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Abstract: Three-dimensional convolutional neural networks (3D CNN) of artificial intelligence (AI)
are potent in image processing and recognition using deep learning to perform generative and
descriptive tasks. Compared to its predecessor, the advantage of CNN is that it automatically detects
the important features without any human supervision. 3D CNN is used to extract features in three
dimensions where input is a 3D volume or a sequence of 2D pictures, e.g., slices in a cone-beam
computer tomography scan (CBCT). The main aim was to bridge interdisciplinary cooperation be-
tween forensic medical experts and deep learning engineers, emphasizing activating clinical forensic
experts in the field with possibly basic knowledge of advanced artificial intelligence techniques
with interest in its implementation in their efforts to advance forensic research further. This paper
introduces a novel workflow of 3D CNN analysis of full-head CBCT scans. Authors explore the
current and design customized 3D CNN application methods for particular forensic research in five
perspectives: (1) sex determination, (2) biological age estimation, (3) 3D cephalometric landmark
annotation, (4) growth vectors prediction, (5) facial soft-tissue estimation from the skull and vice
versa. In conclusion, 3D CNN application can be a watershed moment in forensic medicine, leading
to unprecedented improvement of forensic analysis workflows based on 3D neural networks.

Keywords: forensic medicine; forensic dentistry; forensic anthropology; 3D CNN; AI; deep learning;
biological age determination; sex determination; 3D cephalometric; AI face estimation; growth
prediction
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1. Introduction

Conventional forensic analysis is based on forensic expert’s manual extraction of
information. Forensic expert provides opinions established on medical and other fields
of current knowledge combined with personal work experience. This is not only time-
consuming, albeit frequently affected by subjective factors that are tough to overcome [1].

The main purpose of this paper is to analyze and introduce a very promising line of
research applicable to forensic anthropology and various traditional sectors of forensic
medicine. The application of artificial intelligence (AI) is a new trend in forensic medicine
and a possible watershed moment for the whole forensic field [1–6].

This chapter paper explains basic terminology, principles and the current horizon
of knowledge. The methodology chapter presents the novel clinical workflow based on
implementing three-dimensional convolutional neural network (3D CNN) algorithms [7–9].
The input is full head cone-beam computer tomography scans (CBCT) in the Digital
Imaging and Communications in Medicine format (DICOM) [9–14]. The methodology
chapter describes technical data preparation for 3D CNN utilization in the following
practical aspects from forensic medicine:

1. Biological age determination [7,8,15–31]
2. Sex determination [32–40]
3. Automatized 3D cephalometric landmark annotation [41–58]
4. Soft-tissue face prediction from skull and in reverse [59–77]
5. Facial growth vectors prediction [13,59,78–90]

The result of this paper is a detailed guide for forensic scientists to implement features
of 3D CNN to forensic research and analyses of their own (in five themes described above).
This resulting practical concept—possible workflow shall be useful for any forensic expert
interested in implementing this advanced artificial intelligence feature. This study is
based on the worldwide review of 3D CNN use-cases that apply to clinical aspects of
forensic medicine

This article’s secondary objective is to inspire forensic experts and approximate them
to implement three-dimensional convolutional neural networks (3D CNN) in their forensic
research in the fields of age, sex, face and growth determination.

1.1. Basic Terminology and Principles in Era of AI Enhanced Forensic Medicine

Artificial intelligence has brought new vigor to forensic medicine, but at the same
time also some challenges. AI and forensic medicine are developing collaboratively and
advanced AI implementation until now required extensive interdisciplinary cooperation.
In the era of big data [3], forensic experts shall become familiar with these advanced
algorithms and understand used technical terms.

For many forensic experts, the current benefits of advanced AI processes are still
unknown. For example, automated AI algorithms for skull damage detection from CT [91]
or soft-tissue prediction of a face from the skull [66,67,89,92] are still a mystery to many
outstanding forensic scientists. Enabling them would catapult forensic research to a
new era [1].

A Convolutional Neural Network (CNN) is a Deep Learning algorithm that can take in
an input image, assign importance (learnable weights and biases) to various aspects/objects
in the image, and differentiate one from the other.

CNN is an efficient recognition algorithm that is widely used in pattern recognition
and image processing. It has many features such as simple structure, less training parame-
ters and adaptability. CNN is a supervised type of Deep learning, most preferable used in
image recognition and computer vision (Figure 1a,b).
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Figure 1. (a) Recognition of objects. Try, using your imagination, to recognize the objects on the three blurred variants of the same 
anatomical slice. Convolutional Neural Networks (CNNs) work similar to our visual brain when trying to recognize these objects. 
(b) Our recognition of objects on the picture is significantly improved when more layers—slices are added thus providing further 
context with the 3rd dimension. In the top row is recognizable intersection of the mandible and vertebra and on the lower row is 
recognizable slice of the face. 3D CNN recognition is similarly improved with providing context of depth. 

Compared to its predecessors, the main advantage of CNN is that it automatically 
detects the crucial features without any human supervision. For example, given many 
pictures of cats and dogs, it learns distinctive features for each class. CNN is also compu-
tationally efficient. 

3D CNN is used to extract features in 3 Dimensions or establish a relationship be-
tween 3 dimensions. A 3D CNN is simply the 3D equivalent: it takes as input a 3D volume 
or a sequence of 2D frames (e.g., CBCT scan). 

In terms of Neural Networks and Deep Learning: Convolutions are filters (ma-
trix/vectors) with learnable parameters used to extract low-dimensional features from in-
put data. They have the property to preserve the spatial or positional relationships be-
tween input data points. 

2D CNNs predict segmentation maps for DICOM slices in a single anatomical plane. 
3D CNNs address this issue by using 3D convolutional kernels to make segmentation pre-
dictions for a volumetric patch of a scan (Figure 2). 

Figure 1. (a) Recognition of objects. Try, using your imagination, to recognize the objects on the three blurred variants of the
same anatomical slice. Convolutional Neural Networks (CNNs) work similar to our visual brain when trying to recognize
these objects. (b) Our recognition of objects on the picture is significantly improved when more layers—slices are added
thus providing further context with the 3rd dimension. In the top row is recognizable intersection of the mandible and
vertebra and on the lower row is recognizable slice of the face. 3D CNN recognition is similarly improved with providing
context of depth.

Compared to its predecessors, the main advantage of CNN is that it automatically
detects the crucial features without any human supervision. For example, given many
pictures of cats and dogs, it learns distinctive features for each class. CNN is also computa-
tionally efficient.

3D CNN is used to extract features in 3 Dimensions or establish a relationship between
3 dimensions. A 3D CNN is simply the 3D equivalent: it takes as input a 3D volume or a
sequence of 2D frames (e.g., CBCT scan).

In terms of Neural Networks and Deep Learning: Convolutions are filters (ma-
trix/vectors) with learnable parameters used to extract low-dimensional features from
input data. They have the property to preserve the spatial or positional relationships
between input data points.

2D CNNs predict segmentation maps for DICOM slices in a single anatomical plane.
3D CNNs address this issue by using 3D convolutional kernels to make segmentation
predictions for a volumetric patch of a scan (Figure 2).
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Figure 2. The comparison of 2D CNN (above) and 3D CNN (below). 3D CNN works with 3rd dimension and can recon-
struct shapes from the CBCT 2D slides. The sequence of 2D pictures where the 3rd dimension is time, we speak of a 
common video sequence that can be a subject of 3D CNN analysis too. 

In 3D convolution, a 3D filter can move in all 3-directions (height, width, channel of 
the image). At each position, the element-wise multiplication and addition provide one 
number. Since the filter slides through a 3D space, the output numbers are also arranged 
in a 3D space. The output is then 3D data. 

