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Abstract 

Background:  Long noncoding RNAs (lncRNAs) have dense linkages with a plethora 
of important cellular activities. lncRNAs exert functions by linking with correspond-
ing RNA-binding proteins. Since experimental techniques to detect lncRNA-protein 
interactions (LPIs) are laborious and time-consuming, a few computational methods 
have been reported for LPI prediction. However, computation-based LPI identification 
methods have the following limitations: (1) Most methods were evaluated on a single 
dataset, and researchers may thus fail to measure their generalization ability. (2) The 
majority of methods were validated under cross validation on lncRNA-protein pairs, 
did not investigate the performance under other cross validations, especially for cross 
validation on independent lncRNAs and independent proteins. (3) lncRNAs and pro-
teins have abundant biological information, how to select informative features need to 
further investigate.

Results:  Under a hybrid framework (LPI-HyADBS) integrating feature selection based 
on AdaBoost, and classification models including deep neural network (DNN), extreme 
gradient Boost (XGBoost), and SVM with a penalty Coefficient of misclassification 
(C-SVM), this work focuses on finding new LPIs. First, five datasets are arranged. Each 
dataset contains lncRNA sequences, protein sequences, and an LPI network. Sec-
ond, biological features of lncRNAs and proteins are acquired based on Pyfeat. Third, 
the obtained features of lncRNAs and proteins are selected based on AdaBoost and 
concatenated to depict each LPI sample. Fourth, DNN, XGBoost, and C-SVM are used 
to classify lncRNA-protein pairs based on the concatenated features. Finally, a hybrid 
framework is developed to integrate the classification results from the above three 
classifiers. LPI-HyADBS is compared to six classical LPI prediction approaches (LPI-SKF, 
LPI-NRLMF, Capsule-LPI, LPI-CNNCP, LPLNP, and LPBNI) on five datasets under 5-fold 
cross validations on lncRNAs, proteins, lncRNA-protein pairs, and independent lncRNAs 
and independent proteins. The results show LPI-HyADBS has the best LPI prediction 
performance under four different cross validations. In particular, LPI-HyADBS obtains 
better classification ability than other six approaches under the constructed independ-
ent dataset. Case analyses suggest that there is relevance between ZNF667-AS1 and 
Q15717.
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Conclusions:  Integrating feature selection approach based on AdaBoost, three clas-
sification techniques including DNN, XGBoost, and C-SVM, this work develops a hybrid 
framework to identify new linkages between lncRNAs and proteins.

Keywords:  C-SVM, Deep neural network, Ensemble learning, Feature selection, 
lncRNA-protein interaction, XGBoost

Introduction
Motivation

RNA-protein interactions regulate many cellular processes including splicing, polyade-
nylation, stability, transportation and translation [1, 2]. Recently, an increasing knowl-
edge about RNA-binding proteins is shifting towards long non-coding RNAs (lncRNAs) 
[3, 4]. lncRNAs are a class of transcribed RNA molecules with the length of more than 
200 nucleotides [5, 6]. The class of molecules are densely associated with a plethora of 
cellular activities and play vital roles in regulating gene expression [7]. The dysregula-
tions of lncRNAs may result in various diseases, particularly cancers [8, 9]. For exam-
ple, lncRNA-protein complex may influence severity degree of human pancreatic cancer 
phenotype. lncRNAs have been validated to closely link with poorer prognosis in lym-
phoma, colon cancer, and breast cancer [10].

Despite of abundant information about lncRNA-disease associations, their mecha-
nisms still remain enigmatic. Researches found that lncRNAs exert their regulation roles 
through associations with the homologous RNA-binding proteins, that is, lncRNA-pro-
tein interactions (LPIs) [10–12]. Therefore, identification of LPIs will be beneficial to 
complex disease research and can thus advance diagnosis and treatment procedures [11]. 
Considering the time-consuming and laborious nature of laboratory methods, research-
ers pay more attention to computational intelligence [13]. Computation methods for LPI 
prediction can be roughly grouped into two categories: network-based approaches and 
machine learning-based approaches.

Network-based approaches took advantage of known LPIs to find unknown LPIs 
[14–16]. Li et al. [17] explored a random walk with restart algorithm (LPIHN) to propa-
gate labels of LPIs on a heterogeneous lncRNA-protein network. Ge et al. [18] used a 
two-step algorithm (LPBNI) on a bipartite network. Hu et  al. [19] delineated a semi-
supervised lncRNA-protein linkage inference framework called LPI-ETSLP. Deng et al. 
[20] integrated diffusion and HeteSim features on the heterogeneous lncRNA-protein 
network (PLIPCOM). Zheng et al. [21] fused sequences, domains, GO terms of proteins 
and the STRING database and built a more informative model. Zhang et al. [22] pro-
posed a linear neighborhood propagation method (LPLNP) for LPI mining. Zhou et al. 
[23] developed a similarity kernel fusion-based algorithm, LPI-SKF. Zhang et  al. [24] 
adopted a network distance analysis technique. Network-based approaches uncovered 
many linkages between lncRNAs and proteins, however, they are out of the LPI predic-
tion problem for a new lncRNA or protein.

Machine learning-based approaches including ensemble learning-based approaches 
[25–27] and deep learning-based approaches have increasingly achieved more atten-
tions. Muppirala et al. [28] combined support vector machine (SVM) and random for-
est and proposed an LPI identification algorithm (RPISeq). Wang et  al. [29] used an 
extended naive Bayes model to find hidden LPIs. Suresh et al. [30] built an SVM-based 
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LPI inference model with sequence and structure information. Zhao et al. [31] and Liu 
et al. [32] proposed two neighborhood regularized matrix factorization-based methods, 
IRWNRLPI and LPI-NRLMF. Hu et al. [19] adopted an eigenvalue transformation-based 
semi-supervised LPI prediction approach.

Ensemble learning-based models demonstrated powerful performance in various 
association prediction area [26]. Zhang et al. [33] designed a sequence feature projec-
tion-based ensemble learning framework for predicting LPIs. Hu et al. [19] adopted an 
ensemble strategy for LPI discovery. Wekesa et al. [34] combined an innovative feature 
selection technique and an ordered boosting algorithm [35] (LPI-XGBoost) to mine new 
LPIs. Yi et al. [36] presented a learning distributed representation algorithm based on 
RNA and protein sequences.

Deep learning has been widely applied to capture unobserved LPIs and obtained 
remarkable performance [37]. Pan et  al. [38] made use of stacked ensembling model 
(IPMiner) to mine underlying ncRNA-protein interaction sequential patterns. Zhang 
et  al. [39] designed a hybrid deep learning architecture combining convolutional neu-
ral network (CNN) and recurrent neural network for LPI detection. Pan et al. [40] pro-
posed a deep learning-based method (iDeepS) to identify RNA-binding proteins based 
on CNNs and a bidirectional long short term memory network (Bi-LSTM). Deng et al. 
[41] presented a deep neural network-based inference framework (PLIPCOM) through 
distributed representations of RNA sequences and structures. Fan et al. [42] trained a 
broad learning-based stacked ensemble classifier. Zhang et al. [43] used a CNN combing 
the copy-padding trick (LPI-CNNCP). Song et al. [44] and Li et al. [45] exploited capsule 
network-based prediction techniques (AC-caps and Capsule-LPI).

