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ABSTRACT: We present a robotic chemical discovery system

capable of navigating a chemical space based on a learned general y

association between molecular structures and reactivity, while 080 oy

incorporating a neural network model that can process data from
online analytics and assess reactivity without knowing the identity
of the reagents. Working in conjunction with this learned
knowledge, our robotic platform is able to autonomously explore
a large number of potential reactions and assess the reactivity of
mixtures, including unknown chemical spaces, regardless of the
identity of the starting materials. Through the system, we identified eI G2ED Online analytics
a range of chemical reactions and products, some of which were ‘
well-known, some new but predictable from known pathways, and

some unpredictable reactions that yielded new molecules. The

validation of the system was done within a budget of 15 inputs combined in 1018 reactions, further analysis of which allowed us to
discover not only a new photochemical reaction but also a new reactivity mode for a well-known reagent (p-toluenesulfonylmethyl
isocyanide, TosMIC). This involved the reaction of 6 equiv of TosMIC in a “multistep, single-substrate” cascade reaction yielding a
trimeric product in high yield (47% unoptimized) with the formation of five new C—C bonds involving sp—sp* and sp—sp® carbon
centers. An analysis reveals that this transformation is intrinsically unpredictable, demonstrating the possibility of a reactivity-first
robotic discovery of unknown reaction methodologies without requiring human input.
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B INTRODUCTION automatically lead to the serendipitous discovery of entirely
new transformations while, on the other hand, the discovery of
new reaction pathways from first principles (i.e., in silico, based
on quantum mechanics) is hard due to both the combinatorial
explosion of possible reaction pathways and the computational
cost of accurate modeling of the energy hypersurface. To
overcome these limitations, an increasing number of approaches
are starting to involve a feedback loop from the online analytics
and a decision-making algorithm to perform only a fraction of
the possible combinations, considered interesting.”” In such a
“closed-loop”**~* approach, the system automatically explores
a chemical space in a trial-and-error fashion mimicking a human

Many discoveries in the chemistry laboratory are the result of
chance observations, and it is hard to know ahead of time where
a new reaction or molecule will be found." We can explore
chemical space mathematically using rule-based generation
methods® or by mapping chemical reaction databases,> but
much of the search is done through traditional approaches using
cheminformatics,® artificial intelligence,7_10 or computa-
tion.'"'* Reactivity-first approaches'”'* have only recently
been tentatively explored, but the vast majority of organic
synthesis is target-oriented, > which means that the discovery of
new reactions is a chance event or results from the need to access
a new transformation.'® The development of new trans-
formations and methodologies'” however is a complex problem
requiring a high degree of expert knowledge.ls’19 Furthermore,
the current approaches to reaction or method discovery are
generally constrained to known heuristics, and the discovery of
novel reactions is rare. The search for unexpected results can be Received:  April 7, 2021
accelerated with automated systems, and in the past decade Published: November 11, 2021
high-throughput experimentation®” has shown its potential in

speeding up reaction preparation and analysis (typically applied

in reaction optimization and combinatorial chemistry).”' >

However, an increase of reaction throughput does not

experimenter. The system requires three main parts: a chemical
robot to perform and analyze the reactions, a program for
interpretation of analytical data, and an algorithm that correlates
the outcome of the reaction with the input and process
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parameters. This last part closes the loop by suggesting the
predicted optimal parameters for the next reactions (Figure 1).
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Figure 1. Closed-loop framework for chemical space exploration. A
liquid handling robot performs an experiment and collects NMR and
MS spectra. These data are processed to assess reactivity and create a
model of the chemical space that is queried to formulate the next
experiment to be performed.

Although closed-loop approaches have proved effective in
reaction optimization, their application toward the discovery of
new reactions remains underexplored. This is because assessing
the reactivity of an unknown reaction with unpredictable
products is harder than using metrics meant for optimization of a
known target compound, such as yield or selectivity. For
autonomous reactivity-first discovery to become feasible, both
the analytical method as well as reactivity detection algorithm
need to be general-purpose and robust. Proton NMR spectros-
copy is applicable to a wide range of samples, and inexpensive
benchtop instruments amenable to online analysis are available.
Still, there are no general-purpose automated algorithms to
detect reactivity solely relying on the NMR spectra of the
starting materials and that of the reaction mixture. Many

reactions are known to lead to subtle changes in the spectrum. In
contrast, many trivial phenomena, e.g., proton exchange, can
manifest as in visually distinct spectra, requiring an expert to
discern whether or not something significant has occurred. In
response to this challenge, we devised a convolutional neural
network called Reactify that can automatically assess the
reactivity of NMR spectra that it has never seen before, having
captured the expertise of the human chemist during training.
While binary reactive/nonreactive classification of reactions has
led to progress,' ** we hypothesized that a continuous measure
would allow the system to abstract the notion of reactivity, rather
than restrict it to a given fixed set of reagents. The Reactify
network’s ability to assign reactivity values to “unseen” reaction
mixtures was then coupled with a closed-loop system aimed at
exploring the reactivity of an experimental space. This system
comprises a liquid handling platform to prepare and analyze the
reactions, Reactify to assign reactivities to the resulting spectral
data, and a structural reactivity prediction model to generalize
the observed reactivities to the unexplored parts of the chemical
space.