The recognition of similar structures from the CBCT is based on their similar opacity 
on the X-ray classified by the Hounsfield scale. The process of defining ranges for partic-
ular tissues is called “thresholding”, which is prior to final the segmentation (Figure 3). 
Setting different thresholds for segmentation preprocessing step allows segmentation of 
different structures such as soft tissues (skin, airway, sinuses), nerves (inferior alveolar 
nerve, dental pulp), bones (mandible, maxilla or cervical vertebras) and many other (Fig-
ure 4). 

 
Figure 3. The example of the process of defining ranges for particular visualized tissues is called 
“thresholding”. 

The segmentation of original CBCT data can result in the definition of various 3D 
structures involved in 3D CNN training, or these 3D structures can serve as anchors for 
mapping another 3D scan, such as an intraoral optical scan or extraoral scan that includes 
texture. All these three data sources can be merged, and the 3D CNN network can work 
with unprecedented data that include wider face regions from face scan or morphological 
information on teeth and gums (Figure 5). 

Figure 2. The comparison of 2D CNN (above) and 3D CNN (below). 3D CNN works with 3rd dimension and can
reconstruct shapes from the CBCT 2D slides. The sequence of 2D pictures where the 3rd dimension is time, we speak of a
common video sequence that can be a subject of 3D CNN analysis too.

In 3D convolution, a 3D filter can move in all 3-directions (height, width, channel of
the image). At each position, the element-wise multiplication and addition provide one
number. Since the filter slides through a 3D space, the output numbers are also arranged in
a 3D space. The output is then 3D data.

The recognition of similar structures from the CBCT is based on their similar opacity
on the X-ray classified by the Hounsfield scale. The process of defining ranges for particular
tissues is called “thresholding”, which is prior to final the segmentation (Figure 3). Setting
different thresholds for segmentation preprocessing step allows segmentation of different
structures such as soft tissues (skin, airway, sinuses), nerves (inferior alveolar nerve, dental
pulp), bones (mandible, maxilla or cervical vertebras) and many other (Figure 4).
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Figure 3. The example of the process of defining ranges for particular visualized tissues is called “thresholding”.

The segmentation of original CBCT data can result in the definition of various 3D
structures involved in 3D CNN training, or these 3D structures can serve as anchors for
mapping another 3D scan, such as an intraoral optical scan or extraoral scan that includes
texture. All these three data sources can be merged, and the 3D CNN network can work
with unprecedented data that include wider face regions from face scan or morphological
information on teeth and gums (Figure 5).



Healthcare 2021, 9, 1545 5 of 25
Healthcare 2021, 9, x  5 of 25 
 

 

 
Figure 4. The examples of the segmentation process on the CBCT data based on defining ranges for particular tissues thus 
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Figure 5. The example of 3D data augmentation in a sense of mapping another 3D scans on the segmented structures. 
Facial 3D scan with texture mapped on the segmented face surface from CBCT and intraoral scan of teeth and gums 
mapped on tooth surfaces from the CBCT. Finally merged into complex set of 3D models. Training of 3D CNN with such 
a complex 3D virtualized model has never been performed before and is worth a consideration. 

1.2. Overview of Used Artificial Intelligence for Forensic Age and Sex Determination 
Traditional forensic analyses of age, gender and facial appearance are based on fo-

rensic expert manually acquiring information that provides the identification established 
on expert`s medical and biological knowledge and mathematical calculations [93–95]. In 
forensic outputs, the experiences of the investigator subjectivity and fatigue and emotions 
play a role [93–95]. To have forensic expert well trained on thousands of skulls of all pos-
sible ethnicities, would take a lifetime. Possible bias sourcing from fatigue, limited train-
ing dataset, emotional engagement or human calculation error cannot be absolutely erad-
icated with human forensic expert. Implementation of artificial intelligence (AI) can limit 
all these mentioned sources of possible bias. Machine learning works based on models 
that mimic neurons in the brain and can learn from experiences and solve complex prob-
lems. It is not influenced by subjective judgment; it does not become tired and does not 
use emotions and thus can work more efficiently [96–98]. 

AI usage is not without risks of undesired side effects. AI may become biased in the 
same way as a human forensic expert, depending on the source data used for AI training 

Figure 4. The examples of the segmentation process on the CBCT data based on defining ranges for particular tissues thus
defining 3D structures such as airway, nerve canal, face surface or bone structures.
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Figure 5. The example of 3D data augmentation in a sense of mapping another 3D scans on the segmented structures. Facial
3D scan with texture mapped on the segmented face surface from CBCT and intraoral scan of teeth and gums mapped on
tooth surfaces from the CBCT. Finally merged into complex set of 3D models. Training of 3D CNN with such a complex 3D
virtualized model has never been performed before and is worth a consideration.

1.2. Overview of Used Artificial Intelligence for Forensic Age and Sex Determination

Traditional forensic analyses of age, gender and facial appearance are based on forensic
expert manually acquiring information that provides the identification established on
expert‘s medical and biological knowledge and mathematical calculations [93–95]. In
forensic outputs, the experiences of the investigator subjectivity and fatigue and emotions
play a role [93–95]. To have forensic expert well trained on thousands of skulls of all
possible ethnicities, would take a lifetime. Possible bias sourcing from fatigue, limited
training dataset, emotional engagement or human calculation error cannot be absolutely
eradicated with human forensic expert. Implementation of artificial intelligence (AI) can
limit all these mentioned sources of possible bias. Machine learning works based on
models that mimic neurons in the brain and can learn from experiences and solve complex
problems. It is not influenced by subjective judgment; it does not become tired and does
not use emotions and thus can work more efficiently [96–98].
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AI usage is not without risks of undesired side effects. AI may become biased in
the same way as a human forensic expert, depending on the source data used for AI
training [99]. Obermeyer at el. found evidence of bias in a healthcare algorithm responsible
for 200 million people, which systemically prevented almost 30% of eligible black patients
from receiving additional care by giving lower risk scores to black patients than white
patients with equal diagnoses [100].

Many studies in forensic science have been conducted in recent years, and some recent
studies are beginning to focus on neural networks [101]. These studies were mainly aimed
at determining the age and sex of postmortem skeletal remains and living people. Age and
gender assessment active, used to identify victims, determine criminal liability or identify
persons without legal documentation [8,102]. There is considerable interest in accelerating
identification procedures, and experts are involved in machine learning in forensic pro-
cedures. They use X-ray images [103–108], MRI images [8,109], photography [90,110,111],
CT scans [112–117] of the head or other bones such as the collarbone, femur, teeth, etc.
and use databases to teach artificial intelligence to identify people’s age or gender. Pham
et al. [113] examined age using the femur and mandible for neuronal networks. The femur
could play a key role in predicting adulthood, especially the shape of the femoral head and
bone densitometry. They used 814 whole-body post-mortem computed tomography (CT)
scans to obtain results: 619 men, 195 women aged 20 to 70 years. They omitted subjects
with fractures. Each CT output was in digital imaging and communication in medicine
(DICOM) format [11,12]. The extracted femur and mandible data were preprocessed to
create a 3D voxel inserted into a neural network model. Using this approach, the mean
absolute error (MAE) of the mandible age identification was 7.07 years, and the MAE calcu-
lated from a femur age determination was 5.74 years. The combination of both approaches
reached an excellent result—MAE = 5.15 years. CT scans were also used for learning and
age determination in a study by Farhadian et al. [115]. AI determined the age learned
from CT scans of 300 subjects aged 14 to 60 years of the canine teeth. In this study, they
compared the methodology of neural networks with a regression model. The MAE for
neural networks was 4.12 years, and the MAE for the regression model was 8.17 years,
which demonstrated the higher accuracy of neural networks. Mauer et al. [102] aimed
to develop a fully automated and computerized method for age estimation based on the
knee’s 3D magnetic resonance imaging (MRI). They had 185 coronal and 404 sagittal MR
images of Caucasian men aged 13 to 21 years. The best result obtained was a MAE of
0.67 ± 0.49 years and an accuracy of 90.9%. Here it can be seen that the group with a minor
age variance more accurately determines the age of the individuals. A similar study was
performed by Stern et al. performed a similar study [109] where 328 MR images were used
for learning neural networks and subsequent age detection. Age was reported with a MAE
of 0.37 ± 0.51 years for the age range of individuals ≤ 18 years.