Previous studies significantly searched the interplays between lncRNAs and proteins, 
however, several problems still remain to solve: (1) The majority of models were meas-
ured on one unique dataset, and it is difficult to investigate their generalization perfor-
mance. (2) Most algorithms were validated the prediction performance based on Cross 
Validation (CV) on lncRNA-protein pairs, fail to report the measurements under other 
CVs, for example, CVs on lncRNAs, proteins, and independent lncRNAs and independ-
ent proteins. (3) There are abundant biological information about lncRNAs and proteins. 
How to effectively integrate these biological characteristics to improve the prediction 
performance must be considered.

Study contributions

In this manuscript, a hybrid framework (LPI-HyADBS) is presented to identify LPI can-
didates. This framework takes advantages of diverse biological information acquisition, 
feature selection, and ensemble learning. The study has three main contributions: 

1	 A feature selection algorithm based on AdaBoost is proposed to select the most rep-
resentative biological features from the originally acquired lncRNA and protein fea-
tures.

2	 A hybrid framework combining deep neural network (DNN), extreme gradient 
boost (XGBoost), and SVM with a penalty coefficient of misclassification (C-SVM) is 
developed to capture unobserved LPIs.
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3	 Four different CVs, especially for CV on independent lncRNAs and independent 
proteins, and five different LPI datasets are applied to further evaluate the generaliza-
tion ability of the proposed LPI-Hybrid framework.

Materials and methods
Data preparation

In this study, we arrange five different LPI datasets. Each dataset contains lncRNA 
sequences, protein sequences, and an LPI network. Datasets 1, 2, and 3 were from 
human and were provided by Li et  al. [17], Zheng et  al. [21], and Zhang et  al. [22], 
respectively. We preprocess the three datasets by removing lncRNAs and proteins 
involved in one associated protein (or lncRNA) or without sequence or expression 
information in UniProt [46], NPInter [47], NONCODE [48], and SUPERFAMILY [49]. 
Datasets 4 and 5 were from plant Arabidopsis thaliana and Zea mays, respectively. 
The two datasets were provided by Bai et al. [50]. Sequences of lncRNAs and proteins 
can be achieved from PlncRNADB [50]) and known LPIs can be downloaded from 
http://​bis.​zju.​edu.​cn/​PlncR​NADB/. The details are shown in Table 1.

Each LPI network is defined as a matrix Y where

Overview of LPI‑HyADBS

In this manuscript, we propose a hybrid framework for LPI identification (LPI-
HyADBS). Figure  1 illustrates the pipeline of LPI-HyADBS after data arrangement. 
As shown in Fig. 1, the LPI-HyADBS method contains the following five procedures: 
(1) Data arrangement. Five LPI datasets are obtained and preprocessed. Each data-
set contains lncRNA sequences, proteins sequences, and an LPI matrix. (2) Initial 
feature acquisition. lncRNA and protein features are characterized using Pyfeat [51] 
and concatenated to characterize each lncRNA-protein pair. (3) Feature selection. 
The concatenated features are reduced based on AdaBoost. (4) LPI classification. 
DNN, XGBoost, and C-SVM are designed to classify unknown lncRNA-protein pairs, 
respectively. (5) Ensemble. A hybrid framework is developed to integrate the classifi-
cation results from the three classifiers.

(1)yij =

{

1, if lncRNAs li interacts with protein pj
0, otherwise

Table 1  The statistics of LPI data

Dataset lncRNAs Proteins LPIs

Dataset 1 935 59 3479

Dataset 2 885 84 3265

Dataset 3 990 27 4158

Dataset 4 109 35 948

Dataset 5 1704 42 22,133

http://bis.zju.edu.cn/PlncRNADB/


Page 5 of 31Zhou et al. BMC Bioinformatics          (2021) 22:568 	

Initial feature acquisition

Pyfeat [51] is used to acquire initial numerical features of lncRNAs and proteins 
based on their sequences. We set k as 5 in all kgap-related features. The obtained 
lncRNA features include ATGC Ratio (1 feature), CumulativeSkew (2 features), diD-
iKGap ( 256× 5 = 1280 features), diMonoKGap ( 64 × 5 = 320 features), diTriKGap 
( 1024 × 5 = 5120 features), gcContent (1 feature), monoDiKGap ( 64 × 5 = 320 fea-
tures), monoMonoKGap ( 16× 5 = 80 features), monoTriKGap ( 256× 5 = 1280 fea-
tures), Chou’s pseudoKNC (84 features), triMonoKGap ( 256× 5 = 1280 features), 
tri-DiKGap ( 1024 × 5 = 5120 features), and zCurve (3 features). Each lncRNA is rep-
resented as a 14,891-dimensional vector based on the above features.

Ini�al Feature Acquisi�onIni�al Feature Acquisi�on

Feature Selec�onFeature Selec�on

LPI Classifica�onLPI Classifica�on

EnsembleEnsemble

Protein

LncRNA

Protein 
SequenceUniProt

LncRNA 
SequenceNONCODE

Protein features

LncRNA features

PyFeat

PyFeat

LPI featuresconcatena�on10420-dimension

14891-dimension

1 2 3 25310 25311

Features

h: weak classifier

1h 2h 3h 25310h 25311h
LPI features
k-dimension

DNN C-SVM

StandardScaler

Radial Basis Func�on

Gaussian kernal

C-SVM 
Classifica�on fit

Predic�on probability
Sigmoid

ReLU

ReLU

ReLU

Predic�on probability

AdaBoost

Score>0.5Y Non-LPIsN

Weight_2

LPIs

feature importances

DNNC C SVMC – oostXGBC

25311-dimension

Fig. 1  The Pipeline of the LPI-HyADBS framework. (1) Initial feature acquisition. lncRNA and protein features 
are acquired with Pyfeat [51] and concatenated to depict each lncRNA-protein pair. (2) Feature selection. The 
concatenated features are reduced based on AdaBoost. (3) LPI classification. DNN, XGBoost, and C-SVM are 
designed to capture unobserved LPIs, respectively. (4) Ensemble. An ensemble framework is proposed to 
combine prediction results from the three classifiers
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The obtained protein features include pseudoKNC (8420 features) and monoMonoK-
Gap ( 400× 5 = 2000 features). Each protein is denoted as a 10,420-dimensional vector 
based on the pseudoKNC and monoMonoKGap features.

