Table A3.
Tested models for applying fusion strategy on the combined posteriors of the top models for each modality. In bold, the best models of each type in terms of the accuracy.
Fusion Model |
Hyper Parameters |
Accuracy with VAD |
Accuracy without VAD |
Accuracy withVAD FER and withouth VAD SER |
---|---|---|---|---|
Logistic Regression |
71.6 | 68.18 | 70.72 | |
71.93 | 69.27 | 71.13 | ||
72.76 | 69.47 | 71.47 | ||
76.62 | 73.50 | 75.68 | ||
77.78 | 76.98 | 79.35 | ||
77.33 | 77.33 | 79.63 | ||
77.55 | 77.68 | 79.70 | ||
77.55 | 77.78 | 79.63 | ||
SVM | kernel = ‘linear’; |
77.4 | 77.37 | 79.58 |
kernel = ‘linear’; |
77.65 | 77.80 | 80.08 | |
kernel = ‘linear’; |
77.70 | 77.20 | 79.20 | |
kernel = ‘linear’; |
77.70 | 76.17 | 78.77 | |
kernel = ‘linear’; |
77.83 | 76.68 | 78.77 | |
kernel = ‘linear’; |
77.77 | 76.82 | 78.77 | |
kernel = ‘rbf’; |
60.03 | 59.62 | 62.47 | |
kernel = ‘rbf’; |
66.95 | 61.57 | 63.57 | |
kernel = ‘rbf’; |
70.10 | 64.30 | 66.48 | |
kernel = ‘rbf’; |
70.10 | 64.33 | 66.57 | |
k-NN | k = 10 | 60.32 | 59.30 | 60.33 |
k = 20 | 58.95 | 57.15 | 59.07 | |
k = 30 | 57.63 | 57.78 | 59.17 | |
k = 40 | 56.78 | 57.55 | 59.01 | |
k = 50 | 55.90 | 57.00 | 58.65 |