Several research teams have tried neural network learning based on X-ray
images [103,104,108]. Guo et al. [103] used 10,257 samples of dental orthopantomograms
and, similar to Farhadian et al. [115], compared logistic regression linear models for each
legal age limit (14, 16 and 18 years) with the neural network. The results showed that
neural networks work better (linear regression models: 92.5%, 91.3% and 91.8% and neural
networks: 95.9%, 95.4% and 92.3% success rate for age limits 14, 16 and 18 years). In
Stepanovsky et al. [105] used 976 orthopantomography (662 men, 314 women) of people
aged 2.7 to 20.5 years to learn neural networks. The results were very favorable, and the
average absolute error (MAE) was below 0.7 years for both men and women. Vila-Blanco
et al. [106] used landmarks on the mandible to search for patterns by neural networks. The
age estimate reached an accuracy of 87.8%, and the MAE was only 1.57 years. De Tobel
et al. [107] used panoramic molar panoramic radiographs to estimate age. The accuracy
of the results was, on average, MAE = 0.5. Boedi et al. [108] later conducted a similar
study with similar results. Li et al. [104] used 1875 X-ray images of the pelvis as a basis for
evaluating bone age through deep learning. The age of the people whose X-rays were used
to teach the model was 10 to 25 years. The performance of the model was MAE = 0.94 years.
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More studies modelled gender determination using AI. Bewes et al. [42] used neural
networks for this purpose with a detection accuracy of 95%. However, they trained them on
900 skull scans from CT scans. Oner et al. [114] achieved the same goal by using CT images
of the sternum transmitted to the orthogonal plane for learning neural networks. They
used 422 thin sections of thoracic CT scans (213 females, 209 males) with an age range of
27–60 years. The accuracy of gender prediction was 0.906, and the confidence interval of
94%. The success rate was higher than that achieved by linear models. Etli et al. [116]
compared several methods in the study. They used CT scans with sacral and coccyx metric
parameters of 480 patients. They used one-dimensional discriminant analysis, linear dis-
criminant functional analysis, sequential analysis of discriminant function and multilayer
perceptron neural networks. The maximum accuracy for each method was 67.1% for
one-dimensional discriminant analysis, 82.5% for linear analysis of the discriminant func-
tion, 78.8% for sequential analysis of the discriminant function, and 86.3% for multilayer
perceptron neural networks.

Gender classification was also discussed by Liew et al. [111]. The maximum accuracy
for each method was 67.1% for one-dimensional discriminant analysis, 82.5% for linear
analysis of the discriminant function, 78.8% for sequential analysis of the discriminant
function, and 86.3% for multilayer perceptron neural networks. Gender classification
was also discussed by Liew et al. [111]. They used grayscale images of 200 men and
200 women for analysis. The classification performance reached 98.75% and 99.38% in the
facial databases SUMS and AT&T. To estimate the sex of infants in the study of Ortega
et al. [110] used 2D photographs of the ilium of 135 individuals aged 5 months to 6 years
were used. The accuracy was 59% compared to 61% for the specialist. In addition, Porto
et al. [88] sought to determine the legal age of offenders at 14 and 18 years as Guo et al. [103].
They based on a database of photographs of 18,000 faces of men and women based on
photo anthropometric indices from cephalometric landmarks marked and checked by
forensic experts. The accuracy of age determination by neural networks was 0.72 with an
age interval of 5 years and for the estimation of the age group higher than 0.93 and 0.83 for
the threshold values of 14 and 18 years.

It is almost unbelievable how accurately neural networks can determine age or gender
compared to commonly used methods. Therefore, we emphasize their use in forensic
practice [9,46,50,117].

Regarding the Skeletal age estimation for forensic purposes, we consider ourselves
useful for the direction of the 3D CNN on particular areas of the head and neck. Various
experts published research on age estimation by measuring open apices in teeth, stage
of teeth eruption, frequently of third molars or canine tooth/pulp ratio [6,17,18,20,21,23–
25,27,29,31]. In general, teeth are frequently used for age assessment, but they are not the
only structures in the skull to be considered. It is known that the shape of the frontal sinus
can be an essential tool in personal forensic identification and is linked together with the
cranial base to growth changes that can be evaluated [6,118]. Another typical location
for skeletal age assessment in the head and neck X-ray diagnostics region is the stage of
cervical vertebrae maturation [23,119]. Deep learning has been already implemented in
this area [83]. Extensive research is published regarding skeletal age expert estimation
Pinchi et al. [120–126] mainly combines dental and skeletal findings. If the 3D CNN fails to
identify these valuable areas, we still have the opportunity to direct the focus on these areas.

Regarding forensic medico-legal aspects, the perspective on natural development
estimated by AI algorithms is always relevant, especially in the situation of trauma or other
damage that conflicted with this estimated development. AI is now used to evaluate CT
scans of lungs and to predict the deterioration of COVID-19 patients in the emergency
department [127–129].

In this case, 3D CNN algorithms can automatically evaluate not only hard-tissue
structures and search for inapparent damage that could have been responsible for a sudden
death incident [91,130].
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1.3. Artificial Intelligence Implementation in 3D Cephalometric Landmark Identification

Analysis of complex cranial and facial structures is a domain of orthodontics. Histori-
cally they are fundamental for proper treatment planning, and they represent lines, angles,
planes on the axilla-facial structures identifiable, especially on the X-ray (typically lateral
X-ray). There is massive research regarding cephalometric parameters and their values.
Observer defines the points, and their interobserver error are the main weakness of cephalo-
metric analysis (Figure 6). Anthropometry in Forensic Medicine and Forensic Science is
frequently used for sex and biological age determination and other purposes [129–131].

As the various cephalometric parameters (angles, ratios and distances) were well
researched, and some are proven to be related to age, sex or growth, they are a frequent
springboard for many research studies focused on facial parameters. Implementation of AI
in cephalometric analysis has been published [132–136]. The question is whether the 3D
CNN trained networks will find even better regions and soft- and hard-tissue features on
CBCTs when autonomously searching for links between voxel structures and the age or
sex. Either way, the reliable automatized 3D cephalometric algorithm precisely identifying
particular points with extreme repeatability would be a helpful tool not intended to replace
humans in cephalometric points identifications. However, the human error is impossible
to cancel completely as the interobserver error.
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1.4. Artificial Intelligence Implementation in Soft-Tissue Face Prediction from Skull and Vice Versa

Reconstruction of the face from the skull is an age-old desire of forensic experts.
Current methods of not implementing AI are very limited. Prediction of soft tissues
according to the hard tissues of the skull and vice versa can be significantly improved
upon big-data training of 3D CNN with supplementary metadata about age, sex, BMI or
ethnicity. New algorithms to perform facial reconstruction from a given skull has forensic
application in helping the identification of skeletal remains when additional information
is unavailable [29,64,66–70,72,73,85,86,88,89,92,137]. Implementation of 3D CNN can also
unintentionally open pandora box of guided improving the morphology of the facial soft-
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tissues. From a socio-psychological standpoint, this is regarded as an important therapeutic
goal in modern orthodontic treatments. Currently, many of the algorithms implemented
in commercially available software present ability to predict profile changes grounded on
the incorrect assumption that the amount of movement of hard-tissue and soft-tissue has a
proportional relationship [82].