Feature selection

Feature selection has been broadly applied to eliminate redundant features and plays an 
important role in classification. To delete irrelevant features, Gao et al. [52] presented 
two novel feature selection approaches, that is, linear feature selection method based 
on class-specific mutual information variation and multilabel feature selection method 
with constrained latent structure shared term [53]. The two methods obtained the best 
performance in corresponding application area and are the most representative feature 
selection techniques.

During the feature acquisition process in the above section, the obtained lncRNA and 
protein features are highly redundant, which severely increases computational time and 
affects prediction performance. AdaBoost has good generalization ability, better perfor-
mance and low computational complexity, and has thus become one of the most effec-
tive classifiers [54]. In this manuscript, inspired by the two feature selection methods 
proposed by Gao et al. [52, 53], we utilize AdaBoost and develop a feature selection algo-
rithm to select the most informative features for lncRNAs and proteins.

Based on initial feature acquisition, the obtained two feature vectors are first concat-
enated and each lncRNA-protein pair is represented as a 25, 313-dimensional vector x . 
The concatenated vector is then used as the input of the feature selection algorithm to 
select the representative LPI features. The process can be divided into three parts.

Part I Initialization.
For given n LPI samples X = {(x11, x

2
1, . . . , x

m
1 ), . . . , (x

1
n, x

2
n, . . . , x

m
n )} where xji denotes 

the jth feature of the ith sample and the labels Y = {y1, y2, . . . , yn} , the weight coefficient 
for each LPI sample is initialized: D(xji) = 1/n.

Part II Iteration and updating.
At each iteration, conducting the following six steps.
Step 1 For each feature j, a weak classifier hj is trained to evaluate its importance.
Step 2 Set the corresponding hypothetical relationship between features and labels: 

ht = {x
j
i → Y }.

Step 3 The error corresponding to D(xij) is expressed as Eq. (2):

Step 4 For one feature f with a minimum error εt , delete f from initial feature set x and 
add it to the optimal target feature subset fo by Eq. (3):

Step 5 Update the weight for each weak classifier based on the error from the best classi-
fier ht by Eq. (4):

(2)
εt =

∑

i:ht (x
j
i)�=yi

Dt(x
j
i)

(3)
x = x − f
fo = fo + f
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Step 6 Update D(xji) by Eq. (5):

where Nt is a regularized constant term satisfying:

Part III Normalization of features.
We select the optimal k LPI features by iteratively updating LPI descriptions based 

on the performance from multiple weak classifiers. For the obtained k optimal features 
F = {(x11, x

2
1, . . . , x

k
1), (x

1
2, x

2
2, . . . , x

k
2), . . . , (x

1
n, x

2
n, . . . , x

k
n)} , we normalize each feature:

where max(x
j
1, x

j
2, . . . , x

j
n) and min(x

j
1, x

j
2, . . . , x

j
n) denote the maximum and minimum 

values in one column, respectively.
To boost the tiny difference between a few classifiers, we used decision trees as weak 

classifiers based on threshold values. Through ensemble of multiple weak classifiers, the 
feature selection algorithm based on AdaBoost can add the most appropriate features to 
the optimal target feature subset.

For a given LPI dataset with n LPI examples and the selected k LPI features 
D = {(xi, yi)}(|D| = n, xi ∈ R

k , yi ∈ {+1,−1}) , we aim to classify unknown lncRNA-
protein pairs based on DNN, C-SVM, and XGBoost, respectively.

Deep neural network

To build a standard neural network, researchers utilize neurons to generate real-valued 
activations and adjust the weights. However, training a neural network needs to take 
long causal chains in the phase of computation. Therefore, a new training method called 
layer-wise greedy learning was proposed and marked the birth of deep learning [55]. 
In contrast to traditional artificial intelligence methods, deep learning techniques have 
been progressing massively broad application in various areas. Given enough labeled 
data and appropriate models, the deep learning technologies can more accurately map 
functions [56].

DNNs, employing deep architectures in neural networks, can effectively depict 
functions with higher complexity when the numbers of layers and neurons in a single 
layer are increased [57]. DNNs are available to more training data, can improve learn-
ing procedures, and demonstrate more computing power and better software engi-
neering [58]. More importantly, it is relatively easy to control overfitting problems 
during the training of DNNs [59]. Therefore, DNNs have obtained wide applications 
in various complex machine learning tasks. In this manuscript, the architecture of 

(4)βt = 0.5× ln

(

1− εt

εt

)

(5)Dt+1(x
j
i) =

Dt(x
j
i)

Nt
×

{

e−βt , if ht(x
j
i) = yi

eβt , otherwise

(6)
m
∑

i=1

Dt(x
j
i) = 1

(7)x̃
j
i =

x
j
i −min(x

j
1, x

j
2, . . . , x

j
n)

max(x
j
1, x

j
2, . . . , x

j
n)−min(x

j
1, x

j
2, . . . , x

j
n)
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DNN is illustrated in Fig. 2. It is divided into three main layers, that is, input layer, 
hidden layers, and output layer. The input layer feeds each LPI sample x into the net-
work. Thus the number of neurons in the input layer is the same as one of the selected 
LPI features based on AdaBoost. Given an LPI sample x , the input layer with k inputs 
is denoted as Eq. (8):

where xi denotes the ith feature in an LPI sample x.
The following layers are the hidden layers. A deep learning framework consists of 

more than one hidden layer. The hidden layers map each LPI sample x from the input 
layer. The input in the hidden layers are denoted as Eq. (9):

where wi denotes the weight of xi which are continuing updated to minimize the training 
errors, j indicates the number of hidden layers in the DNN, and bj denotes the bias in the 
jth hidden layer.

In each hidden layer, there is an activation function. The ReLU function can solve 
the vanishing and exploding gradient problem, accelerate the training process, and 
thus demonstrates better performance. Therefore, we use ReLU as an activation func-
tion for classifying unlabeled lncRNA-protein pairs.

The output in the jth hidden layer are denoted as Eq. (10):

where f (hj) = ReLU(hj).
Finally, the output layer takes the outputs from the hidden layer as input and produces 

the output h by an activation function. In the output layer, we use sigmoid as an activa-
tion function for LPI classification. The output of DNN is represented as Eq. (11):

(8)x = [x1, x2, . . . , xk ]

(9)hj =

k
∑

i=1

wixi + bj

(10)h = f (hj)

Fig. 2  Flowchart of LPI prediction method based on deep neural network
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An LPI is classified to positive class when the output in the output layer is larger than 
0.5; otherwise, the LPI is classified to negative class.

Extreme gradient boost

XGBoost has high efficiency in both balanced and imbalanced datasets. It is extremely 
fast due to it parallel computation ability [60]. In known five LPI datasets, there are sev-
eral positive LPI samples and a large number of unknown lncRNA-protein pairs. That is, 
known LPI datasets are imbalanced. Considering the imbalanced characteristics of data, 
we utilize XGBoost to detect underlying LPIs.

