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Abstract: Nitrification is a common issue observed in chloraminated drinking water distribution
systems, resulting in the undesirable loss of monochloramine (NH2Cl) residual. The decay of
monochloramine releases ammonia (NH3), which is converted to nitrite (NO2

−) and nitrate (NO3
−)

through a biological oxidation process. During the course of monochloramine decay and the pro-
duction of nitrite and nitrate, the spectral fingerprint is observed to change within the wavelength
region sensitive to these species. In addition, chloraminated drinking water will contain natural
organic matter (NOM), which also has a spectral fingerprint. To assess the nitrification status, the
combined nitrate and nitrite absorbance fingerprint was isolated from the total spectra. A novel
method is proposed here to isolate their spectra and estimate their combined concentration. The
spectral fingerprint of pure monochloramine solution at different concentrations indicated that the
absorbance difference between two concentrations at a specific wavelength can be related to other
wavelengths by a linear function. It is assumed that the absorbance reduction in drinking water
spectra due to monochloramine decay will follow a similar pattern as in ultrapure water. Based on
this criteria, combined nitrate and nitrite spectra were isolated from the total spectrum. A machine
learning model was developed using the support vector regression (SVR) algorithm to relate the
spectral features of pure nitrate and nitrite with their concentrations. The model was used to predict
the combined nitrate and nitrite concentration for a number of test samples. Out of these samples,
the nitrified sample showed an increasing trend of combined nitrate and nitrite productions. The
predicted values were matched with the observed concentrations, and the level of precision by the
method was ± 0.01 mg-N L−1. This method can be implemented in chloraminated distribution
systems to monitor and manage nitrification.

Keywords: optical nitrification monitoring; UV-Vis absorbance spectra; spectrophotometric analysis
of nitrate and nitrite; spectral compensation; drinking water nitrification monitoring

1. Introduction

Nitrate (NO3
−) and nitrite (NO2

−) ions are the most common forms of inorganic
nitrogen found in environmental samples [1,2]. The abundance and distribution of these
species in surface water are often characterized by hydrological regime, seasonal changes,
spatial and temporal variability, and the mode and nature of the nutrient sources [1]. They
are regulated pollutants, and drinking water treatment may be required to reduce their level
within the regulated limits. Nitrification is a common issue observed in drinking water
disinfected by monochloramine (NH2Cl) [3,4]. This is a microbiological process where free
ammonia (NH3), released through monochloramine decomposition, is converted to nitrite
and nitrate by nitrifying bacteria, resulting in elevated concentrations of these species in
water [3,5]. Drinking water containing high levels of nitrate and nitrite may pose threats to
public health. The World Health Organization suggests that the maximum contaminant
level (MCL) of nitrate and nitrite in drinking water should not exceed 11.3 mg L−1 as
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NO3-N, and 0.9 mg L−1 as NO2-N [6,7]. Fast and rapid detection of nitrate and nitrite is
required to minimize the risk of nitrification, and to ensure the regulatory compliance [8].

Analytical methods used to determine nitrate and/or nitrite include colorimetry,
potentiometry, spectrophotometry, spectrofluorimetry, chromatography, etc. [9,10]. Over
many years, optical techniques have been successfully used to measure a range of wa-
ter quality parameters, including dissolved organic carbon (DOC), nitrate, nitrite, and
monochloramine, with an excellent limit of detection [11–14]. Singh et al. [2] reviewed
various spectroscopic methods and concluded that UV-Vis spectrophotometry is widely
accepted because of its simplicity, feasibility, and versatility. Evidence described in the liter-
ature suggests that inorganic nitrate and nitrite ions dissolved in water strongly absorb UV
light, with a high correlation between concentration and absorption spectra [1,8,13,15,16].
The inherent absorption properties of nitrate and nitrite will make it possible to detect
them using the spectrophotometric method without using any reagents [13]. For nitrite,
the absorption peak appears around 213 nm, whereas for nitrate, different wavelengths
for absorption peak are reported that vary by concentration [16,17]. The absorption peak
of nitrate gradually shifts to the right as the concentration increases. Karlsson et al. [8]
reported that nitrate has an absorption peak at 205 nm wavelength. A similar study re-
ported that nitrate has a primary and secondary peak at 202 nm and 302 nm, respectively.
In contrast, for nitrite, the primary and secondary peaks appeared at 210 nm and 355 nm,
respectively [11]. However, at a low level of nitrate and nitrite usually produced in typical
chloraminated drinking water during nitrification, the secondary peak is unsuitable to
detect and measure because of the inadequate response at that wavelength. Measuring
them using the primary peak is also often disturbed by interference by other organic and
inorganic substances that absorb UV light within the primary peak region. As both nitrate
and nitrite absorb UV light in the same wavelength range, the global NOx

