Skip to main content
. 2021 Nov 10;21(22):7480. doi: 10.3390/s21227480

Table 3.

All network layers are listed with their properties.

Number Layer Name Layer Properties
1 Images (Input) Size = 64 × 64 × 3
2 Conv-1 Convolutional (64 × 64 × 3 × 8) with stride 2
3 Bach Norm Bach Normalization Operation
4 ReLU Rectified Linear Unit
5 Max Pooling Max-Pooling Operation (2 × 2, stride [2,2], padding = [same])
6 Dropout 50% dropout
7 Conv-2 Convolutional (32 × 32 × 3 × 16) with stride 2
8 Bach Norm Bach Normalization Operation
9 ReLU Rectified Linear Unit
10 Max Pooling Max-Pooling Operation (2 × 2, stride [2,2])
11 Dropout 50% dropout
12 Conv-3 Convolutional (16 × 16 × 3 × 32, stride 2, padding = [0,0,0,0])
13 Bach Norm Bach Normalization Operation
14 ReLU Rectified Linear Unit
15 Max Pooling Max-Pooling Operation (2 × 2, stride [2,2], padding = [same])
16 Dropout 50%
17 Conv-4 Convolutional (8 × 8 × 3 × 64) with stride 2
18 Bach Norm Bach Normalization Operation
19 ReLU Rectified Linear Unit
20 Max Pooling Max-Pooling Operation (2 × 2, stride [2,2], padding = [same])
21 Dropout 50%
22 Fully Connected 512 hidden neurons in first hidden layer and 1024 in second hidden layer
23 Functions tanh on first and second hidden layers neurons, and sigmoid on the output layer neuron.
24 Classification Output (Normal or abnormal)
25 Loss Binary Cross-entropy