B RESULTS AND DISCUSSION

The Chemical Robot. To emulate a human chemist,
experiments were performed in conventional round-bottom
flasks that were automatically cleaned after each reaction by
flushing them with clean solvent. Starting materials were stored
as 1 M stock solutions in dimethyl sulfoxide (DMSO), and the
platform used 30 syringe pumps with integrated valves to mix
them into six parallel reactors at room temperature. The
chemical space was expanded with the addition of either a Lewis
acid (24) or a base (23) in order to change the chemical
environment. As a further expansion, three of the reactors were
also equipped with visible-light light emitting diodes (LEDs) to
promote photochemical reactions. During the exploration of
chemical space 2 (Figure 3c), the reactions performed in these
reactors were prepared by adding 2.5 mol % of a known
photocatalyst, associated with the LED wavelength: 2,4,6-
triphenylpyrylium tetrafluoroborate (PC1, 405 nm), tris(2,2'-
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Figure 2. Liquid handling platform. (a) Schematic of the platform. A series of reagents are added by dedicated pumps to a mixer flask. A pump
expanded with two extra valves (obtained by removing the syringe from a normal pump) is used to transfer the reaction mixture in one of the six
1-6 . . . . . .
reactors' ° (red); another pump with the same setup (blue) is used to connect the reactors with the benchtop NMR. Finally, a third expanded pump is
used for an in-line dilution prior to injection in the MS (green). (b) Picture of the platform. The pumps are visible on the shelves, on two lines. At the
bottom, there is the NMR instrument equipped with a flow probe. The MS is on the left and the reactors in the center, while the reagents, the solvent
drum, and the waste container are on the left. (c) Six parallel reactions were started with a time-offset to allow the platform to continuously perform

physical operations.
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Figure 3. CNN assessment of reactivity in two different chemical spaces. (a) Structure of the neural network used to assign the reactivity to the NMR
spectra. Data of the mixture and the sum of starting materials are used as input. The network is trained using 440 reactions from a chemical space (b)
and tested on 1018 reactions performed from combinations of 15 different molecules (c). (d) The accuracy on the test set plotted as a confusion matrix
shows that the network successfully learned to generalize the reactivity beyond reagents in the training set. (e) All data were manually classified into

four classes.

bipyridyl)dichlororuthenium(II) hexahydrate (PC2, 450 nm),
and rose bengal (PC3, 565 nm). After 3 h, the mixtures were
analyzed automatically with a benchtop NMR and MS. The
software managed the preparation and analysis of the reactions.
It was designed to run them in parallel by shifting each
experiment starting time to efficiently share the online analytics
and cleaning cycles. These physical operations (analysis—
cleaning—reaction preparation) lasted around 40 min; hence,
having 6 parallel reactors, the individual reaction time is
calculated as (6 X 40) — 40 = 200 min. Through this optimized
schedule, it was therefore possible to perform up to 36 reactions
per day, each with a reaction time of 3.3 h giving a total of over
100 reaction hours per day (Figure 2).

The Reactify Neural Network. Initially, we randomly
sampled a chemical space made of six simple molecules
(chemical space 1, Figure 3b) mixed in binary and tertiary
random combinations. The reaction parameters involved
different reagent ratios, different temperatures, and the presence
ofabase (DBN, 7) yielding 440 reactions. We used the "H NMR
spectra collected during this exercise to train a convolutional
neural network (CNN, Figure 3a) called Reactify that mimics
the reactivity assignments made by a human experimenter. To
do so, the reactions were manually scored by an expert organic
chemist using four classes of reactivity (0, nonreactive; 3, very
reactive) describing the difference between the reaction mixture
and the superimposed '"H NMR spectra of the starting materials.
High values were assigned to mixtures with several new peaks

1823

and the disappearance of the starting material signals. Experi-
ments showing little or chemically insignificant spectral changes
were assigned a low reactivity class (Figure 3e).