The beauty industry has seen rapid growth in multiple countries, and due to its appli-
cations in entertainment, the analysis and assessment of facial attractiveness have received
attention from scientists, physicians, and artists because of digital media, plastic surgery,
and cosmetics. An analysis of techniques is used to assess facial beauty that considers facial
ratios and facial qualities as elements to predict facial beauty [81,82,138–140]. A popular
and famous free app using AI is FaceApp, which uses neural networks to enhance, age
or otherwise change 2D digital photos of users uploading them using this application
(Figure 7). Using the 3D CNN approach was not yet implemented despite iPhones having
a 3D lidar scanner to acquire a 3D soft-tissue scan of the user’s face. From a forensic aspect,
this era of digital 2D face manipulation brought deep-fake videos and images. Detecting
manipulated facial images and videos is an increasingly important topic in digital media
forensics [118,141]. Any face can be used in the fake video, or unlimited numbers of nearly
authentic pictures, including fake social media profiles, can be created. AI is used in
forensic evaluation for facial forgery detection and manipulated region localization [118].

Healthcare 2021, 9, x  9 of 25 
 

 

From a socio-psychological standpoint, this is regarded as an important therapeutic goal 
in modern orthodontic treatments. Currently, many of the algorithms implemented in 
commercially available software present ability to predict profile changes grounded on 
the incorrect assumption that the amount of movement of hard-tissue and soft-tissue has 
a proportional relationship [82]. 

The beauty industry has seen rapid growth in multiple countries, and due to its ap-
plications in entertainment, the analysis and assessment of facial attractiveness have re-
ceived attention from scientists, physicians, and artists because of digital media, plastic 
surgery, and cosmetics. An analysis of techniques is used to assess facial beauty that con-
siders facial ratios and facial qualities as elements to predict facial beauty [81,82,138–140]. 
A popular and famous free app using AI is FaceApp, which uses neural networks to en-
hance, age or otherwise change 2D digital photos of users uploading them using this ap-
plication (Figure 7). Using the 3D CNN approach was not yet implemented despite 
iPhones having a 3D lidar scanner to acquire a 3D soft-tissue scan of the user’s face. From 
a forensic aspect, this era of digital 2D face manipulation brought deep-fake videos and 
images. Detecting manipulated facial images and videos is an increasingly important 
topic in digital media forensics [118,141]. Any face can be used in the fake video, or un-
limited numbers of nearly authentic pictures, including fake social media profiles, can be 
created. AI is used in forensic evaluation for facial forgery detection and manipulated re-
gion localization [118]. 

 
Figure 7. Example of CNN use of the FaceApp AI application to render the face mapped on CBCT to look younger or 
older. The algorithms changed just the texture and not the 3D mask, however this is probably only a matter of time. 2D 
face morphing based on AI or face swapping in popular videos are available and popular already a couple of years. Orig-
inal face is the 2nd one. 

This paper most complex AI application is the final 5th theme—“Facial growth vec-
tors prediction”. The authors of this paper addressed it for various reasons. Firstly, it is 
fundamentally different from the first four themes. Secondly, it requires the most complex 
implementation of AI strategies. To our knowledge, this is only the second paper in the 
world that handles the problem of facial growth prediction with ML methods and abso-
lutely the first paper to consider a 3D CNN for facial growth predictions. 

Prediction of natural growth is compared to typically forensic topics such as human 
remains reconstruction and identification or age and sex determination rather less familiar 
topic. Mainly because despite numerous research attempts to predict facial growth, a sat-
isfactory method has not been established yet, and the problem still poses a challenge for 
medical experts [142–144]. Predicting natural growth and later ageing is relevant for or-
thodontic therapy planning and from a forensic aspect. Any damage to the head and neck 
region that would affect otherwise natural growth or simple ageing could be evaluated. 
The effect of such a trauma could be in the future forensically quite accurately evaluated. 

In 1971 Hirschfeld and Moyers published an article named “Prediction of craniofacial 
growth: the state of the art” [144]. This was one of the first attempts for facial growth 
predictions. The authors concluded that there are many reasons why they fail to predict 

Figure 7. Example of CNN use of the FaceApp AI application to render the face mapped on CBCT to look younger or older.
The algorithms changed just the texture and not the 3D mask, however this is probably only a matter of time. 2D face
morphing based on AI or face swapping in popular videos are available and popular already a couple of years. Original
face is the 2nd one.

This paper most complex AI application is the final 5th theme—“Facial growth vectors
prediction”. The authors of this paper addressed it for various reasons. Firstly, it is
fundamentally different from the first four themes. Secondly, it requires the most complex
implementation of AI strategies. To our knowledge, this is only the second paper in
the world that handles the problem of facial growth prediction with ML methods and
absolutely the first paper to consider a 3D CNN for facial growth predictions.

Prediction of natural growth is compared to typically forensic topics such as human
remains reconstruction and identification or age and sex determination rather less familiar
topic. Mainly because despite numerous research attempts to predict facial growth, a
satisfactory method has not been established yet, and the problem still poses a challenge
for medical experts [142–144]. Predicting natural growth and later ageing is relevant for
orthodontic therapy planning and from a forensic aspect. Any damage to the head and neck
region that would affect otherwise natural growth or simple ageing could be evaluated.
The effect of such a trauma could be in the future forensically quite accurately evaluated.

In 1971 Hirschfeld and Moyers published an article named “Prediction of craniofacial
growth: the state of the art” [144]. This was one of the first attempts for facial growth
predictions. The authors concluded that there are many reasons why they fail to predict
craniofacial growth, and some they named persisted until today. They expressed doubts
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that we have not always measured the right thing. They also pointed out the lack of
biological meaning for many traditional cephalometric measures. They have also pointed
to the heritability of attained growth in the face and predicted the future importance of
craniofacial genetics. The future that comes proved them correct in many aspects. Since
these first attempts to predict the facial growth direction over half of a century ago, we did
not become much better in facial growth prediction [142]. The complexity of the problem
is challenging.

The only study that was focused on the prediction of the facial growth direction
with Machine Learning methods and has been published so far is a paper with its pre-
print [90,145] from 2021 by Stanislaw Kazmierczak et al. The outcomes of this paper are not
impressive regarding facial growth prediction, albeit inspiring in the method of evaluation.
The authors of this novel paper [94] performed feature selection and pointed out the
attribute that plays a central role in facial growth. Then they performed data augmentation
(DA) methods. This study is discussed in more detail later in this paper.

2. 3D Convolutional Neural Networks and Methods of Their Use in
Forensic Medicine
2.1. Hardware and Software Used

CBCT scans analyzed for this paper were made on one machine: i-CAT™ FLX V17 with
the Field of View (FOV) of 23 cm × 17 cm with technical parameters and settings Table 1.

Table 1. Full-head CBCT scans were mate with i-CAT™ FLX V17 with these settings.

Parameter Setting

Sensor Type Amorphous Silicon Flat Panel Sensor with Csl Scintillator
Grayscale Resolution 16-bit

Voxel Size 0.3 mm,
Collimation Electronically controlled fully adjustable collimation
Scan Time 17.8 s

Exposure Type Pulsed
Field-of-View 23 cm × 17 cm

Reconstruction Shape Cylinder
Reconstruction Time Less than 30 s

Output DICOM
Patient Position Seated

Medical software used for DICOM data processing and analysis was Invivo™ 6 from
Anatomage Inc., Silicon Valley, Thomas Road Suite 150, Santa Clara, CA 95054, USA.

Software for the AI solution base we have used the Python programming language
along with 3 deep learning libraries—TensorFlow 2, PyTorch and MONAI. As for the
hardware, the whole AI system is powered by multiple GPUs.

