardless of simulated species’ traits, larger and more branched
“complex” networks support greater species richness due to
increased space and environmental heterogeneity. The relation-
ships were linear on logarithmic axes, indicating power law scaling
by ecosystem size and complexity. In support of this theoretical
prediction, the power laws have consistently emerged in riverine
fish communities across the study regions (Hokkaido Island in
Japan and the midwestern United States) despite hosting different
fauna with distinct evolutionary histories. The emergence of dual
scaling law may be a pervasive property of branching networks
with important implications for biodiversity conservation.
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Ecologists have long sought to understand the general drivers
of biodiversity. One of the most robust empirical general-

izations in ecology is the positive relationship between species
richness and area, that is, the species–area relationship (the
SAR) (1). In 1921, Arrhenius (2) formulated the SAR as a
power law S¼ cAz, an equation currently known as the Arrhe-
nius SAR (S is the number of species observed in a given geo-
graphic area A, c the constant, and z the scaling exponent).
Since then, the spatial scaling of species richness has been
observed in many taxonomic groups (3). The SAR is ubiquitous
because multiple mechanisms produce an apparently similar
pattern. Larger ecosystems typically support more diverse
metacommunities due to increased habitat diversity (4), larger
metacommunity size (5), and/or enhanced colonization dynam-
ics (6). Importantly, the SAR provides the foundation for
global conservation efforts (7–9). For example, conservation
ecologists have used SAR estimates to design marine and ter-
restrial protected areas (7, 8), which currently encompass more
than 30 million km2 globally (10).

Many ecosystems, however, possess a complex spatial structure
that cannot be represented by area—a dimension referred to as
scale-invariant complexity (11, 12). Such complexity is evident in
branching ecosystems, including rivers, trees, and mountain
ranges, to name just a few (12). Geomorphic or biological pro-
cesses generate a pronounced self-similarity in complex branching

patterns such that the part and the whole look alike (12). Even
though the branching structure is independent of spatial scale,
it forms a physical template that dictates habitat diversity and
dispersal corridors for living organisms (13). Limited but accumu-
lating evidence suggests that classical metapopulation and meta-
community theories cannot predict ecological dynamics driven by
branching structure (14–16), and this recognition has led to recent
developments of spatial theories devoted to complex branching
ecosystems (17). For example, these studies have highlighted key
roles of branching structure in driving local biodiversity patterns,
such as increased species richness at merging points of branches
(18). However, most research has explored the consequences of
branching complexity for local community structure (19) or has
relied solely on theoretical arguments with limited replications of
branching architecture (20). At present, we lack a comprehensive
evaluation of how branching complexity scales biodiversity pat-
terns at the metacommunity level. Filling this knowledge gap may
provide common ground for achieving successful conservation in
spatially complex ecosystems, where accelerated species loss
threatens the delivery of ecosystem services (21).

Here, we propose a unified framework of ecosystem size and
complexity in scaling biodiversity patterns in rivers—a prime
example of complex branching ecosystems. Individual streams
and rivers flow through different landscapes with distinct geo-
logical and climatic backgrounds, serving as a spatial unit of
unique in-stream environments (16, 22–27). The recurrent
merging of diverse tributaries ultimately forms a fluvial network
with fractal branching patterns (12). As such, the complexity of
branching structure, which we define here as the probability of
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branching per unit river distance (24, 28), may represent a mac-
roscale control of the ecosystem’s habitat heterogeneity (habitat
diversity per unit area) (13, 23, 24). Meanwhile, ecosystem size
(watershed area) should determine the metacommunity size
and total habitat diversity (area times heterogeneity), two
factors that regulate biodiversity at the metacommunity level
(4, 5). Hence, riverine biodiversity may manifest scaling laws
along the two orthogonal dimensions of branching networks.
We call this the dual scaling hypothesis of biodiversity.

The present study combines theory and analysis of extensive
community data from two different regions of the globe to
show that multiple ecological pathways converge to the emer-
gence of dual diversity scaling. Specifically, watershed-scale spe-
cies richness (γ diversity) followed power laws with ecosystem
size A and branching probability Pb as γ ¼ cAn1Pn2

b (n1 and n2
are the scaling exponents) regardless of ecological contexts.
However, contributing factors of increased γ diversity—either
enhanced local species richness (α diversity) and/or spatial vari-
ation of species composition (β diversity)—depended on con-
stituent species’ characteristics. Our findings suggest that the
dual scaling law is a pervasive yet overlooked feature of com-
plex ecosystems with important implications for biodiversity
conservation.

Results and Discussion
Theoretical Synthesis of Ecosystem Size and Complexity Influences.
We developed a theoretical framework synthesizing the influen-
ces of ecosystem size and complexity on biodiversity patterns in
branching ecosystems. We depicted branching ecosystems as a
spatial network of connected habitat patches which local commu-
nities inhabit (24, 28) (Fig. 1 A and B). In this network, the num-
ber of habitat patches Np (a theoretical proxy for ecosystem size
A) and branching probability Pb (ecosystem complexity) shape
the spatial structure (Materials and Methods). We introduced two
factors determining the temporal mean of environmental condi-
tion at each habitat patch μz: headwater environments (the most
upstream habitat patch) and local environmental noise. Environ-
mental values at headwaters are drawn randomly from a normal
distribution with a mean of zero and an SD of rh and propagate
downstream. We modeled the downstream propagation as a spa-
tial autoregressive process, in which local noise is added to the
adjacent upstream environment as μz,k �Normalðμz,kþ1,r

2
l Þ (k is

the network distance from the outlet patch; k¼ 1 at the outlet).
The environmental values recurrently “mix” at confluences con-
sidering the relative size of joining tributaries (Materials and
Methods). Therefore, our network-generation procedure resem-
bles natural processes of how branching river networks create
diverse habitats in a metacommunity (26).