The Reactify reactivity assignment model was designed
purposely without any information about the chemical
structures of the materials and trained to detect reactive
reactions by correlating the raw spectroscopic data to the values
assigned by a chemist. The network was built using a
combination of convolutional and dense layers, taking as input
a pair of NMR spectra corresponding to the mixture before and
after the reaction, the former estimated by superimposing the
spectra of the starting materials. The output was designed to vary
continuously between 0 and 1 and trained using the reactivity
classes described above normalized to 1 (0 =0, 1 = 0.33,2 =
0.66, 3 = 1). Since the four classes are not evenly distributed in
the chemical space—unreactive combinations (reactivity = 0)
make up 45% of the space—we implemented a weighted loss
function based on the relative abundance of each class in order
to emphasize the correct prediction of the less abundant reactive
examples. Following the training on data from 440 initial
reactions (chemical space 1), the model’s performance was
evaluated on 1018 reactions between 1S different starting
materials (chemical space 2, Figure 3c). The results are shown in
Figure 3d, where the confusion matrix compares the class
assignments made by the neural network (predicted) versus
manual assignment (true values). The network predicted the
correct reactivity class 56% of the time with the top-2 accuracy of
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89% (the random baseline being 25% and 50% for the top-2).
The encouraging results for an unseen set of molecules suggest
that the CNN was capable of generalizing a notion of reactivity
in NMR spectra independent of the reagents used.

Algorithm for the Exploration of the Chemical Space.
To close the loop and drive the exploration of the chemical
space, we needed a representation of chemical space that could
accommodate many different classes of molecules and correlate
the presence of various structural motifs with the observed
reactivity. To this end we used the junction tree variational
autoencoder algorithm™ to translate the molecular structure of
the reagents into fixed-length fingerprint vectors. The
autoencoder combines a tree-structured scaffold generated
over chemical substructures with a graph message passing
network. The resulting 56-dimensional vectors are then used as
input to the reactivity estimation neural network we developed
(Figure 4a). In order to keep the model consistent with binary
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Figure 4. Aspects of the autonomous chemical space exploration
algorithm. (a) Structure of the neural network used for reactivity
prediction. A junction-tree neural network encodes the molecular
structure of each reactant into a 56 dimensional vector. (b) Scheme of
the algorithm used to simulate the chemical space exploration. (c)
Correlation of predicted versus observed reactivity (assigned via
Reactify) for the test set. The correlation is demonstrated by fitting a
linear regression model with the shaded area representing the 99%
confidence interval obtained using bootstrap. Prediction uncertainties
(calculated as standard deviations) are shown within error bars (see
Section S3.1 for connection between uncertainty and error lower
bound). (d) Results of the chemical space exploration simulation. After
the initial selection of 100 random reactions (orange), the algorithm
starts to create a model that correlates parameters to reactivity. By
prioritizing combinations that are predicted to be reactive, the space is
explored in a more efficient way. The error bars show standard
deviation.

and ternary combinations in the case of a two-component
reaction, a vector of 56 zeroes was submitted as the third vector.
The idea behind the algorithm is to train the model on a small
fraction of the chemical space, explored at random, and use the
knowledge acquired to predict the reactivity of the remaining
possible combinations. The reactant combinations would then
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be sorted by predicted reactivity and the best candidates reacted
in the platform. After each reaction the model is retrained using
the newly obtained reactivity information. By guiding the robot
with such a reactivity-driven algorithm it will be possible to
perform the reactive combinations first, meaning that only a
fraction of the chemical space will need to be explored.
Furthermore, thanks to the structural fingerprint, the encoding
network is able to abstract the reactivity from the identity of the
molecules involved. It is therefore possible to update and use the
model on any organic reaction involving three reagents, meaning
that this method is easily scalable to vast chemical spaces with a
large number of starting materials. We imagine that by training
the model on bigger data sets the scope of the predictions will
also expand.

We validated the reactivity estimation neural network on the
data acquired from the 1018 random combinations of chemical
space 2 and tested the network’s ability to predict the reactivity
of the reagent combinations. To do so, NMR spectra resulting
from these combinations were first assessed for reactivity using
the Reactify convolutional neural network. We then trained the
reactivity prediction neural network to connect the reagent
structural fingerprints to the reactivity outcome, using 90% of
these reactivity assignments for training. The results (Figure 4c)
show a mean squared error in the prediction of 0.035 for the test
set (reactivity values normalized to 1, see the SI for alternative
metrics and training scenarios).

