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Abstract

The decision curve plots the net benefit (NB) of a risk model for making decisions over a range 

of risk thresholds, corresponding to different ratios of misclassification costs. We discuss three 

methods to estimate the decision curve, together with corresponding methods of inference and 

methods to compare two risk models at a given risk threshold. One method uses risks (R) and 

a binary event indicator (Y) on the entire validation cohort. This method makes no assumptions 

on how well-calibrated the risk model is nor on the incidence of disease in the population and is 

comparatively robust to model miscalibration. If one assumes that the model is well-calibrated, 

one can compute a much more precise estimate of NB based on risks R alone. However, if the 

risk model is miscalibrated, serious bias can result. Case–control data can also be used to estimate 

NB if the incidence (or prevalence) of the event (Y = 1) is known. This strategy has comparable 

efficiency to using the full (R, Y) data, and its efficiency is only modestly less than that for the 

full (R, Y) data if the incidence is estimated from the mean of Y. We estimate variances using 

influence functions and propose a bootstrap procedure to obtain simultaneous confidence bands 

around the decision curve for a range of thresholds. The influence function approach to estimate 

variances can also be applied to cohorts derived from complex survey samples instead of simple 

random samples.
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1 | INTRODUCTION

Statistical risk prediction models for disease incidence (e.g., Pfeiffer et al., 2013) or, 

following disease onset, disease recurrence (e.g., Stephenson et al., 2006) or mortality (e.g., 

Albertsen, Hanley, & Fine, 2005), are used to inform choices for preventive intervention or 
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treatment. For public health applications, they can be used to target preventive interventions 

to those with high enough risks to justify an intervention that has adverse effects and to 

identify high-risk individuals for intensive screening for early detection of disease.

Before a risk prediction model can be recommended for clinical or public health 

applications, one needs to assess how valid and useful the predictions are. General criteria 

such as calibration and discriminatory accuracy are recommended (see, e.g., Gail & Pfeiffer, 

2005; Gerds, Cai, & Schumacher, 2008). However, it is preferable to assess model utility 

in the context of a specific clinical decision, whenever possible. Suppose one must decide 

whether or not to intervene, and suppose there are two health states (such as diseased or 

not diseased). If one can define “costs” (or “losses”) for each of the four combinations 

of intervention decision and health state, there is an optimal risk threshold, which is 

independent of the risk model, above which one should intervene to minimize expected 

losses (Gail & Pfeiffer, 2005; Pauker & Kassirer, 1975). For that application, a figure of 

merit for a given risk model is the expected cost at that optimal threshold. In comparing two 

risk models, the preferred model is the one with smaller expected cost. (Instead of costs or 

losses, some investigators equivalently specify “utilities” and the preferred risk model is the 

one that yields the larger expected utility.)

A problem with this paradigm for model evaluation is defining the “costs,” which determine 

the optimal threshold. Vickers and Elkin (2006) proposed instead to examine the “net 

benefit” at threshold t, which is the probability of a true positive (the event that a case has 

risk > t), minus the product of the probability of a false positive (the event that a noncase 

has risk > t) times the threshold odds {t/(1 − t)}. The “decision curve” (Vickers & Elkin, 

2006), a plot of the net benefit (NB) over a range of thresholds, covers decision problems 

for a range of cost ratios. If one model had a higher NB curve over a range of relevant 

thresholds than a second model, the first model would be preferred. The paper by Vickers 

and Elkin (2006) has been cited over 800 times, and decision curves are popular in the 

literature (e.g., Vienot et al., 2017), but we have not seen analytical statistical methods for 

putting confidence intervals (CIs) on the NB at a given threshold or on the difference in NBs 

between two models evaluated on the same data at that threshold.

In this paper, we assume that a previously developed risk model R(x) is assessed in 

independent external “test” or “validation” data. The model is fixed, and statistical 

variability arises from estimation in the validation sample. The validation data may be 

cohort data, case–control data, if the incidence rate of disease is also known, or simply a 

random sample of projected risks, if the model is assumed to be well-calibrated. We develop 

pointwise CIs for the NBs at a given threshold and for the difference in two NBs from 

different models at that threshold. We also discuss the decision curve as a stochastic process 

in t and propose a bootstrap procedure to produce simultaneous confidence bands for the 

entire curve.

We assume thatR(x) models the probability that an individual with risk factors x will have 

a dichotomous event, Y = 1. Although this is a simple formulation, it applies to several 

important problems in clinical medicine and public health. The event Y = 1 could denote 

developing a specific disease in a defined time interval in the presence of competing risks. 
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Then all subjects who were potentially at risk for the duration of the time interval, regardless 

of whether they had a competing event, contribute complete information on Y. Following 

diagnosis, Y could represent death from the diagnosed disease in a defined time interval in 

the presence of competing causes of death. If R predicts the prevalence of a disease, then 

Y could indicate whether or not the disease was found by a medical evaluation, such as a 

biopsy.

In Section 2, we formalize model assessment based on expected costs. In Section 3, we 

define the NB and the decision curve, show how to estimate it from various types of data 

and provide tests for comparing two models. We illustrate the methods using simulations 

(Section 4) and data from an external validation study of two absolute risk models for 

invasive breast cancer in Section 5, before closing with a discussion (Section 6). As far 

as we know, this paper is the first to provide variance estimates and formal methods of 

inference for the decision curve.