Metacommunity dynamics were then simulated in the theo-
retical branching networks using a general metacommunity
model (29). In this model, the realized species’ population
growth is regulated by local abiotic environments, competition,
and dispersal. Specifically, the number of individuals Nixðtþ 1Þ
for species i at patch x and time tþ 1 was given as follows:

Nixðtþ 1Þ ∼ PoissonðnixðtÞ þ IixðtÞ �EixðtÞÞ,
where nixðtÞ is the expected number of individuals given the
local community dynamics at time t, IixðtÞ the expected number
of immigrants to patch x, and EixðtÞ the expected number of
emigrants from patch x. We assumed the Beverton–Holt equa-
tion to simulate local community dynamics (30):

nixðtÞ ¼ NixðtÞrixðtÞ
1þ r0,i � 1

Kx
∑S

j¼1bijNjxðtÞ :

rixðtÞ is the site- and time-specific reproductive rate of species i,
r0,i the maximum reproductive rate, Kx the site-specific carrying

capacity, bij the competition coefficient between species i and j,
and S the number of species in a metacommunity (S¼ 50).
Interspecific competition coefficients are random draws from a
uniform distribution as bij,i 6¼j � Unif ð0,bmaxÞ while keeping
intraspecific competition coefficients constant (bii ¼ 1). Here,
the reproductive rate rixðtÞ was related to local abiotic envir-
onments through a Gaussian function with species’ niche
optimum μi and width rniche,i. That is, rixðtÞ decreases as the
temporally variable abiotic environment zxðtÞ deviates from μi
(zxðtÞ is drawn randomly from a multivariate normal distribu-
tion with the mean environment of the patch μz,x; Materials and
Methods). Species’ reproductive performance has therefore an
explicit linkage with local abiotic environments, which can be
driven largely by branching structure. After local community
dynamics, species emigrate from the local habitat patch with
probability pd and disperse through the branching network fol-
lowing an exponential dispersal kernel with the rate parameter
h (the reciprocal 1=h represents an expected dispersal dis-
tance). These dispersal parameters affect the number of immi-
grants IixðtÞ and emigrants EixðtÞ.

Prior to the main simulation analysis, we performed a sys-
tematic sensitivity analysis to identify simulation parameters
that strongly influence the relationships between biodiversity
metrics (α, β, and γ diversity) and ecosystem properties (size
and complexity). Our analysis revealed that the following
parameters were particularly influential: environmental varia-
tion at headwaters rh, local environmental noise rl, maximum
value of interspecific competition coefficient bmax, dispersal
probability pd, and dispersal rate parameter h (SI Appendix).
Therefore, we considered 32 combinations of these parameters
as primary simulation scenarios, which include a combination
of four landscape and eight ecological scenarios.

The four landscape scenarios represent distinct patterns of
spatial environmental heterogeneity, which were produced by
different combinations of environmental variation at head-
waters (rh ¼ 0.01, 1) and the degree of local environmental
noise (rl ¼ 0.01, 1). When rh > rl, branching produces greater
habitat heterogeneity because headwaters are the primary
source of environmental variation (Fig. 1A). This landscape
scenario reproduces natural patterns of habitat heterogeneity,
in which environmental conditions differ greatly among
tributaries but are highly correlated within a tributary (22, 26).
In the meantime, when rh#rl, local environmental noise masks
environmental variation among tributaries, leading to limited
influences of branching on habitat heterogeneity (Fig. 1B). This
scenario may reflect human-modified landscapes, in which
human activities may reduce the headwater diversity rh by
homogenizing in-stream processes (e.g., dams) (31) and/or may
increase the local environmental noise rl through localized hab-
itat degradation (e.g., removal of riparian forests) (32). Thus,
the inequality between rh and rl defines the contrasting scenar-
ios of natural and human-dominated landscapes. The eight
ecological scenarios distinguish ecological characteristics of
constituent species in a metacommunity. Among the ecological
scenarios, we changed dispersal distance (h¼ 0:1, 1:0), dispersal
probability (pd ¼ 0:01, 0:1), and the maximum value of interspe-
cific competition strength (bmax ¼ 0:75,1:50). This setup enables
us to examine how ecological traits of constituent species medi-
ate biodiversity relationships. The combinations of landscape
and ecological scenarios were capable of reproducing common
spatial patterns of local species richness in rivers, corroborating
the appropriateness of our choice in parameter combinations
(SI Appendix). Under each simulation scenario, we simulated
1,400 time steps of metacommunity dynamics (including 400
time steps of initialization and burn-in periods) in 1,000
branching networks with the gradients of ecosystem size (the
number of habitat patches: 10 to 150) and complexity (branch-
ing probability: 0.01 to 0.99).
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Our simulation predicted the emergence of dual scaling law
under a realistic landscape scenario, where the environmental
variation at headwaters rh is greater than the degree of local
environmental noise rl (Fig. 1A). Ecosystem size and complex-
ity both increased γ diversity (Figs. 2A and 3A) with a signature
of power law (i.e., linear in a log–log scale), and these relation-
ships were consistent across ecological scenarios (compare pan-
els in Figs. 2A and 3A). Importantly, the impact of ecosystem
complexity was comparable to that of ecosystem size. Hence,
regardless of ecological scenarios, ecosystem size and complex-
ity are likely to be equally important in scaling γ diversity. Our
results contrast with predictions from neutral models, in which
the enhanced connectivity of highly branched networks reduced
γ diversity by facilitating the further expansion of an already
widespread species (33). Nonneutral components of our model
should therefore have played a central role in generating the
predicted patterns. Indeed, the robustness of the scaling law
stemmed from the convergence of niche and dispersal assembly
processes as described in the next two paragraphs.

Dispersal strength regulated the relative importance of eco-
logical mechanisms that underlie the scaling relationships of γ
diversity (compare Left and Right columns in Figs. 2A and 3A).
We observed a greater contribution of β diversity (defined as γ

α)
to increased γ diversity when dispersal limitation existed (i.e.,
species travel short distances). This result reflected significant
spatial variation in species composition over the branching

network and was likely driven by the local association of
species’ niche and abiotic environments (i.e., species sorting)
(29, 34). In contrast, when the dispersal limitation was relaxed
(species travel long distances), a clear increase in α diversity
underpinned the positive relationships between γ diversity and
ecosystem properties. The results agree with previous predic-
tions that increased dispersal homogenizes community compo-
sition while enhancing local diversity through increased
immigrants from suitable habitat patches (i.e., mass effects)
(29, 34, 35). Therefore, ecosystem size and complexity can
increase γ diversity via enhanced species sorting (niche assem-
bly) or mass effects (dispersal assembly) and which takes pri-
macy is dependent on the degree of dispersal limitation. These
patterns were qualitatively similar across different levels of dis-
persal probabilities (SI Appendix, Figs. S5 and S12).