− concentration
(combined NO2

− + NO3
−) is sometimes preferred to avoid the difficulties associated with

discriminating between nitrate and nitrite [13].
Several studies have reported the application of different data analytic techniques

for the determination of nitrate and nitrite using single or multi-wavelength absorption
spectra [1,8,11,13,15,17–22]. For instance, Karlsson et al. [8] used multivariate data analysis
to relate spectra and concentrations of municipal wastewater. A different approach was
proposed by Jiao et al. [15] who used the secondary absorption peak to link spectra and
nitrite content in environmental samples. Using multiple linear regression, they assessed
the effect of pH on regression performance, where the best modelling performance was
achieved at a pH of 5 or greater because the component of aqueous solution of nitrite
depends on the pH value. When the pH is 5 or above, the solutions contain more than 99%
of nitrite, whereas if the pH is 1.1 or below, the solution contains more than 99% of nitrous
acid (HONO) [23]. The second derivative of absorbance (SDA) is also widely used to
resolve the overlapping peaks, and to enhance the signal [1,24]. Based on the SDA method,
Ferree and Shannon [19] measured the nitrate content in wastewater samples, whereas
Causse et al. [1] assessed the SDA at 226 nm to determine the same in raw waters. Similarly,
Pons et al. [22] assessed a range of river water samples and found good linear correlation
between the maxima of the SDA and the corresponding nitrate concentrations. In typical
drinking water, natural organic matter (NOM) absorbs a significant portion of UV light,
causing major interference towards the measurement of nitrate and nitrite. Hence, using
more than one wavelength, where both nitrate and nitrite do not absorb, can improve the
measurement accuracy. Edwards et al. [25] proposed absorbance measurements at 205 nm
and 300 nm to determine nitrate content in the presence of NOM. Huebsch et al. [17]
evaluated the double and multi-wavelength spectrophotometric measurements using
partial least square regression (PLSR) for monitoring nitrate in groundwater samples.
These studies suggested that UV-Vis spectrophotometry coupled with various data analytic
techniques can be used as a powerful tool to measure the nitrate, nitrite, or combined
NOx

− concentrations in water from various sources, including drinking water, river water,
waste water, etc.
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When a chloraminated sample undergoes nitrification, significant changes in various
water quality parameters are evident [3,4]. This includes a decrease in monochloramine
concentration, an increase in NOx

− production, and an initial increase of ammonia concen-
tration followed by a decrease. The water quality change suggests that the method needs
to be sensitive, such that changes in NOx

− and monochloramine as a result of nitrification
can be detected. Theoretically, the NOM concentration, measured as dissolved organic
carbon (DOC), should also change. However, the change of DOC concentration over time is
relatively slow and small in magnitude, whereas ammonia has little or no UV absorbances
under the typical range of concentration found in drinking water. Hence, the contribution
of NOM and ammonia to change the spectra can be ignored. When no monochloramine
residual is left in water, the NOx

− production between two timestamps, t = 0 and t = t, is
related to the NOx

− spectra, which can be simply obtained by subtracting the spectra at
t = 0 from the spectra at t = t. However, if there is monochloramine residual left in water,
the spectra difference between two timestamps does not represent the whole NOx

− spectra,
as monochloramine has absorbance within the range absorbed by NOx

− species. In this
case, an additional spectral compensation is required to modify the spectra interfered
by monochloramine absorbances. This study proposes such a spectral compensation to
account the monochloramine absorbance, based on the behavior of pure monochloramine
spectra. Hence, the objectives of this study are: (i) to isolate the NOx

− spectra from the
total spectra; and (ii) to determine the NOx

− concentrations using standard data analytic
techniques. This method works on determining the relative NOx

− production between
two timestamps, hence, it is suitable to use when there is no additional information of lab
NOx

− is available. This is a novel method, as no previous studies offer a similar approach
to what is proposed in this paper. Hence, this paper provides a significant new knowledge
contribution to manage nitrification in drinking water systems.

2. Materials and Methods
2.1. Analytical Methods

Turbidity was measured using a Hach TU5200 turbidimeter (Hach, Loveland, CO,
USA), and the measurement was obtained as nephelometric turbidity units (NTU). pH
and temperature were measured using a portable pH meter (pH320, WTW, Weilheim,
Germany). Free chlorine, monochloramine, and dichloramine were determined using
the N,N-diethyl-p-phenylenediamine (DPD)-ferrous ammonium sulfate (FAS) titrimetric
procedure (APHA 4500-CI-F) [26]. UV-Vis absorbance was measured using an Evolution
300 spectrophotometer (Thermo Scientific, Waltham, MA, USA) through a 10 cm quartz
cell. This is a double beam spectrophotometer capable of acquiring spectra from 200 nm to
800 nm. The data resolution was set to 0.5 nm. Samples were prepared for spectral analysis
by filtering them through 0.45 µm filter paper in order to remove the particle absorbances.
The DOC concentration was measured using a Sievers M5310C Total Organic Carbon (TOC)
analyzer fitted with an auto sampler (GE Analytical Instruments, Boulder, CO, USA). The
dissolved species were defined by those that could pass through the 0.45 µm filter paper.
Ammonia concentration was measured using the ion-selective ammonia electrode method
(APHA 4500-NH3-D) [26]. Nitrate and nitrite were determined by the automated flow
colorimetry method (APHA 4500-NO3-I) [26].

