Table 3.
Studies | Train/Test/Validation Split % & Dataset |
Target ACL Tears | Experimental Techniques |
Evaluation | |||||
---|---|---|---|---|---|---|---|---|---|
Accuracy | AUC | Precision | Specificity | Sensitivity | Test Loss | ||||
Stajduhar et al., 2017 [41] | 10-fold cross-validation 917 ACL MRI cases |
Partially | HOG + Lin SVM | - | 0.894 | - | - | - | - |
Fully ruptured |
HOG + RF | - | 0.943 | - | - | - | - | ||
Bien et al., 2018 [42] | 60:20:20 Knee MRI validation: 183 ACL MRI |
Partial, ruptured |
Logistic Regression | - | 0.911 | - | - | - | - |
Tsai et al., 2020 [43] | 5-fold ACL:129 |
Ruptured | ELNet (K = 2) MultiSlice Norm + Blurpool |
- | 0.913 | - | - | - | - |
Namiri et al., 2020 [45] | 70:20:10 1243 Knee MRI NIH |
Average 3 classes ACL | 2D CNN | - | - | - | 94.6% | 59.6% | - |
Average 3 classes ACL | 3D CNN | - | - | - | 93.3% | 63.3 % | - | ||
Dunnhofer et al., 2021 [55] | 5-fold 80:20 917 ACL MRI |
Average 3 classes ACL | MRNet with MRPyrNet | 83.4% | 0.914 | - | 84.3% | 80.6% | - |
ELNet with MRPyrNet | 85.1% | 0.900 | - | 90.8% | 67.9% | - | |||
Kapoor et al., 2021 [46] | 917 ACL MRI | Average 3 classes ACL | CNN | 82.0% | - | - | - | - | 0.42 |
DNN | 82.0% | - | - | - | - | 0.43 | |||
RNN | 81.8% | - | - | - | - | 0.45 | |||
SVM | 88.2% | 0.910 | - | - | - | ||||
M. J. Awan et al., 2021 [47] | 75:25 917 ACL cases |
Average 3 classes ACL | Customized ResNet-14 + Class balancing Adam, LR: 0.001 |
90.0% | 0.973 | 89.0% | 94.0% | 88.7% | 0.526 |
5-fold 917 ACL cases |
92% | 0.980 | 91.7% | 94.6% | 91.7% | 0.466 | |||
Li et al., 2021, [54] | MRI group + Arthroscopy group ACL:60 cases |
Grade 0 Grade 1 Grade II Grade III |
Multi-modal feature fusion Deep CNN | 92.1% | 0.963 | - | 90.6 % | 96.7% | - |
Proposed | 70:30 75:25 917 ACL MRI |
Average 3 classes ACL | Standard CNN Adam LR = 0.0001, 25% | 96.3% | 0.950 | 95.0% | 96.9% | 96.0 % | 0.971 |
Proposed | 70:30 75:25 917 ACL MRI |
Average 3 classes ACL | Customized CNN Adam, LR = 0.001, 25% |
97.1% | 0.990 | 96.3% | 97% | 96.3% | 0.230 |
Customized CNN RMSprop, LR = 0.001, 25% |
98.6% | 0.976 | 98.0% | 98.5% | 98.0% | 0.164 |
The bold parts are author’s approaches.