Interspecific competition had minimal influences on the
underlying mechanisms (compare Top and Bottom rows in Figs.
2A and 3A). Strong competition reduced α diversity as observed
in former studies (29). Yet, it did not change the qualitative
relationships between biodiversity and ecosystem properties
(Figs. 2A and 3A). Accordingly, macroecological patterns are
expected to be robust to variation in species interaction net-
works. This result deserves attention given the long-lasting
debate on how species interactions change the dynamics of eco-
logical communities (36, 37). Collectively, our theoretical analy-
sis highlights how apparently similar scaling in γ diversity

A

C D

B

Fig. 1. (A and B) Theoretical branching networks generated under contrasting landscape scenarios. Branching river networks are depicted as a network
of connected habitat patches, in which the number of habitat patches Np and branching probability Pb dictate the ecosystem size and complexity
(Np ¼ 30 and Pb ¼ 0:2,0:8 in this example). Environmental conditions at headwaters (i.e., the most upstream patches) are drawn randomly from a normal
distribution and propagate downstream with local environmental noise (Materials and Methods). Habitat patches are colored in proportion to environ-
mental values (similar colors have similar environmental values). A and B show distinct landscape scenarios. Environmental variation at headwaters σh
exceeds the degree of local environmental noise σl in A (σh ¼ 1,σl ¼ 0:01), while the opposite is true in B (σh ¼ 0:01,σl ¼ 1). (C) Example of intensively sur-
veyed watersheds in Hokkaido, Japan (the red-colored watershed in D). Red dots indicate sampling sites for fish surveys. (D) Map of study regions (Left,
Hokkaido, Japan; Right, Midwest, United States). Watersheds (i.e., metacommunities) are gray shaded in proportion to the number of sampling sites.

EC
O
LO

G
Y

Terui et al.
Emergent dual scaling of riverine biodiversity

PNAS j 3 of 10
https://doi.org/10.1073/pnas.2105574118

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105574118/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2105574118/-/DCSupplemental


emerges through different ecological pathways by explicitly
modeling niche and dispersal assembly processes.

It should be borne in mind that influences of ecosystem size
and complexity differed significantly in their dependence on
landscape scenarios. Ecosystem size had positive effects on γ

diversity regardless of landscape scenarios, although the slopes
were steeper with greater environmental variation (higher rh
and/or rl) (Fig. 2A and SI Appendix, Figs. S5–S11). This result
is attributable to the fact that larger ecosystems can hold more
individuals in a metacommunity (5). In contrast, we observed

A B

Fig. 2. Qualitative match between theoretical predictions and empirical patterns in power law scaling of biodiversity. (A) Theoretical predictions. Ecosys-
tem size (the number of habitat patches) scales γ diversity through increased α or β diversity across ecological scenarios. Lines and shades are loess curves
fitted to simulated data and their 95% CIs. Each panel represents different ecological scenarios under which metacommunity dynamics were simulated.
Rows represent different competition strength. Competition coefficients (bij) were varied randomly from 0 to 1.5 (Top, strong competition) or 0.75 (Bot-
tom, weak competition). Columns represent different dispersal scenarios. Two dispersal parameters were chosen to simulate scenarios with long-distance
(the rate parameter of an exponential dispersal kernel θ¼ 0:10) and short-distance dispersal (θ¼ 1:0). In this simulation, environmental variability among
headwaters (i.e., the most upstream patches), which is expressed as the SD of a normal distribution (σh ¼ 1:0), was greater than that of local environmental
noise occurring at each habitat patch (σl ¼ 0:01). Dispersal probability pd was 0.01 for all the scenarios. (B) Empirical observations. Observed biodiversity
patterns match theoretical predictions of power law scaling along the axis of ecosystem size. Dots represent watershed replicates (i.e., metacommunities),
and lines are predicted values from the robust regression models (solid: siginificant relationships; dashed: insignificant). The estimated slopes (i.e., the
scaling exponents) were consistent across geographically distant regions with distinct fish fauna (Top: Hokkaido, Japan; Bottom: Midwest, United States).

A B

Fig. 3. Qualitative match between theoretical predictions and empirical patterns in power law scaling of biodiversity. (A) Theoretical predictions. Ecosys-
tem complexity (branching probability) scales γ diversity through increased α or β diversity across ecological scenarios. Lines and shades are loess curves fit-
ted to simulated data and their 95% CIs. Each panel represents different ecological scenarios under which metacommunity dynamics were simulated.
Refer to Fig. 2 for details. (B) Empirical observations. Observed biodiversity patterns match theoretical predictions of power law scaling along the axis of
ecosystem complexity. Dots represent watershed replicates (i.e., metacommunities), and solid lines are predicted values from the robust regression mod-
els. The estimated slopes (i.e., the scaling exponents) were consistent across geographically distant regions with distinct fish fauna (Top: Hokkaido, Japan;
Bottom: Midwest, United States).
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limited or no influences of branching complexity when local
environmental noise was equal to or exceeded environmental
variation at headwaters (rh#rl; SI Appendix, Figs. S13–S18).
Under this scenario, branching has a minor influence on the
ecosystem’s habitat heterogeneity because patch-level environ-
mental variation is equivalent to or greater than environmental
differences between tributaries (Fig. 1B). Therefore, this land-
scape scenario eliminates the positive effect of branching com-
plexity on γ diversity. This theoretical prediction may not apply
to pristine or seminatural river networks where individual
streams show distinct and spatially correlated environmental
conditions, including water temperature, water chemistry, and
flow/sediment regimes (22, 23, 26). Instead, it may be most rel-
evant to severely altered landscapes where human disturbance
disrupts the environmental distinctiveness of branches through,
for example, flow regulations by dams (31). Hence, our theory
has important implications for riverine biodiversity conserva-
tion by pointing to the crucial role of habitat diversity produced
by branching structure.