2.2. Main Tasks Definitions

Task 1—Age estimation from whole 3D CT scan image

Definition: the task is to estimate the approximate age of a person from a whole head
3D CBCT scan

Proposed method: build regression model represented by a 3D deep neural network
that has the current state of the art network architecture as a backbone

Metrics: Mean Absolute Error (MAE) and Mean Squared Error (MSE) (see Section
Evaluation)

Task 2—Sex classification from thresholded soft and hard tissues

Definition: the task is to classify input 3D CBCT scans (whole head or experimentally
segmented parts) into one of 2 predefined categories—female and male

Proposed method: build classification model represented by 3D deep neural network
based on convolutional layers and outputs class probabilities for both targets
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Metrics: Accuracy and Confusion Matrix (CM) (other metrics such as precision, recall
and F1 score will be evaluated in a later phase)

Task 3—Automatization of cephalometric measurements

Definition: the task is to create an automated system able to tag cephalometric land-
marks on whole head 3D CT scan

Proposed method: build object detection model based on 3D neural network that
estimates cephalometric measurements automatically

Metrics: Mean Absolute Error (MAE) and Mean Squared Error (MSE) (see Section
Evaluation)

Task 4—Soft-tissue face prediction from skull and vice versa

Definition: the task is to create an automated system that predicts the distance of the
face surface from the bone surface according to the estimated age and sex. 3D CNN to be
trained on whole-head CBCTs of soft-tissue and hard-tissue pairs. *CBCTs with trauma
and other unnatural deformations shall be excluded.

Proposed method: build a generative model based on Generative Adversarial Network
that synthesizes both soft and hard tissues

Metrics: the slice-wise Frechet Inception Distance (see Section Evaluation)

Task 5—Facial growth prediction

Definition: the task is to create an automated system that predicts future morphological
change in defined time for the face’s hard- and soft tissues. This shall be based on two
CBCT input scans of the same individual in two different time points. The second CBCTs
must not be deformed with therapy affecting morphology or unnatural event. This already
defines the extremely challenging condition. There is a high possibility of insufficient
datasets and the necessity of multicentric cooperation for successful training of 3D CNN
on this task.

Proposed method: In this final complex task, the proposed method builds on previous
tasks. We strongly recommend adding metadata layers on gender, biological age and
especially genetics or letting the CNN determine them by itself. We suggest disregarding
the established cephalometric points, lines, angles and plains as these were defined in
regards to lateral X-ray, emphasising good contrast of the bone structures with high
reproducibility of the point and not necessarily with focus on particular structures most
affected by growth. We suggest letting3D CNN establish its observations and focus areas.

We also suggest allowing 3D CNN analysis of genetic predisposition in a smart way:
by analysis of possibly CBCT of the biological parents or preferably non-invasive face-scan
providing at least facial shell data.

2.3. The Data Management

The processing of data in deep learning is crucial for the sufficient result of any
neural network. Currently, most of the implementations depend on the dominant model-
centric approach to AI, which means that developers spend most of their time improving
neural networks.

For medical images, various preprocessing steps are recommended. In most cases, the
initial steps are following (Figure 8):

1. Loading DICOM files—the proper way of loading the DICOM file ensures that we
will not lose the exact quality

2. Pixel values to Hounsfield Units alignment—the Hounsfield Unit (HU) measures
radiodensity for each body tissue. The Hounsfield scale that determines the values
for various tissues usually ranges from −1000 HU to +3000 HU, and therefore, this
step ensures that the pixel values for each CT scan do not exceed these thresholds.

3. Resampling to isomorphic resolution—the distance between consecutive slices in
each CT scan defines the slice thickness. This would mean a nontrivial challenge for
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the neural network. The thickness depends on the CT device setup, and therefore it is
necessary to create equally spaced slices.

4. [Optional] Specific part segmentation—each tissue corresponds to a specific range in
the Hounsfield units scale, and in some cases, we can segment out specific parts of
the CT scan by thresholding the image.

5. Normalization and zero centering—these two steps ensure that the input data that are
feed into the neural network are normalized into [0, 1] interval (normalization) and
are zero centered (achieved by subtracting the mean value of the image pixel values).
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Preprocessing the image dataset before feeding the CNN or other classifiers is im-
portant for all imaging modalities. Several preprocessing steps are recommended for the
medical images before they are fed as input to the deep neural network model, such as (1)
artefact removal, (2) normalization, (3) slice timing correction (STC), (4) image registration
and (5) bias field correction. While all the steps (1) to (5), help in acquiring reliable results,
STC and image registration are very important in the case of 3D medical images (espe-
cially nMR and CT images). Artefact removal and normalization are the most performed
preprocessing steps across the modalities [146].

2.4. Dataset Specification

This study comprises approximately 500 iCAT CBCT scans of human heads. Each
CBCT scan has the spatial resolution of 768 × 768 pixels and the default device pixel
spacing is [0.3 × 0.3 × 0.3] millimeters.

The subjects are split by sex, with the ratio of 6:4 for female/male ranging from 8 to
72 years. The majority (90%) of the subjects are between 18 and 36 years.

These dataset parameters were used in suggested considerations for 3D CNN applica-
tions concepts stated in Section 2.2 Main tasks definitions.

2.5. Deep Learning Approach
2.5.1. Age Estimation Using 3D Deep Neural Networks

In recent research [7,14] AI-based age estimation has proven to be a successful com-
petitor to classical approaches from forensic medicine. The aim of this study is to create an
automated system for age estimation from 3D cranial CT scans. There is an expectation that
particular parts of the skull have a decisive impact on the final prediction, and therefore
we propose a solution that includes two stages:

Age estimation from dense tissue layer—we use whole skull CT scan as an input
into the 3D convolutional neural network, which would serve as a regression model that
estimates the continuous values of age for each CT scan separately.

[Experimental] Visualization of network activations that represent regions of interest—
neural network’s intermediate layers often serve as a an excellent explaining tool in order
to find visual explanation heat maps [113] that highlight regions that affect neural network
the most.
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As for the specific neural network architecture, we derive the backbone part from
the current state of the art research. We primarily consider the EfficientNet [147] and
DenseNet [148] with their implementations adapted to 3D inputs.

Both architectures base includes convolutional layers that serve as feature extraction
blocks to obtain specific indicators from input x represented as a loaded DICOM image.
These extracted feature maps are then forwarded to a fully-connected layer that outputs
the single age estimation value:

ŷ = F C(CL(x)) (1)

where CL is an intermediate block consisting of convolutional layers, FC is a fully-connected
top part of the network that outputs a single floating-point value.

2.5.2. Sex Classification Using 3D Deep Neural Networks

The determination of sex from human remains is a challenging task in various fields
such as archeology, physical anthropology and forensics because there is no proven method
that exactly leads to correct classification.

The use of AI in this field is highly desirable as manual determination is often very
complex and time-consuming. The objectiveness of the deep learning approach can also
eliminate human bias leading to reliable software products.

The sex classification is carried out similarly to the previous age estimation approach,
but this task´s objective is to classify the final outputs from the neural network into 2
classes—female and male. For this purpose, we use the softmax activation function as a
last operation to obtain class probabilities for both targets. The computation is following:

ŷ = α (FC(CL(x))) (2)

where CL and FC represent the convolutional and fully-connected blocks of the neural
network.

The experimental part would include the input x consisting of 2 separate inputs—one
will be the segmented skull and the other will be the segmented soft tissue (skin) which is
achieved by setting different thresholds for segmentation preprocessing step.

2.5.3. Automatization of Cephalometric Analysis

The cephalometric analysis aims to set landmarks of CT(CBCT) scans which serve as
an important factor in the alignment of a skull. These measurements can also be used as
surgery planning parameters or pre-and post-surgery comparisons [149,150].

The idea behind this approach is to use 3D convolutional neural networks for fully
automated cephalometric analysis. Networks aim to output probabilistic estimations for
each cephalometric landmark and then create a projection of these estimations into a real
skull CT scan (Figure 9).