2 | BACKGROUND: MODEL ASSESSMENT BASED ON EXPECTED COSTS

We are interested in predicting the probability of a binary event, Y = 1 or Y = 0 given the 

vector of baseline predictors, X. This event could denote incidence of a particular disease 

over a given time period, for example 5 years, or of dying before the end of a defined time 

interval after disease onset. Given a set of baseline predictors X, a risk prediction model 

R(x) = P(Y = 1 ∣ X = x) is a mapping from the set of possible values of X to [0,1]. In a 

specific population, the distribution of the covariates FX(x) induces the distribution F of risk 

R that has support on [0,1] through

F(r) = P(R ≤ r) = ∫
x:R(x) ≤ r

dFX(x) . (1)

We define G, the distribution of risk in those who experience the event (cases, Y = 1), as

G(r) = P(R ≤ r ∣ Y = 1), (2)

and K, the distribution of risk in noncases or controls (Y = 0) as

K(r) = P(R ≤ r ∣ Y = 0) . (3)

We denote risk realizations from F by rF, and risk realizations from cases and noncases by rG 

and rK, respectively.

We assume that a risk estimate r is used to decide to intervene or not, according to some risk 

threshold, t. The rule is to intervene if r > t and not to intervene if r ≤ t. Costs (or losses) 

for the various combinations of intervention choice and disease state are shown in Table 1. 

Letting μ ≡ P(Y = 1) denote the true probability of disease or of an adverse health outcome, 

sens(t) = 1 − G(t), the sensitivity of the risk model at threshold t, and spec(t) = K(t), the 

corresponding specificity, one can express the joint probability of being diseased and having 

the intervention as μ × sens(t). Other joint probabilities are shown in Table 1.
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If there is a cost, Ctest, associated with assessing risk, the total expected cost is

C(t) = − μ × sens(t)Bcase − (1 − μ)spec(t)Bnoncase + μCFN + (1 − μ)CFP
+ Ctest, (4)

where Bcase = CFN − CTP ≥ 0 is the NB of (or reduction in cost from) intervening on a case 

and Bnoncase = CFP − CTN ≥ 0 is the net cost from intervening on a noncase (Pfeiffer & Gail, 

2017, chapter 6). The risk threshold t* that minimizes C(t) is

t∗ = Bnoncase/ Bnoncase + Bcase = 1 + Bcase/Bnoncase
−1, (5)

and the corresponding minimum expected cost is

Cmin = − μ × sens t∗ Bcase − (1 − μ) spec t∗ Bnoncase + μCFN + (1 − μ)CFP
+ Ctest . (6)

Equation (5), first derived by Pauker and Kassirer (1975), is remarkable because the optimal 

threshold depends only on the costs and not on which risk model is used. This important 

result shows that specifying a threshold is equivalent to specifying the cost ratio Bcase/

Bnoncase.

3 | THE NB: ESTIMATION AND INFERENCE

3.1 | Definition of NB

Vickers and Elkin (2006) defined the “net benefit” at a risk threshold t as

NB(t) = μ × sens(t) − (1 − μ) 1 − spec(t) t/(1 − t) . (7)

One can obtain NB(t) from Equation (4) by discarding terms that do not depend on 

t, dividing by − Bcase, and recognizing from Equation (5) that t/(1 − t) = Bnoncase/Bcase. 

Vickers and Elkin (2006) recommended a “decision curve,” which is a plot of NB(t) against 

t. By varying t between 0 and 1, one is implicitly examining NB for a range of values of 

implied cost ratios Bnoncase/Bcase. If none receive the intervention, NB(t) = 0. If all receive 

the intervention, NB(t) = μ − (1 − μ)t/(1 − t), which is very nearly linear with slope −(1 − μ) 

for small t. The decision curve can be compared with these two loci to see whether using the 

risk model is preferable to intervening on all or intervening on none, without a risk model.

3.2 | Estimation of NB(t) from three study designs

We now discuss estimating NB in (7) nonparametrically from three types of data and derive 

the corresponding asymptotic distributions. First, we estimate NB when only a random 

sample of risk estimates riF , i = 1, …, N is observed. Such data might be obtained from a 

cross-sectional sample of a population, or from baseline information in a cohort study before 

the outcome information is available. In order to estimate NB with this design, we need 

to assume that the risk model is perfectly calibrated, which we formally define in the next 
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section. A second design is based on a case–control sample. We estimate NB using random 

samples of risks in cases, riG ∼ G, i = 1, …, m, and controls, rjK ∼ K, j = 1, …, n, provided 

that the event probability μ = P(Y = 1) in the population is known. If the case–control data 

are nested within an identified cohort, we may be able to use the disease risk in the cohort to 

estimate μ. Otherwise, we would need to estimate μ from external sources. The third design 

is a cohort study that provides not only baseline risk estimates but also outcome data. Then, 

without assumptions concerning μ or model calibration, we can estimate NB based on a 

random sample of risks in the population and their associated binary outcomes riF , Y i , i = 1, 

…, N.

3.2.1 | Estimating NB using observed risks when the risk model is well­
calibrated—A risk model R is well-calibrated if P(Y = 1 ∣ R = r) = r, that is, among 

individuals with R = r the expected proportion with Y = 1 is r. If R is well-calibrated, then 

μ = P(Y = 1) = E(R) = ∫0
1rdF(r), and the quantities 1 − G and 1 − K in cases and noncases, 

respectively, can be derived from the population distribution F(Gail & Pfeiffer, 2005) as

1 − G(r) = P(R > r ∣ Y = 1) = 1
μ∫

r

1
tdF(t), and 1 − K(r) = P(R > r ∣ Y = 0)

= 1
1 − μ∫

r

1
(1 − t)dF(t) .