Empirical Evidence from Distinct Geographic Regions. The pro-
posed theory provided important insights into how ecological
communities are structured in branching networks; however,
empirically testing the predictions is extremely difficult because
it requires metacommunity-level replications. To confront this
logistical challenge, we compiled fish community data across
two geographic regions: Hokkaido Island in Japan and the mid-
western United States (Midwest). These regions are located in
comparable latitude ranges (Fig. 1D) but support distinct fish
communities (SI Appendix, Tables S5 and S6). Therefore, this
data set provides an excellent opportunity to examine the gen-
erality of our theoretical predictions. After careful data selec-
tion (Materials and Methods and SI Appendix), we estimated α,
β, and γ diversity (asymptotic species richness; Materials and
Methods) at 184 watersheds (63 in Hokkaido and 121 in the
Midwest), each of which comprised $10 sites of presence–
absence fish community data (a total of 6,649 sites). These
watersheds are small enough (16 to 5,008 km2) to assume that
fishes can disperse therein at a multigeneration time scale (38),
while posing challenges to traverse across watersheds (the
ocean or lentic habitats; refer to Materials and Methods for
watershed definition). We combined this data set with geospa-
tial information, including watershed characteristics (watershed
area and branching probability), climates (annual mean tem-
perature and annual cumulative precipitation), and land-use
patterns (the fraction of agricultural land use and dam density)
to evaluate potential influences of macroscale factors.

Using this data set, we were able to ask the following ques-
tions that have never been addressed in tandem: Is there a dual
scaling law in riverine biodiversity? If so, is the dual scaling
consistent across different geographic regions despite hosting
drastically different fauna with distinct evolutionary histories?
To test these questions, we developed global and region-specific
models of robust linear regression in log–log space (Materials
and Methods). In the global model, we assumed that slopes of
ecosystem size (watershed area) and complexity (branching
probability) are constant across the two regions (i.e., fixed scal-
ing exponents). Meanwhile, the region-specific model assumes
different slopes of ecosystem size and complexity between the
regions (i.e., varied scaling exponents). We compared the sup-
port of these competing models using the Bayes factor, a mea-
sure of the strength of evidence in favor of one model over the
alternative. In our definition (Materials and Methods), the Bayes
factor of > 1 indicates the support for the global model over
the region-specific model.

Surprisingly, we found decisive support for the global model
in explaining γ diversity (Bayes factor ¼ 188.9). The estimated γ
diversity linearly increased with increasing watershed area

(ecosystem size) and branching probability (ecosystem com-
plexity) on a log–log scale, and the estimated scaling exponents
were consistent across the study regions (0.17 for watershed
area and 0.90 for branching probability; Table 1 and Figs. 2B
and 3B). Thus, watershed-scale riverine biodiversity likely obeys
a general scaling law along the two independent axes of ecosys-
tem size and complexity. The regional consistency implies that
ecological traits of constituent species have a minor effect on
the scaling relationships, as our theory predicts (Figs. 2A and
3A). It is also important to note that the effect of ecosystem
complexity was striking in its magnitude. Average predictive
comparisons (39) revealed that an expected increase of γ diver-
sity per 0.1 branching probability was 8.37 6 2.74 species
(Materials and Methods and SI Appendix); this level of increase
in γ diversity requires 1,497 km2 in the watershed area (refer-
ence SI Appendix, Table S7 for the estimated average predictive
comparisons). Overall, the observed patterns were reasonable
because numerous studies have shown that tributaries are the
primary source of environmental heterogeneity in river net-
works (16, 22–27)—the sole theoretical assumption required
for the dual scaling of γ diversity to emerge.

Similarly, there were weak to moderate supports for the
global models of α and β diversity (Bayes factor ¼ 3.1 and 6.7,
respectively). In both regions, β diversity responded signifi-
cantly to ecosystem size and complexity while α diversity
showed a weaker or a vague response to these ecosystem prop-
erties (Table 1 and Figs. 2B and 3B). In our simulations, this
pattern has emerged under the scenarios with dispersal limita-
tion, which elegantly matches the previous observations of
stream fish movement. Field studies (e.g., mark-recapture)
recurrently revealed the restricted movement of stream fish,
typically limited to several hundreds of meters at an annual
time scale (40). The reciprocal agreement of theoretical and
empirical patterns provides indirect but convincing evidence
that dispersal limitation, which results in the increasing impor-
tance of species sorting process (Figs. 2 and 3), plays a key role
in driving the associations between γ diversity and ecosystem
properties in rivers.

The consistent effect of branching probability on γ diversity
across the study regions is noteworthy because many water-
sheds in the Midwest have been altered by agricultural land use
(mean % agricultural land use: 55% in the Midwest and 6% in
Hokkaido). If the intensive land use by humans impairs biologi-
cal or physical distinctiveness among tributaries, our theory
predicts a weakened effect of branching probability on γ
diversity (SI Appendix, Figs. S13–S18). However, γ diversity
increased significantly with increasing branching probability in
this highly modified landscape, suggesting that tributaries still
sustain unique environmental conditions to support high spatial
variation in species composition. Indeed, β diversity increased
with increasing branching probability in both regions (Fig. 3B).
It is conceivable that local geological and geomorphological dif-
ferences, such as slope, aspect, and soil porosity, persist in
human-dominated landscapes to maintain the diversity of
in-stream processes. The lack of land-use effects (the fraction
of agricultural land use and dam density) further corroborates
our interpretation (Table 1). Although our analysis is correla-
tive, the finding is encouraging because the branching complex-
ity of river networks may serve as a natural defense system to
human-induced environmental changes.