2.2. Research Methodology

The systematic procedure adopted in the research is presented in Figure 1.
The study tested water samples from the Tailem Bend to Keith drinking water distri-

bution system located in South Australia. Grab samples were collected from two different
locations. The first location was the Tailem Bend water treatment plant (TB-WTP) (post-
chloraminated water), and the second was a location in the distribution system that had
experienced rapid chloramine decay and nitrification several times in the past years. Using
the collected waters, six different samples were prepared. Sample1 and Sample4 were made
up by the original water from these locations, whereas Sample2 and Sample5 were obtained
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by filtering the original waters through 0.22 µm filter paper. The purpose of the filtering
was to remove a portion of microbes/nitrifying bacteria, in order to limit the nitrate and
nitrite production. Sample3 and Sample6 were prepared to enhance the microbiological
activity by adding the previously obtained 0.22 µm filter retained materials and 0.8 mg L−1

of NH3-N. Bacteria was retrieved from the filter by simply rinsing the filter paper with the
sample water. The test strategy covers wide variations in water characteristics, allowing
different levels of nitrate and nitrite accumulation during the course of the study. The
whole sampling strategy is presented in Figure 2.
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The samples were kept in a dark place under normal room temperature. The spectra
of these samples were recorded for several weeks. At the same time, various water
quality parameters, such as monochloramine, dichloramine, free ammonia, DOC, nitrate,
nitrite, etc., were also analyzed on a regular basis. For each sample, the first spectra
(t = 0) were considered as baseline, and are represented by S0. It has been reported
that monochloramine has a UV absorbance peak at 245 nm [14,27]. Therefore, due to
monochloramine decay, the spectra will shift downward from the baseline, with maximum
offset at the peak. For modelling purposes, the criteria to find a suitable offset was defined
by (i) maximum offset and (ii) minimum nitrate and nitrite absorbances. The maximum
offset will minimize the error when using it as a model predictor, whereas minimum nitrate
and nitrite absorbances will ensure the calculation of the true variation of spectra due to
monochloramine decay only. Data analysis suggests that an offset at 245 nm satisfy both
criteria. In parallel, the monochloramine decay will produce ammonia, which may further
undergo microbiological reactions to produce nitrite and nitrate. Both of the nitrogen
species have high UV absorbance between 200 nm and 230 nm. Consequently, the spectra
will shift upward from the baseline. Hence, the recorded spectra at any time t, referred
to as St, is characterized by the absorbance contribution by NOM, monochloramine, and
NOx

−. The term NOx
− spectra refers to the combined nitrate and nitrite spectra. To

isolate the NOx
− spectra from St, it is required to approximate the spectra at time t due to

monochloramine decay only, referred to as SNOM+NH2Cl. This was done by investigating
the monochloramine concentration absorbance relationship of all wavelengths to 245 nm in
ultrapure water. Figure 3 shows the procedure where the value of ∆245 is known, whereas
its values for other wavelengths (∆i) need to be estimated to calculate the spectra at time t
resulting from monochloramine decay only.
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To assess the spectral characteristics of pure monochloramine, a standard solution at
a concentration of 10 mg L−1 was prepared using ultrapure water (Millipore, Molsheim,
France). Through successive dilution, a range of monochloramine solutions of concen-
tration, ranging from 0.2 mg L−1 to 5 mg L−1, were prepared, and their corresponding
spectra were recorded. Linear models were used to relate the spectra differences at 245 nm
(∆245,ultrapure) with the spectra differences at other wavelengths (∆i,ultrapure). The relation-
ship between ∆245,ultrapure and ∆i,ultrapure was investigated at three different pH of 7, 8, 9,
and was found to not change significantly within that pH range. The regression function
can be expressed by the following equation:

∆ i, ultrapure = Linear f
(

∆ 245, ultrapure

)
for i = 200 nm to 244.5 nm (1)
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where ∆ 245, ultrapure is the set of monochloramine spectra differences between various
concentrations at 245 nm in Milli-Q water, and ∆ i, ultrapure is the set of corresponding
spectra differences at the ith wavelength. The value of i ranges from 200 nm to 244.5 nm, as
the spectra recording resolution was set to 0.5 nm.

It was assumed that chloraminated drinking water will follow the same ∆i pattern
as in Milli-Q water. Therefore, these models were used to predict the ∆i, sample values
with ∆245, sample being predictors. These predicted ∆i values were subtracted from the
baseline to approximate the spectra caused by the monochloramine decay effect only
(SNOM+NH2Cl). This estimated SNOM+NH2Cl spectra do not include the absorbances by
the NOx

− component. It should be noted that NOM may have some minor changes in
concentrations during the time t, and can affect the SNOM+NH2Cl spectra. However, DOC
analysis suggests that NOM concentration is relatively stable compared to monochloramine,
and the subsequent effect can be ignored. Further, subtracting the SNOM+NH2Cl spectra
from the sample spectra at time t, St will give the NOx

− spectra.
To extract the combined nitrate and nitrite concentrations from the NOx

− spectra,
standard light absorbances by these species in ultrapure water need to be assessed. For
this purpose, standard solutions were prepared. A nitrate standard solution at a concen-
tration of 100 mg L−1 as NO3

−-N was prepared by dissolving 0.7218 gm dry potassium
nitrate (KNO3) to ultrapure water, and diluted to 1000 mL. Similarly, a nitrite standard
solution (100 mg L−1 as NO2

−-N) was prepared by dissolving 0.15 gm of sodium nitrite
(NaNO2) to Milli-Q water, and diluted to 1000 mL. From these standard solutions, dif-
ferent concentrations of nitrate and nitrite solutions were prepared using appropriate
dilution factors.