In a different experiment aimed at simulating exploration, we
trained the model on a random batch comprising 10% of the
data set (ca. 100 reactions) and predicted the reactivity values of
the remaining ca. 900 combinations. We then simulated
performing the most reactive combinations by revealing the
outcome of 50 combinations predicted to have the highest
reactivity. The model was retrained on the expanded data set of
150 reactions, and the process was repeated until all of the 1018
reactions were explored. The results of the simulation are shown
in Figure 4d. The initial random batch of experiments had an
average reactivity of 0.40 = 0.29. Following training, the first
generation of S0 reactions suggested by the model gave an
average reactivity of 0.60 + 0.23. Over time, the algorithm is
trained on more data, but at the same time, the reactive
combinations are taken out of the data set, leaving only the
unreactive ones, as evidenced by the decline in reactivity of
subsequent generations (Figure 4d). This simulated exploration
experiment has also been repeated 100 times with different
initial states in order to measure the efficiency of the algorithm in
finding the unknown reactions presented in the following
section. The reactions reported in Figure Sd,e were found,
respectively, after 2.6 and after 6.0 iterations out of 19 (random
baseline would be 9.5 iterations).

Discovery of a Multistep-One-Substrate Reaction
Cascade. Based on the data obtained from the benchtop
instruments, a small selection of five combinations were
randomly selected from a pool of reactions showing high
reactivity. These five reactions were repeated in the platform and
the products manually isolated (Figure S). Two of these are
known molecules already reported in the literature®*~** and one
a new product for which the generic procedure is known,** and
the last two are “novel” as they lead to unknown molecules
through unknown procedures, making them genuine discov-
eries. Reaction a is a C—H functionalization made through
photoredox catalysis. It has already been described in 2012
where the authors used the same building blocks, [Ir-
(ppy),(dtbbpy) ]PF4 as photocatalyst, 2 equiv of Na,HPO,,

https://doi.org/10.1021/acscentsci.1c00435
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Figure S. Five reactions showing high reactivity have been found and characterized. Reactions a and b have been previously reported in the

30-32
literature”

unreported in the literature.

with the exact same product. Reaction c is known in the literature but has never been used to make 27.> Reactions d and e are

and acetonitrile as the solvent. Reaction b has been reported as a
method for the synthesis of N-aryl-C,C-dimethoxycarbonylni-
trones’' and originally involved sodium hydroxide and THF as
the solvent The formation of molecule 26 following reactionb is
known.”" Reaction c is a hydroamidation®® promoted by diethyl
Br-malonate, and the product is unreported in the literature.

Reaction d is a photochemical reaction involving the addition
of phenylhydrazine and bromoacetonitrile in the presence of
tris(2,2’-bipyridyl) dichlororuthenium(II) hexahydrate and 450
nm irradiation. In this reaction, a new C—N bond is formed
while the bromide, usually a leaving group, is kept in its place. It
is unreported in the literature. Reaction e was discovered during
the analysis of the mixture of p-toluenesulfonylmethyl
isocyanide (TosMIC) and diethyl bromomalonate. An X-ray
analysis of the isolated product confirmed that the trimeric
product 29 was formed. The molecular structure of the product
showed an unusual increase in complexity and a nontrivial
mechanism of formation taking in consideration the three
central methylene carbons. Interestingly, the XRD showed a
tubular supramolecular assembly composed of six molecules
packed as a ring and multiple rings stacked together leaving void
space with an average diameter of 12 A (Figure 6a) (details in
Section S6).

To explore this transformation further, we decided to perform
the reaction with a range of isocyanides to elucidate a possible
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mechanism. From the seven isocyanides (Section S3.6) tested, a
similar product was isolated in the reaction with the 1H-
benzotriazol-1-ylmethyl isocyanide 30 while traces of the
reaction with (trimethylsilyl)methyl isocyanide 31 were
detected by LC-MS (Figure 6b). Variations of diethyl
bromomalonate have also been explored, finding working
alternatives in several similar molecules including trifluoroacetic
acid (TFA, 38) (Figure 6¢). All of these variations yielded the
same product, suggesting that the second reagent is not directly
involved in the product formation but rather acts as some kind of
a promoter; this is because the reaction does not give the
product in any detectable amount in the absence ofit. In order to
confirm the involvement of the hypothesized intermediates
presented in the mechanism below, the reaction has also been
carried out in the presence of various amines (Figure 6d), and
the presence of the relative products 39 and 43 has been
established by LC-MS in all cases. These correspond to an
asymmetric version of the product 29, where one or two
branches have been replaced with the amine R-group. The
possibility of tuning the branches in this way gave us precious
information about the mechanism and increased the flexibility
and the possible applications of this reaction.