Two approaches come into consideration:

1. Landmarks estimation in whole CT scan image—in this approach, the probability
estimation for all landmarks is assigned for each pixel in the CT scan

2. Landmarks estimation for selected regions of interest—assuming that each landmark
corresponds to a specific area we could add another preprocessing step—slice cut
where each slice would be a template-based region fed into a neural network. We
can determine the expected landmark detection for each slice independently, which
should help in the final model performance
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2.5.4. Neural Networks Architectures and Clinical Data Pre-Processing

Recently, CNNs have been successfully applied in widespread medical image analysis
and achieved significant benefits [9,59,115,141,151]. We investigated the design of a 3D
CNN with backbones based on Resnet, MobileNet, and SqueezeNet models, which have
proven to be the most efficient and widely used in various applications. One of the
preferable architectures was based on 3D Resnet34 for the mandible segmentation in
research of Pham et al. 2021 [113].

We have considered various approaches:

• Use whole 3D CT scan as an input into the neural network and output one value for
age estimation as floating value and one for sex classification as a binary value.

• Segment out the mandible and use it as input into the neural network. Output is the
same as in the previous task.

• (experimental) Use a whole 3D CT scan to input into the neural network and output
multiple values representing specific skull features (as discussed at the meeting last
week). Then use these values as an input into another machine learning model to
estimate age and gender.

Suppose we take an example of mandible segmentation from DICOM. The first step is
to have DICOM files loaded and then, added any missing metadata; particularly, the slice
thickness, that is, the pixel size in the Z direction, which was obtained from the DICOM
file. The unit of measurement in CBCT scans is the Hounsfield Unit (HU), which is a
measure of radiodensity. Thus, HU shall be converted to pixel values. Subsequently, it
shall be resampled to an isomorphic resolution to remove the scanner resolution. The slice
thickness refers to the distance between consecutive slices (when viewing a 3D image as a
collection of 2D slices) and varies between scans.

The final preprocessing step is bone segmentation and pixel normalization. Mandible
bone extraction is complex because the surrounding bone has to be removed. An image
binary thresholding and morphological opening operation for each slice shall be applied.

The morphological opening operation is an essential technique in image processing,
achieved by erosion and the dilation of an image. This technique helps to remove small
objects while retaining more significant parts from an image. To obtain the mandible bone
part, the largest areas after morphological opening shall be kept. Finally, all the slices shall
be stacked together to obtain the mandible voxels.

2.6. Evaluation

All approaches are evaluated in a classical machine learning manner—the dataset
is split into three parts train, validation and test split. The test split mainly serves as a
benchmarking set in order to compare our results with other approaches.

2.6.1. Regression Models

When dealing with regression models in the deep learning field, we usually take
into consideration two main regression metrics—Mean Absolute Error (MAE) and Mean
Squared Error (MSE). Both metrics calculate the error between predicted y and ground
truth labels denoted as y.
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MAE is defined as the mean of the sum of absolute differences between y and ŷ for
each pixel:

MAE =
1
n ∑(y − ŷ ) (3)

while MSE is defined as mean of the squares of the errors, where error is defined as
difference between y and ŷ:

MSE =
1
n ∑(y − ŷ )2 (4)

the regression tasks are primarily related to Task 1—age estimation and Task 3—automated
cephalometric analysis.

2.6.2. Classification Models

In order to evaluate the classification task, which in our case is represented by Task 2—
sex classification, we need to consider the current distribution of male and female samples
in our dataset. As the distribution is approximately 6:4 (almost equal), we can calculate the
overall accuracy and corresponding confusion matrix (CM). In the later phase, we can also
test other metrics such as precision, recall or F1 score.

The calculation of accuracy is defined just as the number of correct predictions divided
by the total number of predictions. More interesting for use would be the CM. It is a tabular
visualization of a model prediction for each class separately (Figure 10).
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3. Resulting Summary of Proposed Approach for Utilization of 3D CNN in
Investigated Aspects of Forensic Medicine

This chapter is presenting summary outcome from the detailed research in previous
sections of this paper. Investigation of 3D CNN modalities, their features, advantages and
disadvantages and also clinical requirements for implementation in the field of forensic
medicine has led to these proposed designs (guide) of future forensic research based on 3D
CNN analyses.

Table 2 presents condensed summary of recommended approach for 3D CNN imple-
mentations in various forensic topics. Expected input data is the minimal dataset of 500
full-head CBCT scans, described in more detail in previous sections.
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Table 2. Guide of recommended designs for 3D CNN implementations in various forensic topics.

Area of Forensic Research Proposed Method Metrics

Biological age determination Regression model by 3D deep CNN MAE, MSE

Sex determination Deep 3D CNN—conv.layers and outputs class probabilities
for both targets

CM such as precision, recall and
F1 score

3D cephalometric analysis Object detection model on 3D CNN that auto.estimates
cephalom.measurements MAE, MSE

Face prediction from skull model on Generative Adversarial Network that synthesize
soft/hard tissues

slice-wise Frechet Inception
Distance

Facial growth prediction Based on methods stated above 1 another 1

1 Method and metrics are not proposed from the current state of knowledge for Facial growth prediction and need further consideration
upon clinical experience from 3D CNN applications.

4. Discussion

The authors of this paper have no doubts that 3D CNN, as another evolutionary step
in advanced AI, will be with practical implementation a watershed moment in forensic
medicine fields dealing with morphological aspects.

With considered data input as CT or CBCT (DICOM), the implementation of 3D CNN
algorithms opens unique opportunities in areas of:

• Biological age determination
• Sex determination
• Automatized, precise and reliable:

◦ 3D cephalometric analysis of soft and hard tissues
◦ 3D face prediction from the skull (soft-tissues) and vice versa
◦ Search for hidden damage in post-mortem high-resolution CT images
◦ Asymmetry and disproportionality evaluation

• Predictions of:

◦ Hard-tissue and soft tissue growth
◦ Aging in general
◦ Ideal face proportions respecting golden ratio proportions

• 3D reconstructions of:

◦ Missing parts of the skull or face
◦ 3D dental fingerprints for identification with 2D dental records

First clinical applications of 3D CNN have shown [91,113,115,126,150] that the algo-
rithms can be successfully used in CT analysis and identifications of specific diseases such
as Alzheimer or COVID19 as these have a specific representation on the X-ray. With a high
probability bordering on certainty, the future development of advanced 3D CNN will result
in sophisticated automatized algorithms processing 3D diagnostic data similarly to the
trained human eye of the forensic expert. These algorithms will automatically process 3D
diagnostic data such as CT or NMR, searching for patterns they were trained to see. They
will recognize unseen details of hidden damage or representations of rare diseases when
trained to do so. In the next level, they will approximate the finding to become an ultimate
autopsy tool for even unknown diseases [36,113,126,152].

The limitation of this paper is that practical examination of the proposed directions
for 3D CNN implementations will require some time. Currently, there are many different
3D CNN in development, and actually, this is where most of the research activity is carried
out [151,153–155].

Another limitation of this study is the high level of dynamics of research and develop-
ment in this field of advanced AI implementations. The velocity in training the 3D CNN is
high, and it is possible that a better approach can be recognized in the process.
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Interesting limitation of 3D CNN usage is the known fact [99] the any AI may become
biased in the same way as a human forensic expert does and not only in the context of the
criminal trial. This depends on the source data used for AI training [99] and is elaborated in
more context in Section 1.2. On the other hand, in many forensic cases we need to achieve
highest probabilities on the boundary with certainty. Here a respected and internationally
recognized algorithm might become a useful tool for achieving an unprecedented levels
of probability superior to human evaluation. However, this development is a possibility,
not certainty.

The final limitation of implementing the suggested designs for 3D CNN implementa-
tion for forensic researchers is the physical and legal availability of big data necessary for
3D CNN training. This can be solved with multicentric cooperation.