The NOx
− spectra and the known nitrate and nitrite concentrations data were used to

develop a machine learning model using the support vector regression (SVR) algorithm.
Absorbances at various wavelengths were considered as predictor variables, whereas the
corresponding concentrations were assumed to be the response variables. The theory
and application of the SVR algorithm is available in many pieces of literature [14,28,29].
In brief, the SVR algorithm is an extension of the support vector classification (SVC),
where a hyperplane is defined to classify two classes of data. From both sides of the
hyperplane, an epsilon(ε) range is assigned where the regression function is considered
to be insensitive. The support vectors are the data points closer to the hyperplane. For
a multi-class classification problem, the SVC algorithm uses a series of binary classifiers
to perform the classification. If the hyperplane cannot separate the data linearly, SVC
uses a kernel trick to transform the data into higher dimensions where a linear separation
exists. The four major types of kernel functions commonly used in the SVR algorithm are:
(i) linear; (ii) polynomial, (iii) radial basis function (RBF); and (iv) sigmoid. The accuracy
of the SVR model can be improved by tuning the model parameters and choosing the
appropriate kernel function. The SVR model training performance was validated using
a 10-fold cross-validation. Data were scaled in between +1 and -1 to ensure the SVR
convergence. The goodness-of-fit in model training and cross-validation were assessed
using the coefficient of determination (R2) and root mean square error (RMSE). They were
calculated by the following formulae:

Coefficient of determination
(

R2
)
=

 ∑n
i=1
(
Oi − O

)(
Pi − P

)√
∑n

i=1 (Oi − O)
2
√

∑n
i=1 (Pi − P)2

2

(2)

Root mean square error (RMSE) =

√
∑n

i=1 (Pi − Oi)
2

n
(3)

where Oi and Pi are the observed and predicted values of the NOx
− concentrations, re-

spectively, n is the number of data points, and O and P are the observed and predicted
mean values. The value of R2 lies between 0 to 1, where 1 indicates that the model can
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describe 100% of the variation in the data. In contrast, 0 means that model prediction is not
any better than the mean of the data [30,31]. The value of RMSE indicates how widely the
residuals (difference between the modelled and the observed data) disperse. A relatively
low RMSE value indicates a better fit [30,31].

Finally, the developed SVR model was used to predict the relative NOx
− concentra-

tions in several test samples using their isolated NOx
− spectra. A local calibration was

done to improve the NOx
− estimation accuracy. In the local calibration, a linear/non-linear

relationship is developed between the observed lab data and the model predicted values.

3. Results

The average water quality parameters at the TB-WTP and the selected location of
the distribution system (Meningie) are presented in Table 1. These values were obtained
through grab sample analysis at the laboratory.

Table 1. The average value (mean ± 1 SD) of water quality parameters at the TB-WTP and the studied
points in the distribution system.

Water Quality Variables TB-WTP Meningie

pH 8.5 ± 0.2 8.5 ± 0.3
Turbidity (NTU) 0.10 ± 0.01 0.15 ± 0.10

Color (HU) 1 to 2 1 to 2
DOC (mg L−1) 2.4 ± 0.26 2.50 ± 0.90

Free chlorine (mg L−1) <0.10 <0.10
Monochloramine (mg L−1) 4.10 ± 0.30 1.60 ± 1.0

Dichloramine (mg L−1) <0.10 <0.10
Free ammonia (NH3-N) (mg L−1) 0.25 ± 0.09 0.40 ± 0.06

Nitrate + Nitrite (NOx
−-N) (mg L−1) 0.10 ± 0.04 0.30 ± 0.13

As shown in Table 1, most water quality parameters, including pH, turbidity, DOC,
free chlorine and dichloramine concentrations, are similar at both locations. However,
monochloramine, free ammonia and NOx

− concentrations vary significantly. For instance,
the typical monochloramine concentration at the WTP is 4.10 ± 0.30 mg L−1, whereas at
Meningie, the concentration drops to 1.60 ± 1.0 mg L−1. A significant amount of monochlo-
ramine residual is lost along the way to Meningie. At the same time, free ammonia and
NOx

− concentrations at Meningie also increased. Decreased monochloramine residual and
increased free ammonia and NOx

− concentrations show the incidences of nitrification at
Meningie several times in the past years.