Regularized learning

Gradient tree boosting techniques obtain widespread applications on the area of 
bioinformatics [35]. In this study, we use XGBoost to classify unlabeled lncRNA-
protein pairs. For a given data set with n LPI examples and k LPI features 
D = {(xi, yi)}(|D| = n, xi ∈ R

k , yi ∈ {+1,−1}) , a tree ensemble model with M additive 
functions can be applied to score each unknown lncRNA-protein pair by Eq. (12).

where fj denotes the jth tree with structure q and leaf weights w, 
F = {f (x) = wq(x)}(q : Rk → T ,w ∈ R

T ) indicates the space composed of k regression 
trees, q denotes the structure of each tree mapping an LPI sample to corresponding leaf 
index, and T represents the number of leaves in the tree.

For an unknown lncRNA-protein pair, we utilize the decision rules obtained from q to 
compute its final classification result by summing up the interaction scores in the corre-
sponding leaves obtained by w. To train the model in Eq. (12), we minimize the following 
objective function with regularization term by Eq. (13):

where l denotes a loss function applied to quantify the difference between the predicted 
label ŷi and the real label yi , and � is used to penalize the complexity of the model. In 
Eq. (13), the regularization term contributes to reduce overfitting by smoothing the final 
learned weights. Inspired by the regularized greedy forest model proposed by [61], we 
set the regularization parameter to zero, and thus the objective function in Eq. (13) is 
transformed to a gradient tree boosting model.

Gradient tree boosting

The model in Eq. (13) is difficult be optimized by the traditional optimization algo-
rithms in Euclidean space. Instead, an additive term is introduced to solve the model 

(11)σ(h) =
1

1+ e−h

(12)ŷi = φ(xi) =

M
∑

j=1

fj(xi), fj ∈ F

(13)

L(φ) =
∑

i

l(ŷi, yi)+
∑

j

�(fj)

where �(f ) = γT + 1
2��w�

2
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Eq. (13). Let ŷ(t)i  denote the predicted label of the ith LPI sample at the tth iteration, 
we add ft to the model (13) to minimize the objective function defined by Eq. (14):

By Eq. (14), we gradually add ft to improve the classification capability. The second-
order approximation algorithm [62] can be then applied to optimize the model (14) by 
Eq. (15):

where gi = ∂ŷ(t−1) l(yi, ŷ
(t−1)) and hi = ∂2

ŷ(t−1) l(yi, ŷ
(t−1)) denote first-order and second-

order gradient statistics on the cost function, respectively. A simplified objective func-
tion denoted by Eq. (16) can be obtained after removing the constant terms at step t:

Let Ij = {i | q(xi) = j} indicate LPI sample set in leaf j, Eq. (16) can be rewritten as Eq. 
(17) by expanding ω:

For a fixed structure q(x) , the optimal weight w∗
j  in leaf j can be defined by Eq. (18):

and corresponding optimal value can be computed to evaluate the quality of a structure 
q by Eq. (19):

However, it is difficult to enumerate all potential tree structures. We thus use a greedy 
algorithm to iteratively add branches to a tree starting from a single leaf. Let I = IL ∪ IR 
where IL and IR denote LPI sample sets on left and right nodes of a tree after splitting, 
respectively, we build the loss reduction by Eq. (20):

(14)L
(t) =

n
∑

i=1

l
(

yi, ŷ
(t−1)
i + ft(xi)

)

+�(ft)

(15)L
(t) ≃

n
∑

i=1

[

l
(

yi, ŷ
(t−1)

)

+ gift(xi)+
1

2
hif

2
t (xi)

]

+�(ft)

(16)L̃(t) =
n
∑

i=1

[

gift(xi)+
1
2hif

2
t (xi)

]

+�(ft)

(17)

L̃
(t) =

n
�

i=1

�

gift(xi)+
1

2
hif

2
t (xi)

�

+ γT +
1

2
�

T
�

j=1

w2
j

=

T
�

j=1









�

i∈Ij

gi



wj +
1

2





�

i∈Ij

hi + �



w2
j



+ γT

(18)w∗
j = −

∑

i∈Ij
gi

∑

i∈Ij
hi + �

(19)L̃
(t)(q) = −

1

2

T
∑

j=1

(

∑

i∈Ij
gi

)2

∑

i∈Ij
hi + �

+ γT
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C‑support vector machine

SVM is independent of feature dimensionality of data and thus avoids from “curse of 
dimensionality”. It has better robustness against variation of all vectors except for its 
support vectors [63]. Considering that the powerful classification ability of SVM, in 
this section, we utilize C-SVM to capture unobserved LPIs.

Given a LPI training dataset X = {x1, x2, . . . , xn} where each LPI sample xi ∈ Rk , 
and a label dataset y ∈ R where yi ∈ {1,−1} , we use an C-SVM provided by Cortes 
et al. [64] to classify unlabeled lncRNA-protein pairs. When C is bigger, that is, the 
degree of penalty on the misclassified samples is bigger, the computed accuracy is 
higher on the training set, however, its generalization ability may decrease, that is, the 
computed accuracy decreases on the test set. On the contrast, smaller C can tolerate 
some misclassified LPI samples on the training set and the generalization ability of 
the model thus is stronger. Let the misclassified LPIs are denoted as noises, C-SVM 
can be defined by Eq. (21):

where C > 0 is a penalty coefficient of misclassified LPI samples. ξi is a slack variable 
used to measure the degree of misclassification of data, φ(xi) is used to map xi into a 
higher-dimensional space and b denotes a bias. Considering the high dimensional char-
acteristics of vector variable w , Cortes at al. [64] solve the model (21) based on Eq. (22):

where e = [1, . . . , 1]T denotes a vector with all elements of 1, Q is an l × l positive sem-
idefinite matrix where Qij = yiyjK

(

xi, xj
)

 , and K
(

xi, xj
)

= φ(xi)
Tφ

(

xj
)

 denotes a kernel 
function.

The optimal w can be obtained based on the primal-dual relationship by the model 
Eq. (23):

Thus LPI classification function can be denoted by Eq. (24).
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w,b,ξ
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l
∑

i=1
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(

wTφ(xi)+ b
)

≥ 1− ξi,
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α
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A hybrid framework

In the above sections, DNN, XGBoost, and C-SVM efficiently capture potential LPIs. 
However, DNNs need to train more parameters [65], XGBoost may lead to an overfitting 
state when hyperparameters are not appropriately tuned [59], C-SVM needs abundant 
labeled training data [63]. Ensemble learning demonstrates better classification ability 
compared to one single classifier [26]. To reduce overfitting and obtain optimal predic-
tion performance, we integrate the three classifiers and develop a hybrid framework for 
LPI identification by Eq. (25):

where CDNN , CXGBoost , and CC−SVM represent the classification results of an unlabeled 
lncRNA-protein pair from DNN, XGBoost, and C-SVM, respectively. α , β , and θ indicate 
the corresponding weights.