(8)

Using the expressions in (8) in Equation (7) yields

NB(t) = μ 1 − G(t) − (1 − μ) 1 − K(t) t/(1 − t) = 1/(1 − t) ∫
t

1
sdF(s) −

t/(1 − t) (1 − F(t)) .
(9)

Thus if the risk model is well-calibrated, NB can be estimated from a random 

sample r1
F , …, rN

F  of risks from the continuous distribution F in a given population. Let 

r(1)
F ≤ … ≤ r(N)

F  denote the order statistics of the estimated risks, and [x] be the largest 

integer less or equal to x. For 0 ≤ t ≤ 1, let S[t] = ∑k = 1
[Nt] r(k), and let FN denote the empirical 

distribution function of F. Then an estimate of NB is

NBR(t) = S[N] − S[t] /N + t/(1 − t) 1 − FN(t) . (10)

3.2.2 | Estimation using risks in a case–control sample when μ = P(Y = 1) is 

known—We assume that risks riG ∼ G, i = 1, …, m, are available from a random sample 

of cases and risks rjK ∼ K, j = 1, …, n, are available from a random sample of noncases 

from the validation population, and that the event probability μ = P(Y = 1) in that population 

is known. This might be a reasonable assumption if cases and controls are sampled from a 
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large cohort with known disease incidence, for example. We then can estimate NB(t) using 

the empirical distribution functions

Gm r∗ = 1
m ∑

i = 1

m
I riG ≤ r∗ and Kn r∗ = 1

n ∑
i = 1

n
I riK ≤ r∗ ,

where I(arg) = 1 if arg is true and 0 otherwise. Plugging μ, Gm, and Kn into (7) yields

NBcc(t) = μ × 1 − Gm(t) − (1 − μ) 1 − Kn(t) t/(1 − t) . (11)

3.2.3 | Estimation using risks and outcomes in a population—Here, we observe 

the i.i.d. samples riF , Y i , i = 1, …, N. For a model that predicts disease incidence, these 

data would be comprised of risk estimates at baseline and observed outcomes at the end of 

the follow-up period, and for a model that predicts prevalence of a disease, the risks and 

outcomes could be based on a cross-sectional sample. Then an estimate of NB is

NBRY (t) = N−1 ∑
i = 1

N
I ri > t, Y i = 1 − t/(1 − t) I ri > t, Y i = 0 . (12)

3.3 | Variance estimates, asymptotic distributions, and pointwise CIs for 

NB—For all estimates of NB, we obtain influence function-based variance estimates, by 

treating the estimate NB(t) as a functional of empirical distribution functions for the different 

study designs. For NB estimated from any of the three designs mentioned above, we use 

a first-order approximation of the statistic T = NB(t) in terms of the empirical distribution 

function FN of the observed risks,

T FN ≈ T(F) + 1
N ∑

1

N
ψi(t), (13)

where Ψ is an influence function and Ψi are independent with EΨ = 0 (Huber, 2004). Under 

regularity conditions that assure that the remainder term in the linearization is of the order 

o(N−1), which are satisfied if T is Fréchet or Hadamard differentiable (van der Vaart, 1998), 

the variance is

var T FN = 1
N Eψ2(t) . (14)

The influence functions ψR, ψcc, and ψRY , expressions for E ψR 2, E ψcc 2, and E ψRY 2

and further details on the derivations for case–control data and observed outcomes and risks 

in a population are given in the Online Appendix.

The asymptotic normality of N1/2 NB(t) − NB(t)  for fixed t follows from (13), (14) 

and the application of the central limit theorem for all the estimates NB(t) defined in 
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the previous sections. The covariance matrix of the multivariate Gaussian distribution 

for N1/2 NB(t) − NB(t)  for any finite set of points ts, s = 1, …, S can be estimated 

based on the influence functions. For example, an estimate of N1/2cov NB t1 , NB t2 , is 

N−1∑i = 1
N ψi t1 ψi t2 .

Using asymptotic normality, pointwise CIs can be obtained as [NB(t) − 1.96 var(NB(t)) 1/2, 

NB(t) + 1.96 var(NB(t)) 1/2], where var(NB(t)) = 1
N ∑1

N ψi2. As an alternative to the influence 

functions, the bootstrap or jackknife could be used to estimate var(NB(t)).

3.4 | Confidence bands for NB

NB(t) can also be regarded as a stochastic process in t and it may be desirable to provide 

confidence bands over the whole or a partial range of thresholds.

Using results by Csörgo and Yu (1999), who showed that, under mild conditions, 

the process N1/2 S[Nt] − SF(t) , termed the “unscaled empirical Lorenz process,” 

converges to a Gaussian process, and the fact that N1/2 FN(t) − F(t) , converges to 

a Gaussian process with a Brownian bridge covariance structure, it follows that the 

process N1/2 NBR(t) − NB(t)  is Gaussian. Similarly, as NBcc is a linear combination 

of two independent empirical distribution functions Gm(t) and Kn(t), it follows 

that N1/2 NBcc(t) − NB(t)  converges to a Gaussian process with covariance function 

μ2 G(s ∧ t) − G(s)G(t) + (1 − μ)2 t/(1 − t) s/(1 − s) K(s ∧ t) − K(s)K(t) . For NBRY , the 

theoretical foundation is less clear and we have not proven that N−1/2 NBRY (t) − NB(t)
converges to a Gaussian process. Nonetheless, we assume that it does.

We propose to estimate simultaneous confidence bounds for all estimates NB(t) using the 

following bootstrap method for constructing a simultaneous confidence bound, that builds 

upon work of Bickel and Krieger (1989).

1. Define the vector of thresholds t = (0.001, 0.002…, 0.999)′ and compute NB(t)

2. Draw B, for example, B = 500 or B = 1,000 bootstrap samples with replacement 

from the observed risks, risks and outcomes, or separately from cases and 

controls.