While our empirical results showed an excellent match with
the predictions of our niche-based model (Figs. 2 and 3), we
must note that a neutral model developed by Muneepeerakul
et al. (41) was also capable of reproducing fish diversity pat-
terns in the Mississippi–Missouri River Basin. This apparent
contradiction is perhaps not a surprise when considering the
difference in the spatial resolution of interest. Their neutral
model used subbasins (ca. 5,000 km2 in the watershed area) as
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a unit of local communities (metacommunities in our study) and
modeled variation in habitat capacity and dispersal among those
units. At this coarse resolution, stochastic immigration processes
coupled with random speciation, a core of the Unified Neutral
Theory of Biodiversity (5), are critical to forming biogeographic
patterns (42). Meanwhile, we defined local communities at much
finer resolutions (several tens to hundred meters) at which spe-
cies’ niche should interact with environments to determine com-
munity structure (43). It is therefore necessary for our theoretical
model to assume niche-based processes. This interpretation is
supported by the fact that a neutral model could not reproduce
the positive complexity–diversity relationship observed in our
empirical data (33). As such, our research is uniquely significant
in showing the qualitative agreement of theoretical and empirical
results at this level of biological organization.

A potential criticism is that our results are driven by spurious
correlations; however, this is very unlikely. We have statistically
controlled the potential influences of climates and land-use pat-
terns (Table 1). Moreover, our empirical results were qualita-
tively consistent with theoretical predictions, which are free
from any confounding factors. Thus, we are confident in our
statistical inference.

Implications. Our unified framework unveiled the surprising
consistency of dual scaling across ecological contexts or geo-
graphic regions, suggesting the universality of our findings. In
particular, the emerging complexity–diversity relationship
points to several important avenues for riverine biodiversity
conservation. First and foremost, any simplification of complex
river networks may result in regional biodiversity loss via
reduced environmental heterogeneity. Human-induced habitat
alterations, including flow regulation (31), habitat fragmenta-
tion (44), and stream burial (45), may compromise or restrict
access to the diverse habitats that complex branching networks
may support. Our findings underscore the importance of pre-
serving the structural complexity of ecosystems and support the
modern conservation initiative that seeks to protect a diverse
habitat portfolio (46). Second, the complexity perspective may
provide insights into the spatial planning of conservation
efforts. Riverine reserves and local restoration are increasingly
recognized as an effective management tool, and the spatial pri-
oritization of conservation sites in rivers is an area of active
research (47). While the old “single large or several small”
debate has led to a principle prioritizing a single large habitat
(48), emerging perspectives posit the potential of coordinated
networks of small habitats in protecting biodiversity (49).
Understanding the role of branching complexity helps design
such networks. For example, synergies of multiple small
reserves may emerge at the watershed scale when ecologically
distinct tributaries are involved in the design, as evidenced

by the recent successful conservation of tropical fishes in
Thailand’s Salween basin (47).

Although the foundational concepts in ecology emphasize
the importance of ecosystem size in biodiversity relationships
(3, 5, 50, 51), ecosystem complexity has not received the atten-
tion it deserves. However, the ubiquity of scale-invariant com-
plexity across terrestrial (11) and aquatic ecosystems (12) calls
for more research embracing the two orthogonal dimensions of
the ecosystem’s geometric structure. In this context, the present
study substantially advanced our understanding of how biodi-
versity is organized in spatially complex ecosystems, offering a
conceptual pillar for future research. For example, the pro-
posed framework may be extended to explore how these ecosys-
tem properties regulate functional diversity (52) and shifts in
stochastic/deterministic community assembly (53). Recognizing
the dual control of biodiversity broadens viable options for spa-
tial planning of protected areas or restoration sites, thereby
helping conserve biodiversity from societal demands that
threaten it. The generalization of our discovery should there-
fore bring paradigm shifts in macroecological science with
far-reaching implications for biodiversity conservation.

Materials and Methods
Theory.
Network generation. We depicted branching ecosystems as a bifurcating net-
work of connected habitat patches (24, 28) (Fig. 1). Habitat patches, or local
communities, can be either nonbranching or branching river sections with a
unit length l, which defines the scale of local species interactions. Two param-
eters determine the geometric properties of simulated branching networks:
the number of habitat patches Np (ecosystem size) and branching probability
Pb (ecosystem complexity). Each habitat patch is assigned to be a branching
patch (including upstream terminals) with probability Pb or a nonbranching
patch with probability 1� Pb. In this framework, an individual branch is a con-
secutive series of nonbranching patches terminated at a branching patch;
therefore, the number of habitat patches in branch q, np,q, is a realization of a
random variable drawn from a geometric distribution np,q � GeðPbÞ (24) but
conditional on

XNb

q¼1
np,q ¼ Np (Nb is the number of branches in a network).

The number of branches Nb is identical to the number of branching habitat
patches in a network or the number of “success” out of Np trials. This leads to
an assumption that Nb is a realization of a random variable drawn from a
binomial distribution as Nb � BinomialðNp,PbÞ. This framework has two mer-
its. First, it reflects observed patterns of branch length distribution, which is
known to follow an exponential distribution (a continuous version of a geo-
metric distribution) (12). Second, it preserves the fractal nature of branching
patterns (54). An alternative approach is the use of optimal channel networks
(55). However, we employed our framework because branching probability Pb
is quantifiable in natural river networks, enabling us to compare theoretical
predictions with empirical observations.

In our network generation, we first drewNb from the binomial distribution
but selected an odd number to constitute a bifurcating branching network.
We then determined np,q as random draws from the geometric distribution

with the constraint of
XNb

q¼1
np,q ¼ Np. The generated branches were orga-

nized randomly into a bifurcating branching network.