Results
Evaluation metrics

We use six evaluation metrics to measure the classification ability of our proposed LPI-
HyADBS framework. That is, precision, recall, accuracy, F1-score, AUC and AUPR. For 
the six measurements, higher values indicate better prediction performance. The experi-
ments are repeatedly performed 20 times and the average performance for the 20 experi-
ments is taken as the final results.

Experimental settings

Pyfeat is applied to extract lncRNA and protein features. The parameters in Pyfeat for 
lncRNA initial feature acquisition are set as: kGap = 5, kTuple = 3, opti-mumDataset 
= 1, pseudoKNC = 1, zCurve = 1, gcContent = 1, cumulativeSkew = 1, atgcRatio = 1, 
monoMono = 1, monoDi = 1, monoTri = 1, diMono = 1, diDi = 1, diTri = 1, triMono 
= 1, triDi = 1.

The parameters in Pyfeat for protein initial feature acquisition are set as: kGap = 5, 
kTuple = 3, opti-mumDataset = 1, pseudoKNC = 1, zCurve = 0, gcContent = 0, cumu-
lativeSkew = 0, atgcRatio = 0, monoMono = 1, monoDi = 0, monoTri = 0, diMono = 0, 
diDi = 0, diTri = 0, triMono = , triDi = 0.

To tune parameters and avoid overfitting, we perform the following experimental set-
tings in DNN: (1) Original settings: an original neural network with one hidden layer 
is built, where learning rate, epoch, and batch size are originally set to 0.1, 200, and 64, 
respectively. The number of intermediate layers is selected based on the classification 
results on dataset 1. (2) Loss function: mean absolute deviation, mean square error, and 
binary cross-entropy loss [66] are used as loss functions to evaluate the performance 
of DNN, respectively. Finally, binary cross-entropy loss is selected as loss function 
because DNN computes better performance using binary cross-entropy loss function. 
(3) Optimizer: stochastic gradient descent, average stochastic gradient descent, adaptive 

(24)sgn(wTφ(x)+ b) = sgn(

l
∑

i=1

yiαiK (xi, x)+ b)

(25)Score = αCDNN + βCXGBoost + θCSVM
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gradient, and adaptive moment estimation [67] are used as optimizer, respectively. 
Finally, adaptive moment estimation is selected as optimizer due to the optimal classifi-
cation ability of DNN. (4) Learning rate, epoch, and batch size: the three parameters are 
set to corresponding optimal values by grid research. (5) Activation function: LPI clas-
sification capability of DNN based on tanh and ReLU is compared and ReLU is selected 
as activation function in the hidden function where DNN calculates better performance. 
(6) Dropout: LPI identification accuracy of DNN does not significantly change when 
dropout is set as 0.2, 0.25, 0.3, and 0.5, therefore, dropout is selected as 0.25 where DNN 
obtains slightly better performance on dataset 1. (7) Iteration termination: during train-
ing, the iteration will be terminated when accuracy is greater than or equal to 0.99 to 
avoid overfitting.

In SVM, each LPI features are standardized because the selected features based on 
AdaBoost have multiple dimensions and scales. In addition, SVM is not sensitive to 
selection of kernel functions on five LPI datasets. Radial basis function (RBF), polyno-
mial function, and sigmoid function are taken as kernel functions to measure LPI clas-
sification ability of SVM, respectively. After comparison, SVM with RBF gains slightly 
better prediction accuracy, therefore, RBF is selected as kernel function.

In XGBoost, parameters are originally set as defaults. Because there are many param-
eters in XGBoost, the parameters are combined in pairs. And the optimal parameter 
combination can be obtained by grid search for each group. In the training process, vali-
dation set is used to achieve the early stop mechanism of XGBoost and effectively avoid 
overfitting.

LPI-NRLMF, Capsule-LPI, LPI-CNNCP, LPLNP, and LPI-HyADBS obtain the best 
performance when they select the optimal parameter combinations by grid search. The 
optimal parameter combinations for the five methods are shown in Table 2. The param-
eters in LPI-SKF and LPBNI are set to corresponding values provided by Zhou et al. [23] 
and Ge et al. [18], respectively.

Table 2  Parameter settings

Method Parameter setting

LPI-NRLMF Cfix = 5, num_factors = 10, K1 = 5, max_iter = 100

Lambda_t = 0.625, alpha = 0.1, beta = 0.1

K2=5, theta = 1.0, lambda_d = 0.625

Capsule-LPI EPOCH = 30, lr = 0.001, BATCH_SIZE = 100

LPI-CNNCP Filters1 = 24, kernel_size1 = (49, 10)

Kernel_size2 = (64, 10), strides2 = (1, 3)

Strides1 = (1, 1), filters2 = 24

LPI-HyADBS DNN: Adam(model.parameters(), lr = 0.0001),

Loss_fn=BCELoss(), batch = 128, epochs = 100

XGBoost: learning_rate = 0.1, n_estimators = 100

Objective =“binary:logistic”, max_depth = 6

C-SVM: kernel=“rbf”, gamma = “auto”,

Probability = True, colsample_btree = 0.8

α = 0.4 , β = 0.3 , θ = 0.3

LPLNP Neighbor_num = [6, 23, 100, num of lncRNA-100, 100],

Regulation = ’regulation2’, alpha = [0.5, 0.3, 0.7, 0.1, 0.9]



Page 14 of 31Zhou et al. BMC Bioinformatics          (2021) 22:568 

Four different 5-fold CVs are implemented to investigate the performance of 
LPI-HyADBS. 

1.	 5-fold CV on lncRNAs ( CVl ): random rows in Y are hidden for testing, that is, 80% of 
lncRNAs are randomly screened as the train set and the remaining are applied to the 
test set.

2.	 5-fold CV on proteins ( CVp ): random columns in Y are hidden for testing, that is, 
80% of proteins are randomly screened as the train set and the remaining are applied 
to the test set.

3.	 5-fold CV on lncRNA-protein pairs ( CVlp ): random lncRNA-protein pairs in Y are 
hidden for testing, that is, 80% of lncRNA-protein pairs are randomly screened as the 
train set and the remaining are applied to the test set.

4.	 5-fold CV on independent lncRNAs and independent proteins ( CVind ) [68]: First, 
20% of lncRNAs and 20% of proteins are randomly screened to construct the “node 
test set”. Second, the remaining nodes, which contain lncRNAs and proteins, are 
used as the “node train set”. Third, all edges linking a node from the node train set 
with a node from the node test set are removed. Finally, one classification model is 
trained only on edges linking two nodes within the node train set to infer edges link-
ing two nodes within the node test set.

The above four CVs correspond to potential LPI identification for (1) new (unknown) 
lncRNAs without linkages with any protein, (2) new proteins without linkages with any 
lncRNA, (3) new lncRNA-protein pairs, and (4) the constructed independent lncRNA-
independent protein pairs.

