Skip to main content
. 2021 Nov 18;21(22):7665. doi: 10.3390/s21227665

Table A3.

Tested models for applying fusion strategy on the combined posteriors of the top models for each modality. In bold, the best models of each type in terms of the accuracy.

Fusion
Model
Hyper
Parameters
Accuracy
with VAD
Accuracy
without VAD
Accuracy
withVAD FER and
withouth VAD SER
Logistic
Regression
C=0.1 71.6 68.18 70.72
C=1.0 71.93 69.27 71.13
C=10 72.76 69.47 71.47
C=102 76.62 73.50 75.68
C=103 77.78 76.98 79.35
C=104 77.33 77.33 79.63
C=105 77.55 77.68 79.70
C=106 77.55 77.78 79.63
SVM kernel = ‘linear’;
C=104
77.4 77.37 79.58
kernel = ‘linear’;
C=103
77.65 77.80 80.08
kernel = ‘linear’;
C=102
77.70 77.20 79.20
kernel = ‘linear’;
C=0.1
77.70 76.17 78.77
kernel = ‘linear’;
C=1
77.83 76.68 78.77
kernel = ‘linear’;
C=10
77.77 76.82 78.77
kernel = ‘rbf’;
C=0.1
60.03 59.62 62.47
kernel = ‘rbf’;
C=1
66.95 61.57 63.57
kernel = ‘rbf’;
C=10
70.10 64.30 66.48
kernel = ‘rbf’;
C=102
70.10 64.33 66.57
k-NN k = 10 60.32 59.30 60.33
k = 20 58.95 57.15 59.07
k = 30 57.63 57.78 59.17
k = 40 56.78 57.55 59.01
k = 50 55.90 57.00 58.65