1 |
Images (Input) |
Size = 64 × 64 × 3 |
2 |
Conv-1 |
Convolutional (64 × 64 × 3 × 8) with stride 2 |
3 |
Bach Norm |
Bach Normalization Operation |
4 |
ReLU |
Rectified Linear Unit |
5 |
Max Pooling |
Max-Pooling Operation (2 × 2, stride [2,2], padding = [same]) |
6 |
Dropout |
50% dropout |
7 |
Conv-2 |
Convolutional (32 × 32 × 3 × 16) with stride 2 |
8 |
Bach Norm |
Bach Normalization Operation |
9 |
ReLU |
Rectified Linear Unit |
10 |
Max Pooling |
Max-Pooling Operation (2 × 2, stride [2,2]) |
11 |
Dropout |
50% dropout |
12 |
Conv-3 |
Convolutional (16 × 16 × 3 × 32, stride 2, padding = [0,0,0,0]) |
13 |
Bach Norm |
Bach Normalization Operation |
14 |
ReLU |
Rectified Linear Unit |
15 |
Max Pooling |
Max-Pooling Operation (2 × 2, stride [2,2], padding = [same]) |
16 |
Dropout |
50% |
17 |
Conv-4 |
Convolutional (8 × 8 × 3 × 64) with stride 2 |
18 |
Bach Norm |
Bach Normalization Operation |
19 |
ReLU |
Rectified Linear Unit |
20 |
Max Pooling |
Max-Pooling Operation (2 × 2, stride [2,2], padding = [same]) |
21 |
Dropout |
50% |
22 |
Fully Connected |
512 hidden neurons in first hidden layer and 1024 in second hidden layer |
23 |
Functions |
tanh on first and second hidden layers neurons, and sigmoid on the output layer neuron. |
24 |
Classification |
Output (Normal or abnormal) |
25 |
Loss |
Binary Cross-entropy |