3. For bootstrap sample b, compute NBb(t) and Db = supt NBb(t) − NB(t) , b = 1, …, 

B.

4. Let KB(d) denote the empirical distribution function of the Db and find its 1 − α 
quantile, qB = inf d:Kb(d) ≥ 1 − α .

5. 5. The 95% confidence band is then given by NB(t) ± qN.

Pfeiffer and Gail Page 7

Biom J. Author manuscript; available in PMC 2021 November 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.5 | Comparing two risk models

Here, we compare NB1 and NB2 from two risk models, R1 and R2, evaluated on the same 

validation data. For example, the risk model R1 might be compared to a model R2 that 

additionally includes a new molecular marker.

The risk model with larger NB over a relevant range of values of t might be preferred to 

another, that is if NB2(t) > NB1(t) for t ∈ [t0, t1], then model 2 is preferred to model 1.

For fixed t, we propose tests based on the estimates in Section 3.2 to assess whether, 

NB1(t) = NB2(t),

TNB(t) =
N NB1(t) − NB2(t) 2

V T
. (15)

V T  is a consistent estimate of the variance of the difference of the estimates that can be 

computed based on the respective influence functions ΨR1 and ΨR2 for models 1 and 2 as 

V T = var ψR1 − ψR2 , or alternatively, by using a bootstrap variance estimate. Asymptotically 

all test statistics, TNB have a central χ1
2 distribution under H0. Under the alternative, 

the noncentrality parameters for the test statistics are δNB = N NB1 − NB2
2/V T . For case–

control data, N = n + m in these expressions.

4 | SIMULATIONS

4.1 | Efficiency comparison

We use simulations to investigate the properties of the estimates of NB defined in Section 

3.2 and to compare their efficiency. We assume that the population distribution of risk is 

a beta distribution with parameters α and β, Beta(α, β). In this setting, the distributions 

of risk in cases and noncases are also beta distributions, given by G(r) = Beta(α + 1, β) and 

K(r) = Beta(α, β + 1), and μ = α/(α + β). Thus, NB(t) in (7) is easily computed theoretically.

To create data for each of the study designs, we first simulated individual risks riF , i = 1, …, 

N, and then generated the binary outcomes Yi from a binomial distribution with probability 

ri. For the estimates using the population-based risks and the risks and outcomes, we used 

all the observations of riF  or (riF), respectively. To simulate a case–control study, we sampled 

all the cases that arise in the population and three controls for each case, yielding on average 

m = 500 cases and n = 1,500 controls with μ = .05 and N = 10,000. The subscripts R, 

CC, and RY refer to estimates based on the population risks only, on risks observed for a 

case–control sample with known disease prevalence μ, and on risks and observed outcomes 

in the population, respectively.

For each simulated data set, we estimated variances estimated from Equation (14), with Eψ2

replaced by (1/N) ∑iψi2. We present the square root of the means of these variance estimates 

over all simulations in Tables 2 and 3, labeled as standard deviations. We compared the 
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efficiency of the various estimates using the ratios of the mean influence function-based 

variances estimates (VarRatio).

Table 2 gives results for 500 simulations each based on a random sample of size N=10,000 

for a rare disease. The parameters of the beta distribution were (α, β) = (6.55, 124.45), 

(1, 19.0) and (3, 5.7) with expected risk μ = E(R) = .05 for each (α, β) pair. The values 

of the AUC, the area under the receiver operating characteristic (ROC) curve, that can be 

expressed as the probability that the risk r for a randomly selected case exceeds that for a 

randomly selected control (Pepe, 2003, p. 67), for these parameter choices are 0.61, 0.76, 

and 0.88, respectively, corresponding to models with moderate to high discriminatory ability. 

The mean estimates of NB were virtually identical to the theoretical values for all estimators 

and risk thresholds. NB decreased as t increased.

The standard deviations estimated using the influence functions agreed very well with the 

empirical standard deviations of NB for all designs. As indicated by the VarRatios, NBRY
was much less precise than NBR. For example, for (α, β) = (6.55, 124.45) the VarRatio for 

NBRY  compared to NBR ranged from 132.73 to 388.07. NBRY  was usually somewhat less 

precise than NBcc. Estimates NBCC were less precise than NBR except for t ≤ 0.03 and AUC 

= 0.88 (α, β) = (.3, 5.7). These results for NBCC assumed μ = .05 was known. When instead 

we substituted μ = Y , NBCC was slightly less precise than NBRY , as shown in the column 

labeled “emp (μ)” of Table 2. The corresponding empirical variance ratios RY/CC were near 

0.8.

We conducted simulation studies for the three beta distributions of risk in Table 1 to 

assess coverage of our proposed bootstrap procedure to obtain confidence bands. In 

each simulation, we generated 500 data sets to estimate the proportion of times that the 

confidence bands covered the entire true NB curve. For NBR, one minus the coverage was 

0.074 (95%CI: 0.0526, 0.100) for (α = 6.55, β = 124.45), 0.052 (0.0342, 0.0753) for (α = 1, 

β = 19), and 0.042 (0.0262, 0.0635) for (α = .3, β = 5.7). For NBcc, one minus the coverage 

was 0.034 (95%CI: 0.0199, 0.0539) for (α = 6.55, β = 124.45), 0.032 (0.0184, 0.0514) for 

(α = 1, β = 19), and 0.040 (0.0246, 0.0611) for (α = .3, β = 5.7). For NBRY , one minus 

the coverage was 0.06 (95%CI: 0.0408, 0.0846) for (α = 6.55, β = 124.45), 0.048 (0.031, 

0.0706) for (α = 1, β = 19), and 0.044 (0.0278, 0.0659) for (α = .3, β = 5.7), respectively. 

