Skip to main content
. 2021 Nov 18;21(22):7665. doi: 10.3390/s21227665

Table A1.

Layers of the STN with their parameters.

Branches of the Model Input Layer Output Size Filter Size/Stride Depth
Input Input Image 48 × 48 × 1 - -
Localization Network Convolution-2D 42 × 42 × 8 7 × 7/1 8
MaxPooling-2D 21 × 21 × 8 2 × 2/2 -
Relu 21 × 21 × 8 - -
Convlution-2D 17 × 17 × 10 5 × 5/1 10
MaxPooling-2D 8 × 8 × 10 2 × 2/2 -
Relu 8 × 8 × 10 - -
Fully-Connected 640 - -
Fully-Connected 32 - -
Relu 32 - -
Fully-Connected (θ) 6 - -
Input Transformed Image 48 × 48 × 1 - -
Simple-CNN Convolution-2D 46 × 46 × 10 3 × 3/1 10
Relu 46 × 46 × 10 - -
Convolution-2D 44 × 44 × 10 3 × 3/1 10
MaxPooling-2D 22 × 22 × 10 2 × 2/2 -
Relu 22 × 22 × 10 - -
Convolution-2D 20 × 20 × 10 3 × 3/1 10
Relu 20 × 20 × 10 - -
Convolution-2D 18 × 18 × 10 3 × 3/1 10
Batch Normalization 18 × 18 × 10 - -
MaxPooling-2D 9 × 9 × 10 2 × 2/2 -
Relu 9 × 9 × 10 - -
Dropout (p = 0.5) 9 × 9 × 10 - -
Flatten 810 - -
Fully-Connected 50 - -
Relu 50 - -
Fully-Connected 8 - -