Table 1. Estimated parameters of robust regression models explaining fish species richness in Hokkaido (Japan) and the Midwest
(United States)

Parameter Effect α diversity β diversity γ diversity

n0 Intercept 0.81 (0.14)* 1.12 (0.11)* 0.30 (0.11)*
n1 log10 Watershed area 0.04 (0.02) 0.11 (0.03)* 0.17 (0.02)*
n2 log10 Branching probability �0.59 (0.28)* 1.37 (0.36)* 0.90 (0.27)*
n3 Region (Midwest versus Hokkaido) 0.46 (0.02)* �0.09 (0.03)* 0.37 (0.02)*
n4 Air temperature 0.09 (0.01)* �0.07 (0.02)* 0.03 (0.01)*
n5 Precipitation �0.03 (0.01) 0.05 (0.02)* 0.02 (0.01)
n6 Fraction of agriculture 0.01 (0.01) �0.01 (0.01) �0.01 (0.01)
n7 Dam density 0.00 (0.01) �0.01 (0.01) 0.00 (0.01)

The SEs are shown in parentheses. Response variables were log-10 transformed. Climate and land-use variables (air temperature, precipitation, fraction of
agriculture, and dam density) are deviations from the regional averages and were standardized to a mean of zero and an SD of one prior to the analysis.
*Parameter estimates whose 95% confidence intervals (approximately nk62SE) do not include 0.
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Two sources of variation characterize the long-term average of the abiotic
environment at each habitat patch: environmental variation at headwaters
(rh) and local environmental noise (rl). We drew random values from a nor-
mal distribution with a mean of zero and an SD of rh and assigned them to
headwater patches (i.e., the most upstream patches). These environmental
values at headwaters propagate downstream through a spatial autoregressive
process defined as follows:

μz,k ¼ qμz,kþ1 þ �k, [1]

where μz,k is the mean environmental value at longitudinal position k (k is the
network distance from the outlet patch; k¼ 1 at the outlet), q the strength of
spatial autocorrelation, and �k the local environmental noise that follows a
normal distribution with a mean of zero and an SD of rl. The parameter q can
take values of 0 to 1 with larger values indicating greater spatial autocorrela-
tion. In this study, we set q¼ 1 to mimic strong spatial autocorrelation in
riverine environments. At confluences, we took a weighted mean of environ-
mental values given the relative size of upstream contributing area of joining
tributaries:

μz,k ¼ ωðqμRz,kþ1 þ �RkÞ þ ð1�ωÞðqμLz,kþ1 þ �LkÞ
ω¼ AR

kþ1

AR
kþ1 þAL

kþ1

,
[2]

where R and L denote “right” and “left” branches, respectively, and Ak is the
number of upstream habitat patches at longitudinal position k (akin to the
upstreamwatershed area;Ak ¼ 1 at the most upstream patch). The parameter
ω takes values of 0 to 1 and represents the relative influence of the right tribu-
tary given the relative size of joining tributaries. With this expression, larger
tributaries have a greater influence on the downstream environment, as
observed in natural river networks (56).
Metacommunity model. We simulated metacommunity dynamics in branch-
ing river networks following the metacommunity framework proposed by
Thompson et al. (29). In this framework, abiotic environmental conditions (den-
sity-independent), intra- and interspecific competition (density-dependent),
and dispersal regulate a species’ realized population growth. Below, we
describe the details of our metacommunitymodel.

The realized number of individuals Nixðtþ 1Þ (species i at patch x and time
tþ 1) is given as follows:

Nixðtþ 1Þ � PoissonðnixðtÞ þ IixðtÞ � EixðtÞÞ, [3]

where nixðtÞ is the expected number of individuals given the local community
dynamics at time t, IixðtÞ the expected number of immigrants to patch x, and
EixðtÞ the expected number of emigrants from patch x. The realized discrete
number of individuals is drawn from a Poisson distribution to account for sto-
chasticity in demographic and dispersal processes (29, 57). Local community
dynamics are simulated based on the Beverton–Holt equation (30):

nixðtÞ ¼ NixðtÞrixðtÞ
1þ r0,i�1

Kx

XS

j¼1
bijNjxðtÞ

, [4]

where rixðtÞ is the reproductive rate of species i given the environmental con-
dition at patch x and time t, r0,i the maximum reproductive rate of species i,
Kx the carrying capacity at patch x, bij the competition coefficient between
species i and j, and S the number of species in a metacommunity. Kx was
expressed as a function of the number of upstream habitat patches Ax

(Kx ¼ 100Ax) to represent increasing habitat size with increasing upstream
watershed area (58, 59). The parameter bij represents the strength of interspe-
cific competition relative to that of intraspecific competition: interspecific
competition is greater than intraspecific competition if bij > 1 (intraspecific
competition coefficient was set constant as bii ¼ 1). bij was drawn randomly
from a uniform distribution as bij � Unifð0,bmaxÞ. The density-independent
reproductive rate rixðtÞ is affected by abiotic environments (nonconsumable)
and determined by the following Gaussian function:

rixðtÞ ¼ δ r0,i exp½�fμi � zxðtÞg2
2r2niche,i

�, [5]

where μi is the optimal environmental value for species i, zxðtÞ the environ-
mental value at patch x and time t, and rniche,i the niche width of species i. We
introduced the cost of a wide niche by multiplying δ (60):

δ¼ expð�r2niche,i
2ν2

Þ: [6]

Smaller values of ν imply greater costs of having a wider niche (i.e., decreased
maximum reproductive rate) and reduce the realized reproductive rate rixðtÞ
near the niche optimum.

The environmental value at patch x and time t, zxðtÞ, is assumed to follow a
multivariate normal distribution as zxðtÞ �MVNðμz,ΩzÞ, where μz is the vector
of mean environmental conditions of habitat patches and Ωz is the
variance–covariance matrix. The diagonal elements of the variance–covariance
matrix r2z represent the degree of temporal environmental variation. The off-
diagonal elements Ωxy represent the spatial autocorrelation in temporal envi-
ronmental variation as follows:

Ωxy ¼ r2z expð�ϕdxyÞ, [7]

Ωxy denotes the temporal covariance of environmental conditions between
patch x and y, which is assumed to decay exponentially with increasing dis-
tance between the patches dxy (the shortest network path measured as the
number of habitat patches). The parameter ϕ determines the degree of the
distance decay of environmental correlates.

The expected number of emigrants at time t is the product of dispersal
probability pd and nixðtÞ: EixðtÞ ¼ pdnixðtÞ. The immigration probability at
patch x for species i, nixðtÞ, is calculated using the following equation that
accounts for separation distance among habitat patches and dispersal capabil-
ity of a species:

nixðtÞ ¼
X

y,y 6¼x
EiyðtÞ expð�hdxyÞ

X
x

X
y,y 6¼x

EiyðtÞ expð�hdxyÞ
: [8]

The parameter h regulates the dispersal distance of a species that follows an
exponential distribution (h�1 corresponds to the expected dispersal distance).
The expected number of immigrants is calculated as IixðtÞ ¼ nixðtÞ

XNp

x
Eix.