Thus this algorithm provides near nominal simultaneous coverage of the NB curve for all 

types of estimates.

4.2 | Impact of model miscalibration

Here, we again assumed that the population distribution of true risk is a beta 

distribution with parameters α and β, but obtained estimates NB(t) based on 

miscalibrated risks r1, …, rn obtained from the true risks ri, i = 1, …, N as 

ri = exp γ1 log ri/(1 − ri / 1 + exp γ1log ri/ 1 − ri . The results in Table 3 are based on γ1
= .8, resulting in overdispersion of the misspecified risks, with mean miscalibrated risks of 

0.07 to 0.09, instead of μ = .05. We used the correct μ = .05 in Equation (11) to obtain NBcc.
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Estimates NBR were much larger than the true values of NB, regardless of AUC(Table 3). 

NBRY  and NBCC were very similar and were on average slightly lower than the true NB, 

with very small biases for AUC = 0.61 but slightly larger biases for higher AUC. Influence 

function-based variances agreed with empirical variances, and NBRY  was less precise than 

NBR and NBCC.

4.3 | Comparing two risk models

We examined the size and power of a test (15) for comparing risk models 1 and 2 when 

NBi(t), i = 1, 2 are estimated from the three types of validation data. To simulate bivariate 

risks with outcome data, we first drew a random number m of cases (Y = 1) in a population 

of size N from a binomial distribution with parameter μ, and assigned the remaining n = 

N − m individuals to be controls (Y = 0). To obtain correlated risk estimates from the two 

models that have marginal beta distributions, we first generated bivariate normal random 

variables Xi1, Xi2 ∼ MV N((0, 0), Σ)i = 1, …, N, where Σ11 = Σ22 = 1 and Σ12 = Σ21 = ρ. We 

then separately computed risks for the m cases and n controls from ri1 = F1
−1 ∘ Φ Xi1  and 

ri2 = F2
−1 ∘ Φ Xi2 , where Fk

−1, k = 1, 2, denotes the inverse of the beta distribution function 

with parameters αk + 1, βk  for cases and parameters αk, βk + 1) for controls, and Φ is the 

standard normal distribution. This yielded a random sample (ri1, ri2, Yi), i = 1, …, N. We 

fixed (α1, β1) = (6.55, 124.45) and let (α2, β2) vary to assess the performance of the tests for 

risk models with different AUC values. The parameters were chosen so that μ = .05 for all 

settings for both models.

We computed TNB in Equation (15) with the variance estimated by the empirical variance 

of the differences of the paired influences for the two risk models. Size and power were 

estimated based on 500 simulations for each choice of parameter values, each based on 

N=10,000 bivariate risks, or bivariate risks and outcomes, or on a case–control study with 

bivariate risks from cases and from three controls per case.

All tests had the correct 0.05 type one error level, when the risk models were generated from 

the same parameters for the beta distributions (Table 4). Table 4 highlights that estimates 

computed under the assumption of a well-calibrated model have better power than those 

relying on risks and outcome data. For example, for (α2, β2) = (4, 76), corresponding to an 

AUC = 0.64 for model R2 compared to AUC = 0.61 for model R1, the power was 0.906 for 

t = 0.03 for TR, but only 0.176 for TCC and 0.218 for TRY, and did not increase noticeably 

with larger values of t. Only for (α2, β2) = (42, 38), corresponding to an AUC = 0.69 for 

model R2, was the power high for TCC and TRY, with respective values 0.683 and 0.690 for t 
= 0.02 and respective values 0.882 and 0.932 for t = 0.03.

The test TRY had higher power than TCC. For both tests, the power decreased slightly for 

large values of t.
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5 | DATA EXAMPLE

To illustrate the estimation methods, we used a subset of the data from the external 

validation study, derived from the Nurses’ Health Study (NHS) cohort, that was used to 

evaluate an absolute risk model for invasive breast cancer with potentially modifiable risk 

factors (BC2013) (Pfeiffer et al., 2013). The predictors in the BC2013 model are age and 

race/ethnicity of a woman, her family history of breast or ovarian cancer, personal history of 

benign breast disease/breast biopsies, estrogen and progestin menopausal hormone therapy 

(MHT) use, other MHT use, age at first live birth, menopausal status, age at menopause, 

alcohol consumption, and body mass index (BMI).

We also compared the BC2013 model to another absolute breast cancer risk model, the 

National Cancer Institute’s Breast Cancer Risk Assessment Tool (BCRAT), which includes 

modifications of the original “Gail model” (Gail et al., 1989), as described previously 

(Costantino et al., 1999). BCRAT predicts a woman’s breast cancer risk based on her 

age and race/ethnicity, family history of breast cancer, personal history of breast biopsy 

and diagnosis of atypical hyperplasia, her age at her first live birth of a child and age at 

menarche. BMI, MHT, and alcohol use are not included as predictors in BCRAT, and age at 

menarche and a diagnosis of atypical hyperplasia are not included in BC2013.

All examples and comparisons were based on 5-year absolute risk estimates from BC2013 

and BCRAT for the 17,085 women aged 50–55 years at baseline in the NHS cohort, so R 
can be interpreted as a 5-year absolute risk of breast cancer. In this population, 252 incident 

breast cancers were observed. For both models, the estimate of the AUC was 0.62. The 

Hosmer–Lemeshow goodness-of-fit statistic was 16.9 for BC2013, with corresponding p = 

.03, and 13.6 for BCRAT, with p = .09, indicating some of lack of fit for BC2013, when 

compared to χ8
2(.95) = 15.507.