More importantly, negative samples (non-LPIs) are randomly screened from unknown 
lncRNA-protein pairs. The number of negative samples is set to the same as that of posi-
tive samples (LPIs).

Comparison with six state‑of‑the‑art LPI prediction methods

We compare the proposed LPI-HyADBS framework with six classical LPI inference 
models, that is, LPI-SKF, LPI-NRLMF, Capsule-LPI, LPI-CNNCP, LPLNP, and LPBNI 
to investigate the classification ability of LPI-HyADBS. LPI-SKF, LPLNP, and LPBNI 
are three network-based methods, LPI-NRLMF is a logistic matrix factorization-based 
approach with neighbor regularization, Capsule-LPI and LPI-CNNCP are two deep 
learning-based models.

Table I in Additional File 1 show the precision, recall, accuracy, F1-score, AUC and 
AUPR values obtained from LPI-SKF, LPI-NRLMF, Capsule-LPI, LPI-CNNCP, LPLNP, 
LPBNI, and LPI-HyADBS on five datasets under CVl . Figure  3 illustrates the ROC 
and PR curves of the seven LPI prediction methods under CVl . From Table I, we can 
observe that LPI-HyADBS computes the best average precision, AUC, and AUPR on 
five datasets under CVl . In particular, LPI-HyADBS computes the best average AUC 
of 0.8514, better 2.29%, 1.96%, 3.56%, 7.81%, 24.86%, and 7.12% than LPI-SKF, LPI-
NRLMF, Capsule-LPI, LPI-CNNCP, LPLNP, and LPBNI, respectively. LPI-HyADBS 
obtains the highest average AUPR of 0.8412, outperforming 3.79%, 3.21%, 3.24%, 
8.25%, 93.94%, and 45.82% compared the above six models, respectively. Although 
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the average F1-score calculated by LPI-HyADBS is lower than one from Capsule-LPI, 
the difference is very small. For example, Capsule-LPI computes the average F1-score 
of 0.7570, while LPI-HyADBS obtains the average F1-score of 0.7535, which is only 
lower 0.46% than Capsule-LPI. Although LPLNP and LPBNI computes better average 

Fig. 3  The ROC curves and the PR curves of seven methods under CVl
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recall and accuracy than LPI-HyADBS, respectively, LPI-HyADBS markedly outper-
forms the two methods in terms of average AUC and AUPR. More importantly, AUC 
and AUPR can more precisely depict the prediction performance of LPI identification 
techniques compared to the other four evaluation metrics. LPI-HyADBS obtains bet-
ter AUCs and AUPRs, and can thus accurately find proteins interacting with a new 
lncRNA.

Table II in Additional File 2 illustrates the precision, recall, accuracy, F1-score, AUC 
and AUPR values calculated by LPI-SKF, LPI-NRLMF, Capsule-LPI, LPI-CNNCP, 
LPLNP, LPBNI, and LPI-HyADBS on five datasets under CVp . Figure  4 describes the 
ROC and PR curves of the seven LPI prediction methods under CVp . From Table II, 
we can find that LPI-HyADBS computes the best average precision, F1-score, AUC, 
and AUPR. In particular, there are only 59, 84, 27, 35, and 42 proteins on five datasets, 
respectively. Under CVp , only 80% samples (proteins) are used to train the model on five 
datasets, respectively. That is, the number of samples is relatively smaller. However, LPI-
HyADBS outperforms the other six methods and significantly boosts the performance of 
LPI prediction. For example, the average AUC computed by LPI-HyADBS exceeds 4.73% 
and 11.23% than the best and the second-best methods (LPI-NRLMF and Capsule-
LPI), respectively. AUPR from LPI-HyADBS is better 6.16% and 15.57% than the best 
two methods (LPI-NRLMF and LPI-SKF). Although LPBNI computes better accuracy, 
its calculated AUC and AUPR are obviously smaller than ones from LPI-HyADBS. The 
results suggest that LPI-HyADBS is a more robust classifier even under relatively smaller 
samples.

Table III in Additional File 3 depicts the precision, recall, accuracy, F1-score, AUC 
and AUPR values achieved from LPI-SKF, LPI-NRLMF, Capsule-LPI, LPI-CNNCP, 
LPLNP, LPBNI, and LPI-HyADBS on five datasets under CVlp . Figure  5 characterizes 
the ROC and PR curves of the seven LPI prediction methods under CVlp . Under CVlp , 
LPI-HyADBS computes the best average performance in terms of precision, recall, 
F1-score, and AUPR. In particular, LPI-HyADBS calculates the best F1-score on all five 
datasets. It still obtains the highest average F1-score of 0.8715, outperforming 19.46%, 
11.50%, 2.56%, 32.46%, 97.92%, and 54.54% than LPI-SKF, LPI-NRLMF, Capsule-LPI, 
LPI-CNNCP, LPLNP, and LPBNI, respectively. In addition, LPI-HyADBS calculates 
the best AUPRs on datasets 1, 2, 4, and 5. The average AUPR is 0.9166, better 5.99%, 
3.41%, 4.15%, 9.76%, 38.44%, and 41.33% than the above six approaches, respectively. 
The results bring out the optimal LPI classification ability of the proposed LPI-HyADBS 
under CVlp.

Table IV in Additional File 4 reveals the precision, recall, accuracy, F1-score, AUC and 
AUPR values acquired from LPI-SKF, LPI-NRLMF, Capsule-LPI, LPI-CNNCP, LPLNP, 
LPBNI, and LPI-HyADBS on five datasets under CVind . Figure 6 displays the ROC and 
PR curves of the seven LPI prediction methods under CVind . Under CVind , the perfor-
mance of all seven classifiers drastically declines on five datasets. However, LPI-HyADBS 
achieves better average precision and AUPR than the other six models even under 
CVind . The average AUPR calculated by LPI-HyADBS is higher 7.64%, 27.97%, 9.22%, 
10.25%, 83.56%, and 15.16% than the above six approaches, respectively. Although the 
AUC, accuracy, and recall values from LPLNP are better than LPI-HyADBS, its preci-
sion, F1-score and AUPR values are abnormally behind our method. The performance 
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of LPI-HyADBS is much more stable compared to LPLNP. The results from CVind again 
demonstrate the superior LPI identification capability of LPI-HyADBS.

(a) The ROC curves of seven methods on dataset 1 (b) The PR curves of seven methods on dataset 1

(c) The ROC curves of seven methods on dataset 2 (d) The PR curves of seven methods on dataset 2

(e) The ROC curves of seven methods on dataset 3 (f) The PR curves of seven methods on dataset 3

(g) The ROC curves of seven methods on dataset 4 (h) The PR curves of seven methods on dataset 4

(i) The ROC curves of seven methods on dataset 5 (j) The PR curves of seven methods on dataset 5

Fig. 4  The ROC curves and the PR curves of seven methods under CVp
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Performance comparison of single classifiers and hybrid framework

In this section, each single classifier is compared with the proposed LPI-HyADBS 
framework to measure the performance of a single classifier with a hybrid method. 