There already exist many CNN processing DICOM data and are available for
use [11,12,14]. Researchers this year have already achieved significant milestones in multi-
class CBCT image segmentation for orthodontics with Deep Learning. They trained and
validated a mixed-scale dense convolutional neural network for multiclass segmentation
of the jaw, the teeth, and the background in CBCT scans [153]. This study showed that mul-
ticlass segmentation of jaw and teeth was accurate, and its performance was comparable to
binary segmentation. This is important because this strongly reduces the time required to
segment multiple anatomic structures in CBCT scans.

In our efforts, we have faced the issue of CBCT scan distortion caused by metal
artefacts (mostly by amalgam dental fillings). Fortunately, a novel coarse-to-fine segmen-
tation framework was recently published based on 3D CNN and recurrent SegUnet for
mandible segmentation in CBCT scans. Moreover, the experiments indicate that the pro-
posed algorithm can provide more accurate and robust segmentation results for different
imaging techniques compared to the state-of-the-art models with respect to these three
datasets [156].

As there already exists a fully automated method for 3D individual tooth identification
and segmentation from dental CBCT [154], these algorithms can be combined.

The most complex area covered by this paper is a 3D prediction of growth and in a
wider perspective of ageing. It is known that this process is laden with various variables
including hormonal (sex) [142,143,157–159] and functional aspects (bad habits) [160–162],
as well as genetics [163–166].

The only published study focused on predicting the facial growth direction with the
implementation of Machine Learning methods is from 2021 Kazmierczak et al. 2021 [90,145].
The outcomes of this paper are limited in regards to facial growth prediction. The authors
of this original paper did feature selection and pointed the attribute that plays a central
role in facial growth. Then they performed data augmentation (DA) methods.

The principal weakness of this study is not the method but probably the input. The
authors used only 2D lateral X-rays of various qualities and sizes. In addition, the eval-
uation was performed only in one 2D projection. The researchers focused on the angle
between the Sella—Nasion line and the Mandibular plane formed by connecting the point
gonion to gnathion at the inferior border of the mandible. They engaged an orthodontic
expert to identify approximately 20 characteristic anatomic landmarks on LC to assess a
subject. These were assessed manually on the lateral cephalogram. Some of the landmarks
define angles which, from the clinical perspective, have special significance. As far as facial
growth direction is concerned, there are no standardized measurements available in the
literature to evaluate. The focus of supervised ML with a concentration on established
cephalometric parameters might be wrong. It is the fact that they were originally chosen
as well distinguished points on lateral X-ray with a priority of high reproducibility. So as
considered by Hirschfeld and Moyers more than 50 years ago, we might be looking in the
wrong places. Prediction of the change of SN/MP also oversimplifies the problem. The
questions from the past remain, and facial growth prediction remains a complex mystery.
The application of 3D CNN on this most complex task is described in more technical details
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and discussed later in the context of addressing other variables such as biological age, sex
and genetics.

5. Conclusions

In conclusion, we can assume that the 3D CNN, as an advanced AI feature, will shift
the paradigm in all areas researched in this paper. Forensic experts are now guided to step
into the era of artificial intelligence as a helpful tool for research and possibly even future
routine forensic analyses. Proposed methods and metrics for 3D CNN application on par-
ticular forensic topics (Biological age determination, Sex determination, 3D cephalometric
analysis and Face prediction from skull), summarized in resulting Table 2, can be used
as the initial guide. Forensic 3D reconstructions using artificial intelligence will be new,
exciting and practically usable methods.

The implementation of advanced AI still requires interdisciplinary cooperation, albeit,
with understanding, it can be used to crack unsolved mysteries. It definitely is not a trend
that can be ignored.
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95. Kotěrová, A.; Navega, D.; Štepanovský, M.; Buk, Z.; Brůžek, J.; Cunha, E. Age Estimation of Adult Human Remains from Hip

Bones Using Advanced Methods. Forensic Sci. Int. 2018, 287, 163–175. [CrossRef]
96. Chia, P.Y.; Coleman, K.K.; Tan, Y.K.; Ong, S.W.X.; Gum, M.; Lau, S.K.; Lim, X.F.; Lim, A.S.; Sutjipto, S.; Lee, P.H.; et al. Detection of

Air and Surface Contamination by SARS-CoV-2 in Hospital Rooms of Infected Patients. Nat. Commun. 2020, 11, 2800. [CrossRef]
97. Singh Sankhla, M.; Kumar, R.; Jadhav, E.B. Artificial Intelligence: Advancing Automation in Forensic Science & Criminal

Investigation. J. Seybold Rep. 2020, 15, 2064–2075.
98. Yadav, J.; Kaur, A. Artificial Neural Network Implementation In Forensic Science. Eur. J. Mol. Clin. Med. 2020, 7, 5935–5939.
99. Livingston, M. Preventing Racial Bias in Federal AI. JSPG 2020, 16. [CrossRef]
100. Obermeyer, Z.; Powers, B.; Vogeli, C.; Mullainathan, S. Dissecting Racial Bias in an Algorithm Used to Manage the Health of

Populations. Science 2019, 366, 447–453. [CrossRef] [PubMed]
101. Jarrett, A.; Choo, K.R. The Impact of Automation and Artificial Intelligence on Digital Forensics. WIREs Forensic Sci. 2021.

[CrossRef]
102. Sykes, L.; Bhayat, A.; Bernitz, H. The Effects of the Refugee Crisis on Age Estimation Analysis over the Past 10 Years: A 16-Country

Survey. Int. J. Environ. Res. Public Health 2017, 14, 630. [CrossRef] [PubMed]
103. Guo, Y.C.; Han, M.; Chi, Y.; Long, H.; Zhang, D.; Yang, J.; Yang, Y.; Chen, T.; Du, S. Accurate Age Classification Using Manual

Method and Deep Convolutional Neural Network Based on Orthopantomogram Images. Int. J. Leg. Med. 2021, 135, 1589–1597.
[CrossRef]

104. Li, Y.; Huang, Z.; Dong, X.; Liang, W.; Xue, H.; Zhang, L.; Zhang, Y.; Deng, Z. Forensic Age Estimation for Pelvic X-ray Images
Using Deep Learning. Eur. Radiol. 2019, 29, 2322–2329. [CrossRef]

105. Štepanovský, M.; Ibrová, A.; Buk, Z.; Velemínská, J. Novel Age Estimation Model Based on Development of Permanent Teeth
Compared with Classical Approach and Other Modern Data Mining Methods. Forensic Sci. Int. 2017, 279, 72–82. [CrossRef]

http://doi.org/10.3390/ijerph17124424
http://doi.org/10.3390/jpm11040310
http://www.ncbi.nlm.nih.gov/pubmed/33923480
http://doi.org/10.1007/s11042-020-09278-7
http://doi.org/10.1007/s10462-019-09765-w
http://doi.org/10.1109/TIFS.2017.2746062
http://doi.org/10.1145/3326172.3326222
http://doi.org/10.3390/e21121222
http://doi.org/10.1016/j.jvlc.2009.01.011
http://doi.org/10.1109/TPAMI.2010.36
http://doi.org/10.1016/j.neucom.2014.03.074
http://doi.org/10.1007/s00414-020-02346-5
http://www.ncbi.nlm.nih.gov/pubmed/32820357
https://arxiv.org/pdf/2110.02316.pdf
http://doi.org/10.1007/s41870-021-00752-5
http://doi.org/10.1007/s00371-019-01767-7
http://doi.org/10.3238/arztebl.2016.0044
http://doi.org/10.1016/j.legalmed.2009.09.001
http://doi.org/10.1016/j.forsciint.2018.03.047
http://doi.org/10.1038/s41467-020-16670-2
http://doi.org/10.38126/JSPG160205
http://doi.org/10.1126/science.aax2342
http://www.ncbi.nlm.nih.gov/pubmed/31649194
http://doi.org/10.1002/wfs2.1418
http://doi.org/10.3390/ijerph14060630
http://www.ncbi.nlm.nih.gov/pubmed/28608845
http://doi.org/10.1007/s00414-021-02542-x
http://doi.org/10.1007/s00330-018-5791-6
http://doi.org/10.1016/j.forsciint.2017.08.005


Healthcare 2021, 9, 1545 23 of 25

106. Vila-Blanco, N.; Varas-Quintana, P.; Aneiros-Ardao, Á.; Tomás, I.; Carreira, M.J. Automated Description of the Mandible Shape by
Deep Learning. Int. J. Comput. Assist. Radiol. Surg. 2021, 1–10. [CrossRef]

107. De Tobel, J.; Radesh, P.; Vandermeulen, D.; Thevissen, P.W. An Automated Technique to Stage Lower Third Molar Development
on Panoramic Radiographs for Age Estimation: A Pilot Study. J. Forensic Odonto-Stomatol. 2017, 35, 42–54.