NBcc was estimated using the observed disease incidence μ = Y  in the population. Figure 1 

shows the estimated NB plots for BC2013 from different study designs. There were only 

small differences between the three curves. For example, for t = 0.0166, a threshold on 

the drug label for the use of tamoxifen to prevent breast cancer, the estimated NBs were 

NBRY  = 0.0016 (95%CI: 0.0006 to 0.0027), NBR = 0.0007 (95%CI: 0.00069 to 0.0008), and 

NBcc = 0.0015 (95%CI: 0.0005 to 0.0025). The lower estimate of NBR reflects some lack of 

calibration of the model.

The 5-year risk threshold for the tamoxifen drug label, 1.66%, is too low for many women in 

view of adverse effects of tamoxifen (Gail et al., 1999). In fact, for women in their 50s, the 

5-year risk threshold above which the benefits of tamoxifen of reducing from breast cancer 

incidence outweigh the risks is 4.5% (Freedman et al., 2011). Figure 1 shows that there is 

negligible benefit from using tamoxifen and treating the very small portion of the population 

with risks above this threshold. With safer interventions, lower thresholds could be used, and 

there might be positive net benefits, even with a model that had low discriminatory accuracy 

like BC2013 (Figure 1).
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Figure 2 shows the NB curve estimated using NBRY  for BC2013 with 95% pointwise CIs 

and with the bootstrap based confidence bands for t ∈ [0, 0.05]. It can be seen that for 

t < 0.01 the pointwise CIs and the confidence bands are very close, but for t > 0.01 the 

confidence bands are much wider.

When we compared the two models, the estimated NBs were identical, with NBRY  (0.0016) 

for BCRAT and BC2013. None of the tests based on the three designs yielded statistically 

significant differences in NB values for the two models.

6 | DISCUSSION

We have given three methods to estimate the NB curve, together with corresponding 

methods of inference and methods to compare two risk models at a given risk threshold. 

Estimation based on risk and outcome data (R, Y) was proposed by Vickers and Elkin 

(2006). It makes no assumptions on how well-calibrated the risk model is nor on the 

incidence of disease in the population. It is therefore robust to model miscalibration, but, as 

our calculations showed, the standard errors of the estimates can be large. If one is willing 

to assume that the model is well-calibrated, we have shown how to compute a much more 

precise estimate of NB based on risks R alone. However, if the risk model is miscalibrated, 

large bias can result. Van Calster and Vickers (2015) showed that miscalibrated models 

lead to smaller NB than the correct model, but they did not investigate the estimation of 

NB under a miscalibrated model. Case–control data can also be used to estimate NB if 

the incidence (or prevalence) μ of the outcome Y = 1 is known. This strategy has greater 

efficiency than using the full (R, Y) data but relies on knowing μ, for which reliable 

information may not be available. If one has data on Y for all members of a cohort, however, 

and if the case–control sample is nested within the cohort, our simulations show that by 

using μ = Y , the incidence in the cohort in place of μ, the case–control approach with three 

controls per case is nearly as precise (VarRatio ≈ 0.8) as using the full (R, Y) data. In this 

setting, NBcc requires risk data only on a small fraction of the cohort if the disease is rare. 

If the case–control sample is nested within a cohort and if the risk information is obtained 

from stored baseline cohort data, the case–control approach should be quite reliable. In other 

settings, the case–control data may be subject to selection bias and mismeasurement of risk 

factors.

We also present methods for testing for a difference in NB between two risk models 

evaluated on the same validation data at a given threshold. Unless one is certain that both 

models are well-calibrated, one should avoid the comparison based on R alone. Likewise, 

one should not use the case–control method unless one has good data on prevalence in the 

source population. If one knows the outcomes for all members of the validation cohort, 

however, one can rely on the (R, Y) method or on a properly conducted case–control study 

within the cohort. The power to demonstrate superiority of one model over another can be 

limited, which adds a useful perspective on informal graphical assessment.

Using the influence function method, we can also derive covariances of the NB estimates 

at different thresholds. Such procedures could allow us to put confidence ellipsoids around 

the NB at several thresholds and to compare two tests at several thresholds using a test with 
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multiple degrees of freedom. We showed that NBR and NBcc can be treated as Gaussian 

processes in t and conjectured this is also true for NBRY . We proposed a bootstrap procedure 

that had proper coverage for simultaneous confidence bands based on NBR, NBcc, and NBRY .

Some of the variance calculations we performed using influence functions could have been 

derived by simpler methods. However, the influences we gave can be used to compute the 

variance of NBRY (t), for example, if the cohort was obtained from a complex survey that 

might involve stratification and cluster sampling, such as the NHANES (National Health and 

Nutrition Examination Survey (Cox et al., 1992)).

We give pointwise CIs for a given t because certain risk thresholds are in medical use 

for specific risk models (e.g., the drug label for tamoxifen says that only women with 

5-year breast cancer risk above 1.66% should take it). We also give simultaneous confidence 

bounds in case one wants to bound the NB over the entire range of thresholds.

In our examples, pointwise CIs nearly coincide with simultaneous CIs for small thresholds 

but were much narrower for large thresholds. Future research might attempt to develop 

simultaneous CIs that are proportional to the pointwise CIs.

We assumed that the risk model was evaluated in an independent validation data set, which 

allows the most rigorous and unbiased assessment of model performance. Ideally, such 

validation data arise from the relevant target population. However, sometimes independent 

validation data may not be available. If one uses the same data, both to estimate the model 

and compute the decision curve, then, depending on the size of the data set, five or 10-fold 

cross-validation could be used to avoid overestimation of performance.