(a) The ROC curves of seven methods on dataset 1 (b) The PR curves of seven methods on dataset 1

(c) The ROC curves of seven methods on dataset 2 (d) The PR curves of seven methods on dataset 2

(e) The ROC curves of seven methods on dataset 3 (f) The PR curves of seven methods on dataset 3

(g) The ROC curves of seven methods on dataset 4 (h) The PR curves of seven methods on dataset 4

(i) The ROC curves of seven methods on dataset 5 (j) The PR curves of seven methods on dataset 5

Fig. 5  The ROC curves and the PR curves of seven methods under CVlp
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LPI-HyADBS is a hybrid framework composed of DNN, XGBoost, and C-SVM. Fig-
ure 7 illustrates the precisions, recalls, accuracies, F1-scores, AUCs, and AUPRs from 
the three classifiers and LPI-HyADBS. From Fig. 7, we can observe that LPI-HyADBS 

(a) The ROC curves of seven methods on dataset 1 (b) The PR curves of seven methods on dataset 1

(c) The ROC curves of seven methods on dataset 2 (d) The PR curves of seven methods on dataset 2

(e) The ROC curves of seven methods on dataset 3 (f) The PR curves of seven methods on dataset 3

(g) The ROC curves of seven methods on dataset 4 (h) The PR curves of seven methods on dataset 4

(i) The ROC curves of seven methods on dataset 5 (j) The PR curves of seven methods on dataset 5

Fig. 6  The ROC curves and the PR curves of seven methods under CVind
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obtains better precision, F1-score, AUC, and AUPR compared to the other three 
approaches under all four CVs. In particular, Under CVp and CVind , LPI-HyADBS is sig-
nificantly superior to the other three methods. The results suggest that LPI-HyADBS, 
ensemble of DNN, XGBoost, and C-SVM, can improve LPI prediction performance.

Performance comparison of single classifiers based on deep learning

In the proposed LPI-HyADBS framework, DNN, as one single classifier based on deep 
learning, gains better LPI prediction performance. To investigate the performance of the 
other deep learning-based models on LPI discovery, we compare DNN with two classi-
cal deep learning-based methods, that is, Text-attentional CNN (Text-CNN) [69] and 

Fig. 7  The performance of three single classifiers and a hybrid framework under four cross validations
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Bi-LSTM [40]. Text-CNN [69] focused on extracting text-related features from image 
components and effectively detected highly challenging text patterns. Bi-LSTM [40] 
revealed underlying long range dependencies between RNA binding sequences and 
structure motifs from RNA sequences. The two methods computed better performance 
on corresponding applications. Figure 8 describes the comparison results of DNN with 
Text-CNN and Bi-LSTM. From Fig. 8, we can observe that DNN significantly outper-
forms Text-CNN and Bi-LSTM in terms of recalls, accuracies, F1-scores, AUCs and 
AUPRs on five datasets in the vast majority of cases. The results demonstrate that DNN 
may be more appropriate for underlying LPI detection.

(a) precision (b) recall

(c) accuracy (d) F1-score

(e) AUC (f) AUPR

Fig. 8  Performance comparison of single classifiers based on deep learning
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Case study

In this section, we investigate the application of the proposed LPI-HyADBS method.

Finding possible proteins for a new lncRNA

RNase MRP RNA is an abundant and essential noncoding RNA. The functions of RNase 
MRP RNA are still incompletely understood in humans. Mutations on RNase MRP RNA 
genes may cause a recessively inherited developmental disorder, that is, cartilage-hair 
hypoplasia [70]. Cartilage-hair hypoplasia is highly human pleiotropic. It has dense asso-
ciations with defective cellular immunity and short stature. More importantly, it may 
cause multiple cancers [71].

In human datasets 1–3, RNase MRP RNA (its name is NONHSAT130962, n5543, 
NONHSAT130962, respectively) interacts with 3, 13, and 10 proteins, respectively. To 
infer possible proteins linking with RNase MRP RNA, all its associated proteins are 
hidden and it is regarded as a new lncRNA. LPI-HyADBS together with the other six 
comparison methods are applied to infer the relevances between RNase MRP RNA 
and proteins. The predicted top 5 proteins linking with RNase MRP RNA are shown 
in Table 3. In dataset 1, P35367, O00425, Q9Y6M1, and Q9NZI8 are predicted to have 
high association probabilities with RNase MRP RNA. P35637 is known to interact with 
RNase MRP RNA in dataset 2, O00425 and Q9NZI8 have been confirmed to associ-
ate with RNase MRP RNA in dataset 3, and Q9Y6M1 is reported association informa-
tion with RNase MRP RNA in datasets 2 and 3. Although interactions between Q9NZI8 
and and RNase MRP RNA, and between P35367 and RNase MRP RNA are unknown 
in datasets 2 and 3, respectively, they have been validated in datasets 3 and 2, respec-
tively. In summary, the predicted top 5 proteins interacting with RNase MRP RNA in 
one human dataset can be confirmed in the other two datasets.

Table 3  The predicted top 5 proteins interacting with RNase MRP RNA

Dataset Proteins Confirmed LPI-HyADBS LPI-SKF NRLMF Capsule CNNCP LPLNP LPBNI

Dataset 1 Q15717 YES 1 1 1 1 43 3 4

P35637 NO 2 4 5 3 47 6 22

O00425 NO 3 7 2 2 8 4 1

Q9Y6M1 NO 4 6 3 5 11 7 40

Q9NZI8 NO 5 9 4 9 46 12 15

Dataset 2 Q15717 YES 1 9 1 3 71 11 6

P35637 YES 2 1 3 4 39 9 54

Q9NZI8 NO 3 12 4 10 47 6 12

Q9Y6M1 YES 4 14 2 9 78 54 7

P31483 YES 5 10 9 7 84 2 9

Dataset 3 Q9NUL5 YES 1 5 1 1 26 7 6

Q9Y6M1 YES 2 6 3 4 2 2 11

Q9NZI8 YES 3 10 5 3 16 6 5

P35637 NO 4 11 4 5 6 1 4

O00425 YES 5 7 2 2 25 9 18
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Finding possible lncRNAs for a new protein

P35637 involves in multiple cellular processes. The processes include transcription regu-
lation, DNA repair and damage response, RNA splicing and transport [72]. In neuronal 
cells, P35367 plays crucial roles in RNA transport, mRNA stability, dendritic spine for-
mation and stability, and synaptic homeostasis [46].