The typical monochloramine spectra presented in Figure 4a shows the UV absorbances
in Milli-Q water of up to 300 nm for concentrations ranging from 0.2 mg L−1 to 5.0 mg L−1.
Water utilities usually practice chloramination within that range. The remaining region
of the spectra is relatively flat and not shown. The peak absorption appeared at 245 nm
wavelength, which aligns with many previous studies [14,27]. For all concentrations tested,
the spectra were very symmetric, with a high correlation between concentrations and
absorbances at 245 nm wavelength observed. For the formation of monochloramine in Milli-
Q water, the pH was initially adjusted to 9 to minimize the formation of dichloramine, as a
relatively high pH can potentially reduce the dichloramine formation [32,33]. Consequently,
the interference by the dichloramine spectra was the minimum. A relatively high pH value
also ensured no significant monochloramine autodecomposition occurred during the course
of the experiment [32]. After chloramination, the measured dichloramine concentration
was less than 0.1 mg L−1. Therefore, the spectra obtained were assumed to be the pure
monochloramine spectra without any significant interference by dichloramine. As the pH
of chloraminated drinking water samples can vary throughout the distribution system, the
pure monochloramine spectra were also investigated for two other pH of 8 and 7. Using
the spectral data at various pH combinations allows a reliable estimate to be determined
for a range of values at an unknown pH. However, no significant differences were found in
absorbance spectra between pH values of 7 and 9.
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Figure 4. (a) Pure monochloramine spectra in Milli-Q water with different concentrations, ranging from 0.2 mg L−1 to
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As can be seen in Figure 4a, the spectra are very symmetric about the concentrations,
hence, the absorbance differences (∆I,ultrapure) for two different monochloramine concen-
trations at various wavelengths can be related to each other by some functions. Newly
composed R programming codes were used to calculate ∆i,ultrapure for all possible com-
binations of concentrations at each wavelength from 200 nm to 245 nm. The wavelength
245 nm was chosen because monochloramine peak absorption wavelength approximately
appears at 245 nm, hence, maximum absorbance difference (∆max) is expected at that
wavelength (∆max,ultrapure = ∆245,ultrapure). Therefore, expressing ∆i,ultrapure as a function of
∆245,ultrapure will encounter a relatively lower error in regression. Moreover, typical nitrate
and nitrite spectra do not have significant UV absorbances beyond 245 nm. The relationship
between ∆i,ultrapure and ∆245,ultrapure can be determined by plotting these data and fitting
the standard trend line. Figure 4b shows the plot of ∆i,ultrapure against ∆245,ultrapure at many
intermediate wavelengths from 240 nm to 200 nm with a 5 nm increment. The trend lines
in these plots indicate that there is a linear association between ∆i,ultrapure and ∆245,ultrapure.
Figure 4c shows the R2 and RMSE values in the linear model fit, where it is evident that
the value of R2 gradually improved, and RMSE decreased towards 245 nm. The lowest
R2 obtained in the linear model fit was greater than 0.93, which indicates that the variable
∆245,ultrapure can adequately predict the ∆i,ultrapure with a good level of accuracy. The full
range of R2 and RMSE values between 200 nm and 244.5 nm is presented in Table A1 in
Appendix A.

The recorded spectra for samples1–6 during a period of eight weeks is shown in
Figure 5. For each sample, the initial spectra (t = 0) were considered as baseline. As can
be seen in Figure 5, the absorbances at 245 nm decreased in all samples over time due to
monochloramine decay, whereas it increased between 200 nm and 225 nm due to nitrate
and nitrite productions. All sample spectra intersect their baseline spectra at approximately
220 nm, which also indicated that, except monochloramine, there are absorbances by other
species involved in the spectra, which was nitrate and nitrite. Due to the monochloramine
decay effect, the whole spectra will shift proportionally downward throughout 200 nm to
245 nm, and will not cross the baseline. The highest variability in spectral configuration
was found in the enhanced samples (Sample3 and Sample6). The starting monochloramine
concentration of these samples were 4.3 mg L−1 at the TB-WTP site (Samples1–3) and
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1.3 mg L−1 at the Meningie site (Samples4–6), respectively. Nitrification was observed in
Sample6, where a significant increase in UV absorbance was evident. It is possible that
Sample3 did not experience nitrification because its initial monochloramine concentration
was relatively higher compared to that of Sample6. Thus, the microbial inactivation rate
by monochloramine was also much higher compared to their growth rate. On the other
hand, Sample4 and Sample5 have near similar spectral changes around the 245 nm region,
but different level of changes in between 200 nm and 225 nm, indicating different levels
of NOx

− productions in these samples. This suggests that NOx
− production is related to

a number of factors, including initially available ammonia, the production of additional
ammonia through monochloramine decomposition, and the rate of ammonia conversion
to NOx

−.
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Figure 5. Recorded spectra of the six samples for a period of eight weeks: (a) TB-WTP unprocessed
sample; (b) TB-WTP 0.22 µm filtered sample; (c) TB-WTP enhanced sample; (d) Meningie unprocessed
sample; (e) Meningie 0.22 µm filtered sample; and (f) Meningie enhanced sample. Nitrification was
observed in Sample6 (Figure 5f). Due to NOx

− production, the subsequent spectra in all samples
cross the baseline in between 200 nm and 225 nm.

With regard to the baseline, the absorbance difference at 245 nm wavelength, ∆245, sample,
was calculated for each sample, which was then used to predict the ∆i, sample values using
the linear functions between ∆245, ultrapure and ∆i, ultrapure. This produces a dataset of n − 1
sets of ∆200–245 values for n number of spectra at each sample. These estimated ∆i, sample
values were subtracted from their baseline values to estimate the spectra change caused
by the monochloramine decay only. Figure 6 shows the estimated spectra for the six
samples, where the topmost spectra are the baseline. It is evident in the figure that spectra
sets in Samples1–3 (Figure 6a–c) have much downward shift compared to that observed
in Samples3–6 (Figure 6d–f). This is because initial monochloramine concentration of
Samples1–3 was much higher compared to Samples3–6, hence, more absorbance reduction
occurred in these samples because of monochloramine decay during the study period.
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Figure 6. Estimated spectra without the influence of NOx
− absorbances for the six samples for a

period of eight weeks: (a) TB-WTP unprocessed sample; (b) TB-WTP 0.22 µm filtered sample; (c) TB-
WTP enhanced sample; (d) Meningie unprocessed sample; (e) Meningie 0.22 µm filtered sample;
and (f) Meningie enhanced sample. Spectral change is assumed to be caused by monochloramine
decay only. Compared to Figure 5, the subsequent spectra in all samples in Figure 6 do not cross the
baseline, as no NOx

− absorbances are considered.