There are many criteria that can be used to evaluate the validity and potential usefulness of 

a risk model (see, for example, Gail & Pfeiffer, 2005; Pfeiffer & Gail, 2017; Steyerberg, 

2009). Few of these criteria directly address the value of a risk model for making a specific 

dichotomous medical decision, however. The decision curve (Vickers & Elkin, 2006) and the 

EUROC plot (Hilden, 1991) address this problem by combining information on sensitivity, 

specificity, disease prevalence, benefits of true positive tests, and costs of false negative tests, 

all of which are needed to estimate expected losses when using the model. The paper on the 

decision curve (Vickers & Elkin, 2006) has already been cited extensively. Vickers, Cronin, 

Elkin, and Gonen (2008) and Kerr, Brown, Zhu, and Janes (2016) proposed pointwise CIs 

for the decision curve based on a bootstrap, but our paper is the first to provide analytic 

variance estimates and formal analytic methods for inference for this important curve.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Decision curves for BC2013 for 50–55-year-old women from the Nurses’ Health Study 

validation study
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FIGURE 2. 
Decision curves for BC2013 for 50–55-year-old women from the Nurses’ Health Study 

validation study with 95% pointwise confidence intervals (dotted lines) and 95% confidence 

bands (solid lines)
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TABLE 1

Definitions for a decision problem with two health states and two intervention options

Intervention Disease state Costs Risk criterion at threshold t Outcome probability

Yes Diseased CTP r > t μ × sens(t)

No Diseased CFN r ≤ t μ × {1 − sens(t)}

Yes Not Diseased CFP r > t (1 − μ){1 − spec(t)}

No Not Diseased CTN r ≤ t (1 − μ)spec(t)

Abbreviations: C, cost; r, risk; t, threshold; μ, probability of disease or adverse outcome; sens, sensitivity; spec, specificity.
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TABLE 2

Mean values of 100 * NB(t) estimated using observed risks R in a population assuming that the model is 

well-calibrated; risk estimates in a case–control sampling when the disease prevalence μ is known, and based 

on observations of (R, Y) in the population

Standard deviation of 100 * NB

100 * NB R CC (R, Y) VarRatio

t true R CC (R, Y) emp infl emp (emp(μ)
a
) infl emp infl CC/R RY/R RY/CC

α = 6.55, β = 124.45*

0.02 3.07 3.07 3.07 3.07 0.02 0.02 0.02 (0.23) 0.02 0.23 0.22 1.39 132.94 95.83

0.03 2.15 2.15 2.14 2.15 0.02 0.02 0.06 (0.22) 0.06 0.22 0.22 11.08 139.15 12.56

0.04 1.36 1.37 1.37 1.37 0.02 0.02 0.1 (0.21) 0.10 0.20 0.20 38.98 153.73 3.94

0.05 0.79 0.79 0.79 0.79 0.01 0.01 0.13 (0.19) 0.13 0.18 0.18 92.49 178.79 1.93

0.06 0.42 0.42 0.43 0.42 0.01 0.01 0.12 (0.15) 0.13 0.14 0.15 170.31 214.02 1.26

0.07 0.21 0.21 0.20 0.21 0.01 0.01 0.12 (0.13) 0.12 0.11 0.11 270.05 262.23 0.97

0.08 0.09 0.09 0.10 0.10 0.00 0.00 0.09 (0.1) 0.09 0.08 0.08 390.57 321.22 0.82

0.09 0.04 0.04 0.04 0.04 0.00 0.00 0.07 (0.07) 0.07 0.06 0.06 513.47 381.24 0.74

α = 1, β = 19**

0.02 3.41 3.41 3.41 3.42 0.04 0.05 0.06 (0.22) 0.06 0.22 0.21 1.60 22.20 13.84

0.03 2.80 2.81 2.81 2.82 0.04 0.04 0.08 (0.21) 0.08 0.21 0.21 3.52 23.28 6.61

0.04 2.30 2.30 2.29 2.30 0.04 0.04 0.10 (0.22) 0.10 0.22 0.20 6.21 24.45 3.94

0.05 1.89 1.89 1.89 1.88 0.04 0.04 0.11 (0.20) 0.12 0.19 0.19 9.40 25.91 2.76

0.06 1.54 1.54 1.54 1.54 0.04 0.04 0.12 (0.19) 0.13 0.19 0.18 13.24 27.59 2.08

0.07 1.26 1.26 1.26 1.27 0.03 0.03 0.13 (0.19) 0.13 0.17 0.17 17.52 29.34 1.68

0.08 1.03 1.02 1.02 1.02 0.03 0.03 0.14 (0.19) 0.14 0.17 0.16 22.34 31.04 1.39

0.09 0.83 0.83 0.84 0.83 0.03 0.03 0.13 (0.17) 0.14 0.15 0.15 27.72 33.13 1.20

α = 3, β = 5.7***

0.02 3.95 3.95 3.94 3.95 0.08 0.08 0.05 (0.21) 0.05 0.21 0.21 0.47 7.33 15.46

0.03 3.57 3.56 3.57 3.55 0.08 0.08 0.07 (0.22) 0.07 0.21 0.21 0.86 7.53 8.76

0.04 3.24 3.24 3.24 3.23 0.07 0.07 0.09 (0.22) 0.09 0.22 0.21 1.31 7.75 5.93

0.05 2.95 2.95 2.95 2.95 0.08 0.07 0.10(0.2) 0.10 0.19 0.21 1.82 8.00 4.40

0.06 2.69 2.69 2.68 2.70 0.07 0.07 0.11 (0.21) 0.11 0.20 0.20 2.39 8.22 3.44

0.07 2.46 2.46 2.46 2.46 0.07 0.07 0.11 (0.20) 0.12 0.19 0.20 3.03 8.47 2.79

0.08 2.25 2.25 2.25 2.25 0.07 0.07 0.13 (0.20) 0.13 0.20 0.19 3.73 8.72 2.34

0.09 2.06 2.07 2.06 2.06 0.07 0.06 0.14 (0.22) 0.13 0.20 0.19 4.47 8.97 2.01

Note. Results are based on 500 simulations for each set of parameters (α, β) for the beta distribution and values of threshold t. Each simulation has 
N = 10, 000 samples with μ =.05. For the case–control design, three controls were sampled for each case. Variance ratios (VarRatios) are computed 
as the ratio of the influence function-based variances.