P35637 may interact with 935, 885, and 990 lncRNAs on datasets 1–3, respectively. 
We hide all linkage data for P35367 and utilize the proposed LPI-HyADBS framework 
to infer lncRNAs related to P35367. The predicted top 5 relevant lncRNAs on three 
human datasets are shown in Table 4. In dataset 2, interaction between hTR and P35367 
is known in dataset 3; interaction between 7SL and P35367 has been confirmed in data-
sets 1 and 3. However, interactions between P35367 and two lncRNAs (RPI001_1039837 
and RN7SK) can not been validated. RN7SK is a small nuclear RNA involved in cellu-
lar senescence [73] and neuronal differentiation [74], it regulates macrophage polariza-
tion and innate immune responses [75]. The interaction between RN7SK and P35367 is 
ranked as 4 and 2 by LPI-HyADBS and LPI-NRLMF, respectively. We infer RN7SK may 
interact with P35367 and need further validation.

Finding possible LPIs based on observed LPIs

We score each lncRNA-protein pair on datasets 1–5. Figures 9, 10, 11, 12 and 13 illus-
trate the discovered top 50 lncRNA-protein pairs with the highest interaction probabili-
ties. In the figures, black solid lines and red dotted lines represent known and unknown 
LPIs obtained from LPI-HyADBS, respectively. Deep sky blue diamonds represent lncR-
NAs. Yellow ellipses denote proteins.

On five datasets, there are separately 55,165, 74,340, 26,730, 3815, and 71,568 lnc 
RNA-protein pairs, respectively. Unknown lncRNA-protein pairs between NONH- 
SAT048052(RP11-561C5.4) and Q15717, n383560(ZNF667-AS1) and Q15717, NON 
HSAT006085(RPI0-01_1004095) and Q9NUL5, AthlncRNA296(TCONS_0004-9605) 
and F4JLJ3, and ZmalncRNA1655 and B8A0M3 show the highest interaction 

Table 4  The predicted top 5 lncRNAs interacting with P35637

Dataset lncRNAs Confirmed LPI-HyADBS LPI-SKF NRLMF Capsule CNNCP LPLNP LPBNI

Dataset 1 RPI001_966611 YES 1 206 1 198 858 6 19

RPI001_1030838 YES 2 241 50 220 652 52 201

RPI001_171640 YES 3 111 97 106 829 65 2

RPI001_1039837 NO 4 897 6 232 812 369 55

CTD-2350C19.1 YES 5 211 9 182 920 15 74

Dataset 2 n343060 YES 1 111 1 845 360 2 9

hTR NO 2 802 457 199 253 8 13

RMRP YES 3 119 4 581 843 55 289

RN7SK NO 4 286 2 678 390 72 166

7SL NO 5 311 45 177 385 117 11

Dataset 3 NONHSAT006903 YES 1 144 12 146 449 39 162

PTENP1 YES 2 26 5 60 471 18 33

RPI001_112304 YES 3 169 15 407 42 196 27

RPI001_634699 YES 4 224 32 61 190 12 61

RPI001_111205 YES 5 119 50 370 414 81 94
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probabilities, respectively. The five pairs are rank as 3, 10, 22, 15, and 1619 among all 
lncRNA-protein pairs, respectively.

ZNF667-AS1 play important roles in aberrant methylation and downregulation 
[76]. The lncRNA can inhibit inflammatory response [77], proliferation of cervical 
cancer [78], and progression of colorectal cancer [79], reduce tumor invasion and 
metastasis in cervical cancer [80], and promote recovery of spinal cord injury [77]. 
Q15717 has close relevance with embryonic stem cells differentiation. The protein 
interacts with ZNF385A to control nuclear export induced by CDKN2A and medi-
ate in part the CDKN2A anti-proliferative activity. Both ZNF667-AS1 and Q15717 
densely link with the inhibition of proliferation, and interaction between ZNF667-
AS1 and Q15717 need experimental validation.

Discussion and conclusion
lncRNAs have dense connections with multiple physiological and pathological pro-
cesses by interacting with proteins. In this manuscript, we develop an LPI inference 
framework combining an LPI feature selection algorithm based on AdaBoost and an 
ensemble learning model composed of DNN, XGBoost, and C-SVM. To observe the 
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performance of the proposed LPI-HyADBS framework, we compare it with six repre-
sentative LPI prediction approaches on five datasets under four different CVs. The six 
methods are LPI-SKF, LPI-NRLMF, Capsule-LPI, LPI-CNNCP, LPLNP, and LPBNI. 
LPI-SKF, LPLNP, and LPBNI are three representative network-based LPI prediction 
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models. LPI-NRLMF is a classical matrix factorization-based LPI identification 
approach. Capsule-LPI and LPI-CNNCP are two state-of-the-art deep learning-based 
LPI classification models.

Under all four different CVs, LPI-HyADBS achieves better prediction performance, 
significantly outperforming the other six approaches. The results demonstrate the 
strong classification ability of LPI-HyADBS. In particular, under CVp , only smaller 
samples are applied to train the model in each round. However, LPI-HyADBS still 
computes the best performance, showing its robustness under small samples. More 
importantly, CVind is conducted on independent lncRNAs and independent pro-
teins. Under CVind , all edges connecting a node from the node train set with another 
node from the node test set are removed. And seven LPI identification approaches 
are trained only on edges connecting two nodes within the node train set to infer 
interactions between two nodes within the node test set. CVind reduces the overfitting 
problem of the classification models. LPI-HyADBS obtains better performance than 
the other six approaches even under CVind . The results again show the robustness of 
LPI-HyADBS.

Capsule-LPI and LPI-CNNCP are two deep learning-based LPI prediction algorithms. 
From Tables I–IV in the Supplementary Materials and Figs. 3, 4, 5 and 6, we can find 
that LPI-HyADBS outperforms the two deep learning-based LPI inference models. More 
importantly, LPI-HyADBS integrates DNN, XGBoost, and C-SVM. Figure  7 illustrates 
that LPI-HyADBS improves LPI prediction ability compared to the three basic classi-
fiers. The results indicate that deep ensemble-based models may more accurately find 
possible interplays between lncRNAs and proteins. In addition, LPI-HyADBS calculates 
the best performance on datasets 1, 2, 4, and 5. On dataset 3, LPI-HyADBS achieves 
relatively lower performance. It may be resulted in by different structures of data.

LPI-HyADBS can precisely predict the relevances between lncRNAs and proteins. It 
may be attributed to the following advantages. First, LPI-HyADBS fuses various biologi-
cal characteristics for LPI prediction. Second, the feature selection algorithm based on 
AdaBoost selects the informative LPI features. Finally, an ensemble learning framework, 
composed of DNN, XGBoost, and C-SVM, integrates the merits of the three basic classi-
fiers and can more effectively classify unlabeled lncRNA-protein pairs.

Although LPI-HyADBS computes the best performance on three human datasets and 
two plant datasets, considering other species more relative to human may more accu-
rately evaluate LPI prediction models. Therefore, in the future, we will integrate existing 
data sources and construct LPI datasets for other species closer to human.
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LPI-HyADBS: A hybrid framework integrating feature selection based on AdaBoost, and classification models including 
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