For all samples, the spectra in Figure 6 were subtracted from the spectra in Figure 5 to
obtain the NOx

− spectra that includes both nitrate and nitrite absorbances. The isolated
NOx

− spectra presented in Figure 7 show that the enhanced samples (Sample3 and Sam-
ple6) have the maximum UV absorbances, suggesting that the production of nitrate and
nitrite are the maximum in these samples. This is because the ammonia concentration was
increased in these samples to encourage microbiological activity, resulting in an increased
conversion of ammonia to nitrate and nitrite. Further, some spectra in Sample6 showed
an increase in absorbance compared to other samples by several orders of magnitude,
suggesting that severe nitrification occurred. In contrast, the NOx

− spectra in filtered
samples (Sample2 and Sample5) have the lowest absorbance response, hence, nitrification
was absent in these samples because microbiological activity was reduced by filtering these
samples. Compared to filtered and enhanced samples, the unprocessed samples (Sample1
and Sample4) have an intermediate level of NOx

− production. The isolated NOx
− spectra

closely resemble the typical NOx
− spectra in Milli-Q water.

The estimated NOx
− spectra presented in Figure 7 were passed to the machine learning

model developed using the SVR algorithm to predict the relative NOx
− concentrations.

For this purpose, nitrate and nitrite solutions of known concentrations were mixed to
form several combinations, and the corresponding NOx

− spectra were acquired and
used in model training. Figure 8a–e shows the individual nitrite, nitrate, and mixed
NOx

− spectra at various concentrations in Milli-Q water, where it is evident that for the
same concentration, nitrate has a relatively higher absorbance than nitrite. The peak
absorption of nitrite spectra appears at 210 nm, which is approximately symmetric with
respect to concentration (Figure 8a). On the other hand, the peak absorption for nitrate
spectra starts from 205 nm and gradually shifts to the right as the concentration increases
(Figure 8b). For a relatively high concentration of nitrite and nitrate (over 10 mg-N L−1), a
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secondary peak was visible at 302 nm and 355 nm, respectively (Figure 8c,d). However,
for low concentrations (below 10 mg-N L−1), the UV absorption at the secondary peak
region is inadequate, hence, they cannot be effectively applied to quantify the low level
of nitrite and nitrate usually encountered in drinking water during nitrification. Spectral
analysis suggests that the shape of the NOx

− spectra is primarily dominated by the nitrate
concentration, as it has a relatively higher absorbance compared to nitrite (Figure 8e). Using
the NOx

− spectra as predictor variables, and corresponding concentrations as response
variables, the SVR model requires a fine tune of the two parameters. The parameter C
represents the penalty for misclassified data points, whereas the parameter Y controls the
curvature of the decision boundary. They were obtained by the grid search method, and the
RBF kernel was used to map the data. Using a 10-fold cross-validation, the performance of
the SVR model, in terms of R2 in model training and cross-validation, was over 0.99, with
RMSE < 0.04, which indicates a satisfactory relationship between spectra and concentration.
The final parameters of the SVR model are presented in Table A2 in Appendix A. The
developed SVR model was used to predict the NOx

− concentrations in the six samples
using the separated NOx

− spectra presented in Figure 7.
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Figure 7. Isolated NOx
− spectra for a period of eight weeks: (a) TB-WTP unprocessed sample

(sample1); (b) TB-WTP 0.22 µm filtered sample (sample2); (c) TB-WTP enhanced sample (sample3);
(d) Meningie unprocessed sample (sample4); (e) Meningie 0.22 µm filtered sample (sample5); and
(f) Meningie enhanced sample (sample6).

The estimated NOx
− concentration by the proposed method is shown in Figure 9a,

and the numeric values are presented in Table A3 in Appendix A. The NOx
− values in the

figure represent the relative NOx
− concentration with respect to the baseline values, as

the initial NOx
− content in the baseline spectra was set to zero. Therefore, the total NOx

−

concentration would be the sum of initial NOx
− content in the baseline spectra plus relative

NOx
− content estimated by the method. In Figure 9a, Samples 1–3 show an increasing

trend in NOx
− production, whereas Samples 4–5 show an initial increase, followed by

either a stable or decreasing trend. On the other hand, the trend of Sample6 shows a sharp
rise in NOx

− concentration, indicating a nitrification episode. Overall, the estimated NOx
−

concentrations for all samples closely reflect their spectra presented in Figure 7. The pro-
posed method was validated against the lab NOx

− data (Appendix A, Tables A4 and A5),
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and a good level of agreement was found between them. Figure A1 in Appendix A com-
pares the estimated relative NOx

− concentration by the proposed method and the relative
NOx

− concentrations calculated from the lab data. Figure 9b shows a strong linear re-
lationship (R2 = 0.83) between the estimated and the lab data. The trend-line equation
represents the local calibration function to relate the lab data with the model predicted
values. Some inaccuracies may be encountered during the estimation of the ∆i, sample and
corresponding NOx

− spectra by the linear models. Also, if the time difference between the
spectra fingerprint and the lab test result varies, local calibration performance can be poor.
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The literature and the guidance manuals of many water utilities suggest that changes
in nitrite by 0.05 mg-N L−1 or above gives an indication of nitrification [34]. The pro-
posed method tracks the change of relative NOx

− concentration, hence, a value around
0.05 mg-N L−1 indicates either an increased level of nitrite or nitrate or both. In such a
case, further investigation is required to ensure the status of nitrification.