*
AUC = 0.61;

**
AUC = 0.76;

***
AUC = 0.88.
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Abbreviations: emp, empirical; infl, influence function-based; CC/R, var(NBCC)/var(NBR); RY/R, var(NBRY)/var(NBR); RY/CC, var(NBRY)/

var(NBCC).

a
Standard deviations of NBCC with μ = Y  substituted for μ.
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TABLE 3

Mean values of NB(t) estimated from different study designs under model miscalibration

Standard deviation of 100 * NB

100 * NB R CC (R, Y)

t true NB R CC (R, Y) emp infl emp infl emp infl

α = 6.55, β = 124.45*

0.02 3.07 6.68 3.06 3.06 0.03 0.03 0.00 0.00 0.22 0.22

0.03 2.15 5.72 2.07 2.06 0.03 0.03 0.01 0.01 0.23 0.22

0.04 1.36 4.74 1.09 1.10 0.03 0.03 0.02 0.02 0.23 0.23

0.05 0.79 3.78 0.20 0.21 0.02 0.03 0.05 0.05 0.25 0.23

α = 1, β = 19**

0.02 3.41 6.24 3.29 3.29 0.06 0.06 0.03 0.03 0.21 0.22

0.03 2.80 5.46 2.60 2.61 0.06 0.06 0.05 0.05 0.22 0.22

0.04 2.30 4.74 2.01 2.01 0.05 0.06 0.07 0.07 0.22 0.22

0.05 1.89 4.09 1.54 1.54 0.06 0.05 0.09 0.09 0.23 0.22

0.06 1.54 3.51 1.14 1.14 0.05 0.05 0.11 0.11 0.21 0.21

0.07 1.26 3.00 0.83 0.84 0.05 0.05 0.13 0.13 0.21 0.21

0.08 1.03 2.54 0.59 0.59 0.05 0.05 0.14 0.14 0.20 0.20

0.09 0.83 2.15 0.38 0.38 0.04 0.04 0.16 0.15 0.20 0.20

α = 0.3, β = 5.7***

0.02 3.95 5.80 3.85 3.86 0.09 0.09 0.04 0.04 0.23 0.22

0.03 3.57 5.32 3.43 3.43 0.09 0.09 0.05 0.05 0.22 0.22

0.04 3.24 4.87 3.08 3.08 0.09 0.09 0.07 0.07 0.23 0.22

0.05 2.95 4.46 2.77 2.77 0.08 0.08 0.08 0.08 0.22 0.22

0.06 2.69 4.10 2.50 2.50 0.08 0.08 0.09 0.10 0.21 0.22

0.07 2.46 3.77 2.25 2.27 0.08 0.08 0.11 0.11 0.22 0.21

0.08 2.25 3.46 2.04 2.05 0.08 0.08 0.12 0.12 0.21 0.21

0.09 2.06 3.17 1.85 1.84 0.08 0.07 0.13 0.13 0.21 0.21

Note. Results are based on 500 separate simulations for each set of parameters (α, β) for the beta distribution and values of threshold t. Each 
simulation has N = 10,000. For the case–control design, three controls were sampled for each case. Miscalibrated risks used to estimate NB were 

derived from true risks r via exp{0.8 * logit(r)} + 1]−1.

*
AUC = 0.61;

**
AUC = 0.76;

***
AUC = 0.88.

emp, empirical; infl, influence function-based.
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TABLE 4

Proportion of rejections of the null hypothesis H0: NB1(t) = NB2(t) based on 500 simulations for comparing 

estimates of NB for two risk models evaluated on the same validation data, when NB(t) is estimated, using 

observed risks R in a population assuming that the model is well-calibrated; using risk estimates from a case–

control sample when the disease prevalence μ is known; and using observations of (R, Y) in the population

Proportion rejected H0 for

(α1, β1) (α2, β2) AUC 1 AUC 2 t TR TCC TRY

(6.55,124.45) (6.55,124.45) 0.61 0.61 0.02 0.050 0.036 0.034

0.03 0.046 0.054 0.054

0.04 0.054 0.044 0.042

0.05 0.044 0.062 0.070

0.06 0.052 0.052 0.050

(6.55,124.45) (4,76) 0.61 0.64 0.02 0.150 0.108 0.116

0.03 0.906 0.176 0.218

0.04 1.000 0.192 0.266

0.05 1.000 0.240 0.272

0.06 1.000 0.208 0.234

(6.55,124.45) (3,57) 0.61 0.66 0.02 0.418 0.286 0.306

0.03 1.000 0.442 0.524

0.04 1.000 0.570 0.648

0.05 1.000 0.560 0.640

0.06 1.000 0.424 0.522

(6.55,124.45) (2,38) 0.61 0.69 0.02 0.946 0.684 0.69

0.03 1 0.882 0.932

0.04 1 0.934 0.974

0.05 1 0.924 0.978

0.06 1 0.872 0.944

Note. Results are based on data sets with N = 10, 000 and 500 simulations for each set of parameters and values of threshold t. For the case–control 
design, three controls were sampled for each case.
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