Simulation. We used 32 sets of parameter combinations (i.e., simulation sce-
narios) based on the results of extensive sensitivity analysis (SI Appendix). The
parameter combinations comprise four landscape and eight ecological scenar-
ios. Landscape scenarios distinguish spatial patterns of habitat heterogeneity,
while ecological scenarios change ecological traits of simulated species. For
landscape scenarios, we used four combinations of environmental variation at
headwaters (rh ¼ 0:01,1) and the degree of local environmental noise
(rl ¼ 0:01,1). The inequality of rh and rl controls the relationship between
branching complexity and habitat heterogeneity (Fig. 1 A and B). For ecologi-
cal scenarios, we varied three ecological parameters that are relevant for dis-
persal and interspecific competition: dispersal distance (h¼ 0:1, 1), dispersal
probability (pd ¼ 0:01, 0:1), and the maximum value of competition coeffi-
cients (bmax ¼ 0.75, 1.5). This setup results in eight ecological scenarios with
different levels of dispersal and competition.

We allowed interspecific variation in niche optimum and width, which
were drawn from uniform distributions as μi � Unifð�1,1Þ and rniche,i �
Unifð0:1,1Þ. We used fixed values for the following parameters: maximum
reproductive rate (r0,i ¼ 4), niche cost (ν¼ 1), the degree of temporal environ-
mental variation (rz ¼ 0:1), and the extent of spatial autocorrelation in tem-
poral environmental dynamics (ϕ¼ 0:05).

Under each simulation scenario, we introduced 50 species (S¼ 50) and
simulated 1,400 time steps of metacommunity dynamics (including 200 time
steps for initialization and 200 time steps for burn-in) in 1,000 branching net-
works with the gradients of ecosystem size (the number of habitat patches:
10 to 150) and complexity (branching probability: 0.01 to 0.99). During the
first 200 time steps (an initialization period), we initialized the simulation by
seeding each habitat patch with populations of each species drawn from a
Poisson distribution with a mean of 0.5. We repeated the seeding every 10
time steps during the initialization to allow species to establish their popula-
tions if they can grow from low abundances. After the initialization period,
we ran 200 time steps as a burn-in period with no seeding to minimize influ-
ences of initial conditions. We saved the last 1,000 time steps to estimate the
temporal averages of α, β, and γ diversity. β diversity was defined as γ=α. We
removed simulation replicates in which no species established populations
over the initial 400 time steps (13 replicates out of 32,000 replicates). Ecosys-
tem size and complexity were drawn randomly from uniform distributions as
follows: Np � Unifð10,150Þ and Pb � Unifð0:01,0:99Þ (Np was rounded to the
nearest integer before running simulations). Values of simulation parameters
were summarized in SI Appendix, Table S2. We performed simulations using
R version 4.1.0 (61).

Empirical Data.
Fish community data. We compiled fish data at two geographic regions: Hok-
kaido Island in Japan and the midwestern United States (Midwest). For Hok-
kaido, we used data from the Hokkaido Freshwater Fish Database HFish (62,
63), monitoring data at protected watersheds (24, 64), and primary data col-
lected by the authors (58, 65), which collectively cover the entire island. For
the Midwest, we assembled fish community data collected by the Iowa
Department of Natural Resources (66), Illinois Environmental Protection
Agency and Illinois Department of Natural Resources (67), Minnesota
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Pollution Control Agency (68), and Wisconsin Department of Natural Resour-
ces (69).We detailed procedures for initial data selection in SI Appendix.

We considered watersheds as independent replicates of metacommunities
if the river network flows into one of the following: the ocean, a large lake/
reservoir ($ 10 km2 in the areal area), or a large river that may represent lentic
habitats ($ 5,000 km2 in the watershed area). We estimated α, β, and γ diver-
sity at each watershed. γ diversity is the total species richness at each water-
shed. Since it is impossible to sample all species present in each watershed, we
used asymptotic species richness as a proxy for γ diversity. Asymptotic species
richness can be interpreted as the estimated true species richness in a given
area when estimated using spatial replicates of local community data within
a metacommunity (70). We estimated asymptotic species richness using
sampling sites located in the same watershed (i.e., spatial replicates within a
metacommunity) via the R package “iNEXT” (71). Metacommunities with$10
sampling sites were used in our analysis because a small sample size inflates
statistical uncertainties in estimating asymptotic species richness (SI
Appendix). We assessed the completeness of the observed species richness
based on sample coverage, which is the total proportional abundances of
observed species to the whole metacommunity (70). We excluded watersheds
whose sample coverage was below 0.9 because the estimates of asymptotic
species richness may contain nonnegligible statistical uncertainty. α diversity
was estimated by taking an average of local species richness at each site. β
diversity was estimated by dividing the estimated γ diversity by α diversity (72).

After the data selection procedure, we obtained diversity estimates from
184 watersheds (Hokkaido: 63; Midwest: 121), which encompassed a total of
6,649 sites (Hokkaido: 2,650; Midwest: 3,999). Observations ranged from 1990
to 2013 in Hokkaido and from 1994 to 2015 in the Midwest. Fish species
observed in the final data set were listed in SI Appendix, Tables S5 and S6.
Environmental data. We collected data for watershed characteristics (water-
shed area [km2], branching probability, and mean elevation [m]), climatic
variables (mean annual air temperature [degree Celsius] and cumulative pre-
cipitation [mm]), and land use (the fractions of forest, urban, and agriculture
and dam density per watershed area [km�2]). We used MERIT Hydro (73) to
delineate watershed polygons and river lines (defined as$1 km2 in the water-
shed area), which were separated by either the ocean, large lakes/reservoirs
($10 km2 in the areal area), or large rivers ($ 5,000 km2 in the watershed area).
The ocean and large lakes/reservoirs were extracted from Global 1-second
Water Body Map version 1.0 (74). Watershed area was estimated based on the
delineated watershed polygons. We estimated branching probability by fitting
exponential distributions to histograms of branch length as branch length�
ExpðλÞ (unit: kilometer, river segment between successive confluences or a
confluence and the outlet/upstream terminal). A derived statistical quantity
1� e�λ corresponds to the theoretical branching probability Pb.