4. Discussion

The spectrophotometric method proposed in this paper can be implemented by the
drinking water industry to monitor nitrification activity throughout the network. Imple-
menting this method online will require regular changing of the baseline to cope with the
incoming water. In a drinking water distribution system, the quality of water and spectral
characteristics change continuously, depending on source and treatment characteristics.
To obtain more accurate estimates of NOx

−, a local calibration using site-specific water
quality data is recommended. The accuracy of the laboratory measurements may also be
subject to errors from various sources, including measurement range, analysis method,
human errors in grab sampling, etc. This is a critical part, as the accuracy of the method is
highly affected by the level of calibration. Therefore, calibration using good water quality
data is required to obtain a better accuracy by the proposed method.

The lab UV-Vis fingerprint was obtained by filtering the sample through 0.45 µm filter
paper to remove the particle absorbances. However, in recent years, several chemometric
techniques have been developed to do the particle compensation [14,35]. It is recommended
to compare both methods to improve the particle compensation. The chemometric particle
compensation techniques could be possibly incorporated into the method proposed in this
paper to develop an automated nitrification monitoring system. This could be an area to
investigate further.

It was assumed that the absorbance reduction at 245 nm was entirely caused by
monochloramine decay. However, at that wavelength, NOM may contribute towards
absorbance reduction. As shown in Figure 10, monochloramine decay during the study
period was much faster than the decrease of organic concentration (measured as DOC),
which was ≤ 0.2 mg L−1. When this method is employed within a short period (usually
less than a week), spectra change due to organic absorbance at 245 nm can be considered
to be zero. Therefore, this method works well within a short period. Otherwise, if the DOC
concentration is available, it can be used to quantify the absorbance reduction by NOM,
since DOC is reported to have an excellent correlation to UV absorbances. Moreover, due
to monochloramine autodecomposition, free ammonia is produced, which may also absorb
UV light. The spectral analysis of the pure ammonia solution indicated that it has little or
no UV absorbances when appearing in a relatively low concentration, usually found in
drinking water systems (up to 5 mg L−1 as NH3-N).
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The spectral fingerprints were taken using a 10 cm optical pathlength cell, and the max-
imum NOx

− concentration used to build the SVR model was 2.4 mg-N L−1 (1.2 mg-N L−1

of nitrite + 1.2 mg-N L−1 of nitrate), hence, the method works well within that limit. Be-
yond that limit, the instrument sensitivity may affect the measurement accuracy. If a high
concentration of nitrate and nitrite are expected, it is recommended to use a short path-
length cell. Also, it was assumed that the major light-absorbing species in the spectra were
NOM, nitrate, nitrite, and monochloramine, which are common in most typical drinking
waters. No chemical reaction between these species, or absorbance increase/decrease due
to their internal reactions, were considered. For a relatively short time duration between the
baseline and the subsequent spectra, the internal reactions and their effects on the spectra
can be negligible. If other UV light-absorbing species exist in the spectra, the accuracy of
the method may differ due to the interferences by these species. Further study is required
to confirm this.

Currently, UV spectrophotometry has been increasingly used for online monitoring of
various water quality parameters [1]. Among the various methods of nitrification monitor-
ing, spectroscopic methods are preferable because of their simplicity, rapid detection, and
high sensitivity, which improves the accuracy of detection [2,36]. To develop online based
sensors, Banna et al. [37] indicated important criteria, including response, measurement
range, sensitivity, accuracy, lifetime, maintenance, and cost, need to be considered. The
proposed method has a rapid response with high sensitivity and good accuracy, hence,
it can be used to develop an online nitrification monitoring system. Unlike many other
UV-based methods of nitrate/nitrite monitoring of environmental samples which use
oxidizing or complexing agents, this method is simple and does not require any chemical
addition. Compared to other methods, such as SDA, the incorporated spectral compen-
sation for monochloramine absorbance makes it more compatible for monitoring rapid
chloramine decay and nitrification in chloraminated systems. By incorporating the online
monitoring to the proposed method, an early warning system can be developed that will
help to prevent nitrification in drinking water distribution systems. This could be an area
to explore further.

5. Conclusions

A novel method of monitoring nitrification in drinking water is proposed in this paper.
In typical chloraminated drinking water, major UV light-absorbing substances are NOM,
nitrate, nitrite, and monochloramine. Both nitrate and nitrite absorb UV light in the same
wavelength range, hence, nitrification activity can be monitored by assessing the combined
NOx

− spectra. When complete or incomplete nitrification occurs, the spectra fingerprint
is changed due to the change of concentrations of these species. With some simple as-
sumptions, the NOx

− spectra were isolated from the total spectra to estimate its NOx
−

content. The spectral analysis for a number of test samples over several weeks suggest
that maximum downward spectral shift was due to monochloramine decay at 245 nm
wavelength. In contrast, the spectra shift slightly upward between 200 nm and 225 nm
wavelengths due to the production of NOx

−. Since both monochloramine and NOx
− have

an effect on spectra change in between 200 nm and 245 nm, pure monochloramine spectra
were investigated to quantify its individual effect. The analysis of pure monochloramine
spectra at various concentrations indicated that the absorbance difference between two
concentrations at 245 nm (∆245) is related to other wavelengths (∆i) by a linear function.
Using these linear models established in ultrapure water, the ∆i values for the test sample
were calculated based on its ∆245 value.