108. Merdietio Boedi, R.; Banar, N.; De Tobel, J.; Bertels, J.; Vandermeulen, D.; Thevissen, P.W. Effect of Lower Third Molar Segmen-
tations on Automated Tooth Development Staging Using a Convolutional Neural Network. J. Forensic Sci. 2020, 65, 481–486.
[CrossRef] [PubMed]

109. Štern, D.; Payer, C.; Urschler, M. Automated Age Estimation from MRI Volumes of the Hand. Med. Image Anal. 2019, 58.
[CrossRef] [PubMed]

110. Ortega, R.F.; Irurita, J.; Campo, E.J.E.; Mesejo, P. Analysis of the Performance of Machine Learning and Deep Learning Methods
for Sex Estimation of Infant Individuals from the Analysis of 2D Images of the Ilium. Int. J. Leg. Med. 2021, 2659–2666. [CrossRef]
[PubMed]

111. Liew, S.S.; Khalil-Hani, M.; Ahmad Radzi, S.; Bakhteri, R. Gender Classification: A Convolutional Neural Network Approach.
Turk. J. Electr. Eng. Comput. Sci. 2016, 24, 1248–1264. [CrossRef]

112. Kasar, M.M.; Bhattacharyya, D.; Kim, T. Face Recognition Using Neural Network: A Review. Int. J. Secur. Its Appl. 2016, 10,
81–100. [CrossRef]

113. Pham, C.V.; Lee, S.J.; Kim, S.Y.; Lee, S.; Kim, S.H.; Kim, H.S. Age Estimation Based on 3D Post-Mortem Computed Tomography
Images of Mandible and Femur Using Convolutional Neural Networks. PLoS ONE 2021, 16, e0251388. [CrossRef]

114. Oner, Z.; Turan, M.K.; Oner, S.; Secgin, Y.; Sahin, B. Sex Estimation Using Sternum Part Lenghts by Means of Artificial Neural
Networks. Forensic Sci. Int. 2019, 301, 6–11. [CrossRef] [PubMed]

115. Farhadian, M.; Salemi, F.; Saati, S.; Nafisi, N. Dental Age Estimation Using the Pulp-to-Tooth Ratio in Canines by Neural Networks.
Imaging Sci. Dent. 2019, 49, 19–26. [CrossRef]

116. Etli, Y.; Asirdizer, M.; Hekimoglu, Y.; Keskin, S.; Yavuz, A. Sex Estimation from Sacrum and Coccyx with Discriminant Analyses
and Neural Networks in an Equally Distributed Population by Age and Sex. Forensic Sci. Int. 2019, 303, 109955. [CrossRef]

117. Chen, X.; Lian, C.; Deng, H.H.; Kuang, T.; Lin, H.Y.; Xiao, D.; Gateno, J.; Shen, D.; Xia, J.J.; Yap, P.T. Fast and Accurate
Craniomaxillofacial Landmark Detection via 3D Faster R-CNN. IEEE Trans. Med. Imaging 2021. [CrossRef] [PubMed]

118. Iyer, T.J.; Rahul, K.; Nersisson, R.; Zhuang, Z.; Joseph Raj, A.N.; Refayee, I. Machine Learning-Based Facial Beauty Prediction and
Analysis of Frontal Facial Images Using Facial Landmarks and Traditional Image Descriptors. Comput. Intell. Neurosci. 2021, 2021.
[CrossRef]

119. Baccetti, T.; Franchi, L.; McNamara, J.A. The Cervical Vertebral Maturation (CVM) Method for the Assessment of Optimal
Treatment Timing in Dentofacial Orthopedics. Semin. Orthod. 2005, 11, 119–129. [CrossRef]

120. Corradi, F.; Pinchi, V.; Barsanti, I.; Garatti, S. Probabilistic Classification of Age by Third Molar Development: The Use of Soft
Evidence. J. Forensic Sci. 2013, 58, 51–59. [CrossRef]

121. Focardi, M.; Pinchi, V.; de Luca, F.; Norelli, G.-A. Age Estimation for Forensic Purposes in Italy: Ethical Issues. Int. J. Leg. Med.
2014, 128, 515–522. [CrossRef]

122. Pinchi, V.; Norelli, G.A.; Caputi, F.; Fassina, G.; Pradella, F.; Vincenti, C. Dental Identification by Comparison of Antemortem and
Postmortem Dental Radiographs: Influence of Operator Qualifications and Cognitive Bias. Forensic Sci. Int. 2012, 222, 252–255.
[CrossRef]

123. Pinchi, V.; Pradella, F.; Buti, J.; Baldinotti, C.; Focardi, M.; Norelli, G.A. A New Age Estimation Procedure Based on the 3D CBCT
Study of the Pulp Cavity and Hard Tissues of the Teeth for Forensic Purposes: A Pilot Study. J. Forensic Leg. Med. 2015, 36,
150–157. [CrossRef]

124. Pinchi, V.; Norelli, G.-A.; Pradella, F.; Vitale, G.; Rugo, D.; Nieri, M. Comparison of the Applicability of Four Odontological
Methods for Age Estimation of the 14 Years Legal Threshold in a Sample of Italian Adolescents. J. Forensic Odonto-Stomatol. 2012,
30, 17.

125. Pinchi, V.; de Luca, F.; Focardi, M.; Pradella, F.; Vitale, G.; Ricciardi, F.; Norelli, G.A. Combining Dental and Skeletal Evidence in
Age Classification: Pilot Study in a Sample of Italian Sub-Adults. Leg. Med. 2016, 20, 75–79. [CrossRef]

126. Pinchi, V.; de Luca, F.; Ricciardi, F.; Focardi, M.; Piredda, V.; Mazzeo, E.; Norelli, G.A. Skeletal Age Estimation for Forensic
Purposes: A Comparison of GP, TW2 and TW3 Methods on an Italian Sample. Forensic Sci. Int. 2014, 238, 83–90. [CrossRef]

127. Li, L.; Qin, L.; Xu, Z.; Yin, Y.; Wang, X.; Kong, B.; Bai, J.; Lu, Y.; Fang, Z.; Song, Q.; et al. Using Artificial Intelligence to Detect
COVID-19 and Community-Acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology
2020, 296, E65–E71. [CrossRef]

128. Sessa, F.; Bertozzi, G.; Cipolloni, L.; Baldari, B.; Cantatore, S.; D’Errico, S.; di Mizio, G.; Asmundo, A.; Castorina, S.; Salerno, M.;
et al. Clinical-Forensic Autopsy Findings to Defeat COVID-19 Disease: A Literature Review. J. Clin. Med. 2020, 9, 2026. [CrossRef]

129. Shamout, F.E.; Shen, Y.; Wu, N.; Kaku, A.; Park, J.; Makino, T.; Jastrzębski, S.; Witowski, J.; Wang, D.; Zhang, B.; et al. An Artificial
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