Table A3.
Fusion Model |
Hyper Parameters |
Accuracy with VAD |
Accuracy without VAD |
Accuracy withVAD FER and withouth VAD SER |
---|---|---|---|---|
Logistic Regression |
71.6 | 68.18 | 70.72 | |
71.93 | 69.27 | 71.13 | ||
72.76 | 69.47 | 71.47 | ||
76.62 | 73.50 | 75.68 | ||
77.78 | 76.98 | 79.35 | ||
77.33 | 77.33 | 79.63 | ||
77.55 | 77.68 | 79.70 | ||
77.55 | 77.78 | 79.63 | ||
SVM | kernel = ‘linear’; |
77.4 | 77.37 | 79.58 |
kernel = ‘linear’; |
77.65 | 77.80 | 80.08 | |
kernel = ‘linear’; |
77.70 | 77.20 | 79.20 | |
kernel = ‘linear’; |
77.70 | 76.17 | 78.77 | |
kernel = ‘linear’; |
77.83 | 76.68 | 78.77 | |
kernel = ‘linear’; |
77.77 | 76.82 | 78.77 | |
kernel = ‘rbf’; |
60.03 | 59.62 | 62.47 | |
kernel = ‘rbf’; |
66.95 | 61.57 | 63.57 | |
kernel = ‘rbf’; |
70.10 | 64.30 | 66.48 | |
kernel = ‘rbf’; |
70.10 | 64.33 | 66.57 | |
k-NN | k = 10 | 60.32 | 59.30 | 60.33 |
k = 20 | 58.95 | 57.15 | 59.07 | |
k = 30 | 57.63 | 57.78 | 59.17 | |
k = 40 | 56.78 | 57.55 | 59.01 | |
k = 50 | 55.90 | 57.00 | 58.65 |