To work with this method, the test sample is required to keep for a certain period to
allow monochloramine decay and NOx

− production. The spectra fingerprint is recorded
at the beginning (t = 0), considered as baseline, and at the end (t = t). The estimated
∆i values are subtracted from the baseline to approximate the spectra change caused by
monochloramine decay only. Finally, subtracting these estimated spectra from the spectra
at time t will give the NOx

− spectra for that time duration.
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A dataset was created using a range of NOx
− spectra and corresponding concentra-

tions in ultrapure water. The dataset was used to train a machine learning model using the
support vector regression (SVR) algorithm. The detection accuracy by the model was tested
for different kernel functions, and the radial basis function was found to have excellent
accuracy. The SVR model was used to predict the relative NOx

− concentrations of the test
samples. Finally, the following points can be summarized:

• Nitrification in chloraminated water can be monitored by isolating and modelling the
NOx

− spectra
• The level of precision by the proposed method is ± 0.01 mg-N L−1
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Appendix A

Table A1. R-Square and RMSE values in linear model fit between ∆245, ultrapure and ∆i, ultrapure.

Wavelength R-Sq. RMSE Wavelength R-Sq. RMSE Wavelength R-Sq. RMSE

200 0.96 0.011 215 0.971 0.004 230 1 0.001
200.5 0.958 0.011 215.5 0.974 0.004 230.5 1 0.001
201 0.957 0.01 216 0.977 0.004 231 1 0.001

201.5 0.955 0.009 216.5 0.979 0.004 231.5 1 0.001
202 0.954 0.009 217 0.982 0.004 232 1 0.001

202.5 0.952 0.008 217.5 0.983 0.004 232.5 1 0.001
203 0.95 0.008 218 0.985 0.003 233 1 0.001

203.5 0.948 0.008 218.5 0.987 0.003 233.5 1 0.001
204 0.946 0.007 219 0.989 0.003 234 1 0.001

204.5 0.944 0.007 219.5 0.99 0.003 234.5 1 0.001
205 0.942 0.007 220 0.991 0.003 235 1 0.001

205.5 0.94 0.007 220.5 0.992 0.003 235.5 1 0
206 0.938 0.007 221 0.993 0.003 236 1 0

206.5 0.937 0.007 221.5 0.994 0.003 236.5 1 0
207 0.936 0.006 222 0.995 0.003 237 1 0

207.5 0.936 0.006 222.5 0.996 0.002 237.5 1 0
208 0.937 0.006 223 0.996 0.002 238 1 0

208.5 0.938 0.006 223.5 0.997 0.002 238.5 1 0
209 0.939 0.006 224 0.997 0.002 239 1 0

209.5 0.94 0.006 224.5 0.998 0.002 239.5 1 0
210 0.942 0.005 225 0.998 0.002 240 1 0

210.5 0.944 0.005 225.5 0.998 0.002 240.5 1 0
211 0.947 0.005 226 0.999 0.002 241 1 0

211.5 0.95 0.005 226.5 0.999 0.002 241.5 1 0
212 0.953 0.005 227 0.999 0.002 242 1 0

212.5 0.956 0.005 227.5 0.999 0.002 242.5 1 0
213 0.959 0.005 228 0.999 0.001 243 1 0

213.5 0.963 0.005 228.5 0.999 0.001 243.5 1 0
214 0.966 0.004 229 0.999 0.001 244 1 0

214.5 0.969 0.004 229.5 1 0.001 244.5 1 0
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Table A2. SVR model details.

SVR Parameters

SVM-Type Eps-regression

SVM-Kernel Radial basis function

Cost 1040

Gamma 0.01098901

Epsilon 0.001

Number of Support Vectors 176

Table A3. Predicted relative NOx concentration using the SVR model.

Date Sample1 Sample2 Sample3 Sample4 Sample5 Sample6

9/02/2021 0 0 0 0 0 0
16/02/2021 0.011 0.014 0.014 0.017 0.006 0.013
23/02/2021 0.028 0.025 0.034 0.028 0.012 0.014
1/03/2021 0.032 0.022 0.041 0.036 0.014 0.021
10/03/2021 0.037 0.024 0.043 0.028 0.013 1.126
15/03/2021 0.039 0.026 0.048 0.025 0.012 1.113
22/03/2021 0.056 0.029 0.055 0.023 0.012 1.134
24/03/2021 0.054 0.032 0.050 0.023 0.009 1.144
29/03/2021 0.056 0.035 0.060 0.023 0.012 1.139
7/04/2021 0.066 0.035 0.066 0.021 0.012 1.119
12/04/2021 0.077 0.037 0.063 0.024 0.013 1.127

Table A4. Lab NOx data (mg-N L−1).

Date Sample1 Sample2 Sample3 Sample4 Sample5 Sample6

9/02/2021 0.134 0.131 0.14 0.145 0.183 0.24
16/02/2021 0.14 0.141 0.159 0.164 0.184 0.241
23/02/2021 0.148 0.149 0.169 0.174 0.186 0.243
1/03/2021 0.163 0.154 0.175 0.178 0.191 0.255
10/03/2021 0.167 0.156 0.182 0.181 0.193 1.36

Table A5. Relative NOx production between the first row and the subsequent rows in Table A4
(mg-N L−1).

Date Sample1 Sample2 Sample3 Sample4 Sample5 Sample6

9/02/2021 0 0 0 0 0 0
16/02/2021 0.006 0.01 0.019 0.019 0.001 0.001
23/02/2021 0.014 0.018 0.029 0.029 0.003 0.003
1/03/2021 0.029 0.023 0.035 0.033 0.008 0.015
10/03/2021 0.033 0.025 0.042 0.036 0.01 1.12
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