We estimated the spatial averages of elevation, mean annual air tempera-
ture, and cumulative precipitation for each watershed polygon, which were
extracted from Hydrologically Adjusted Elevations of MERIT Hydro (73) and
WorldClim 1.4 (75). The fractions of forest, urban, and agriculture were calcu-
lated based on land-use data in 2015 from Copernicus Global Land Service
(100-m resolution) (76). The Global Reservoir and Dam Database, Version 1
(77) was used to estimate dam density per unit watershed area (km�2). We
used ArcMap 10.7 and the following R packages to perform geospatial analy-
sis: “sf” (78), “raster” (79), “stars” (80), and “exactextractr” (81).
Statistical analysis. We developed robust regression models with an
M-estimation method to examine power laws of riverine biodiversity. The
robust regression analysis is insensitive to outliers of a response variable;
therefore, this method allows us to account for uncertainties of our diversity
estimates (Fish community data). Log-transformed diversity metrics (α, β, and γ
diversity) at watershedw, log10 yw , were assumed to follow a normal distribu-
tion as log10 yw � Normalðμw ,r2Þ. The parameter μw was related to linear pre-
dictors, including log-transformed watershed area (ecosystem size; log10 A),
log-transformed branching probability (ecosystem complexity; log10 Pb),
region (coded as Hokkaido¼ 0, Midwest¼ 1; region), air temperature, precip-
itation, the fraction of agricultural land use, and dam density. Although our
primary focus of this analysis is to assess the effects of watershed area and
branching probability, we included climate and land-use variables to control
their effects statistically. We did not include the fractions of urban and forest
land use in the statistical models because these variables were strongly
correlated with the fraction of agricultural land use (SI Appendix, Fig. S19) or
had a very limited range of values. Similarly, we did not use mean elevation in
the statistical models because it showed a moderate correlation with air
temperature (SI Appendix, Fig. S19). Correlations for other combinations of
explanatory variables were weak tomoderate.

Climate (air temperature and precipitation) and land use (the fraction of
agricultural land use and dam density) differed clearly between the regions.
Therefore, we used residuals of the simple linear regressions between the

climate or land-use variable (response variable) and region (explanatory vari-
able). The residuals represent deviations from the regional averages; positive
values indicate values greater than the regional averagewhile negative values
indicate values smaller than the regional average.

We constructed two models for each of the diversity metrics: global and
region-specific models. The global model assumes that the effects of water-
shed area and branching probability are consistent across geographic regions
(i.e., no interactive effects of the region with other linear predictors).

μw ¼ n0 þ n1 log10 Aw þ n2 log10 Pb,w þ n3 regionw þ
X

k

nkxk,w , [9]

where nk are the intercept and regression coefficients for linear predictors. In
an ordinary scale, the global model represents a dual scaling law as

EðyÞ ¼ cAn1Pn2
b , where c¼ 10n0þn3regionþ

X
k
nkxk . Meanwhile, the region-specific

model assumes the effects of watershed area and branching probability differ
between regions (i.e., interactions between region and watershed area/
branching probability).

μw ¼ n0 þ n1 log10 Aw þ n2 log10 Pb,w þ n3 regionwþ
n4 log10 Aw � regionw þ n5 log10 Pb,w � regionw þ

X

k

nkxk,w : [10]

This is equivalent to:

μw ¼ n0 þðn1 þ n4 regionwÞ log10 Aw þ ðn2 þ n5 regionwÞ log10 Pb,wþ
n3 regionw þ

X

k

nkxk,w : [11]

Therefore, in an ordinary scale, themodel assumes different scaling exponents

between regions as EðyÞ ¼ cAn1þn4regionPn2þn5region
b . All explanatory variables

except watershed area, branching probability, and region were standardized
to a mean of zero and an SD of one before the analysis.

We compared the performance of these competingmodels using the Bayes
factor (82), which gives the relative strength of evidence in favor of the global
model (M0) over the region-specific model (M1). We used Bayesian Informa-
tion Criteria of the linear models to approximate the Bayes factor (82):

Bayes factor ¼ expðΔBIC10=2Þ, [12]

whereΔBIC10 ¼ BICðM1Þ �BICðM0Þ.
For the supported model of γ diversity, we estimated average predictive

comparisons of watershed area and branching probability to compare their
effect sizes. The average predictive comparison is an expected change of the
response variable per a unit difference of the explanatory variable of interest
(39). Unlike other common metrics of effect size (e.g., standardized regression
coefficients), this method provides intuitive yet rigorous estimates of effect
size in models with nonlinear variable transformations (reference SI Appendix
for further details). We performed statistical analysis using R version 4.1.0 (61).

Data Availability. R functions for the generation of branching networks and
themetacommunity simulation are provided as the R package “mcbrnet,” ver-
sion 1.1.0 (available at https://github.com/aterui/mcbrnet and mirrored on
Zenodo at https://doi.org/10.5281/zenodo.5644009) (83). Codes for simula-
tions, statistical analysis, figures, and tables are available at Zenodo at https://
doi.org/10.5281/zenodo.5570593 (84). The fish data provided by third parties
(63, 66–69) cannot be shared due to licensing issues. Previously published data
used for this work are available at the RivFishTIME database (64) and Zenodo
at https://doi.org/10.5281/zenodo.5640132 (85). Environmental data are avail-
able at MERIT Hydro (http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/)
(73), Global 3-second/1-secondWater Body Map (http://hydro.iis.u-tokyo.ac.jp/
~yamadai/G3WBM/index.html) (74), WorldClim (https://www.worldclim.org/
data/v1.4/worldclim14.html) (75), Copernicus Global Land Service (https://doi.
org/10.5281/zenodo.3939038) (76), and Global Reservoir and Dam database
(https://sedac.ciesin.columbia.edu/data/set/grand-v1-dams-rev01) (77).
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