To understand the formation of the core of the molecule, we
prepared two isotopically enriched versions of the TosMIC
substrate, labeling the isocyanide carbon and the methylene
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Figure 6. Reaction of diethyl bromomalonate and TosMIC discovered with the automated platform. (a) General scheme of the reaction. 6 equiv of
isocyanide is consumed in the presence of an activator, water, and DMSO 29; on the right-hand side are the X-ray structure of 29 and its tube-shaped
supramolecular structure. (b) Analogous products obtained with variations of the isocyanide. (c) The reaction has been carried out using variations of
diethyl bromomalonate, yielding the same product. (d) By performing the reaction in the presence of an amine, we observed variations of the product,

suggesting the mechanism reported in the next figure.

carbon. To confirm the source of the three oxygen atoms found
in the product, we performed the reaction in both synthesized
80—DMSO and anhydrous DMSO with small amounts of
H,'®0. These experiments revealed that all of the three central
methylene carbons come from the CH, carbons of the TosMIC,
while the oxygen atoms come from DMSO (Figure 7b). This
means that the product is obtained using at least 6 equiv of
isocyanide and that DMSO is also taking part in the reaction; in
fact, the reaction has been attempted in DMF and MeCN
without success (Section S4.4). While testing the reaction in
different conditions, we also noticed its poor reproducibility,
with significant yield fluctuations even under apparently
identical conditions. Upon further investigation, it was found
that the amount of trace water present in the solvent has a
marked effect on the reaction profile. By testing different
amounts of water, we found that the reaction does not yield any
product under strictly anhydrous conditions and in the presence
of more than 2 equiv of water. The best yields were obtained
with 0.4 equiv (Section S4.3). The reaction kinetics have been
investigated with on-line HPLC, showing the formation of an
intermediate after 2 h that eventually disappears after 34 h with
the simultaneous formation of product 29 (Section S4.2). An
MS analysis of the corresponding peak showed a mass consistent
with compound 55: the two-branch imine analogous to the
product 29. The chromatogram also showed the presence of
high amounts of the single-branched amine $2. This was in
accordance with the data reported in Figure 7d and supported
the hypothesis of a mechanism involving the formation of a

1826

central amine group that undergoes two identical semireactions
to build the other two branches. Given this information, we
propose the mechanism reported in Figure 7a. The role of
diethyl bromomalonate (and the other activators) is to promote
the oxidation of the isocyanide group to isocyanate.”* The
formation of the central methylene carbons can be explained
with the formation of amine 50 and following ehm1nat10n of the

sulfonate to yield imine 51.*° 51 is then reduced™ to form the
single-branched amine 52 and attacked by it to form 53, which
undergoes an elimination of ammonia followed by a reduction to
produce 55.%

The mechanism is then repeated with the consumption of
another equivalent of 51 to yield the final product 29. In
addition, this mechanistic hypothesis is supported by an on-line
IR experiment showing the presence of an isocyanate group (47
and 49) and CO, as well as the observation of dimethyl sulfide
and ammonium signals in the NMR analysis of the mixture
(Sections S4.6 and S4.7). To compare this new reaction with
known transformations in the literature, we compiled a set of
1656 known reactions found in the Reaxys database™® involving
TosMIC. The RDkit* python library was used to extract a
fingerprint difference between starting materials and products,
indicating the extent to which each reaction transforms the
structure of its input reagents.

To compare fingerprint differences among reactions, the I*-
norm of the fingerprint-difference vectors was calculated. Low
values of the P-norm indicate a high structural similarity
between reagents and products while high values correspond to
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Figure 7. Reaction mechanism and cheminformatic analysis. (a) Scheme of the proposed mechanism. Two of the intermediates have been found by
HPLC-MS analysis while the isocyanate group, CO,, DMS, and ammonium have been detected at IR and NMR, respectively. (b) The isotopic labeling
of carbon atoms C' and C? of TosMIC and the DMSO oxygen helped determine the source of core atoms in the product molecule. (c) Comparison of
the structural change between reagents and products among known reactions of TosMIC (red line indicates discovered reaction). (d) Estimation of
reaction unpredictability by estimating the size of the relevant reaction network. A full simulation could only be carried out for the first eight steps of the
simulation as the combinatorial explosion produces a vastly greater number of molecules than could be feasibly analyzed.

complex reactions involving several transformations. The results norm of the reaction discovered is indicated with the red line,
are shown in Figure 7c, where the ’-norm values of literature signaling an unusual degree of structural change compared to
reactions are grouped into bins on a logarithmic x-axis. The - known reactions. To gauge the serendipitous nature of our
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discovery quantitatively, we carried out a simulation to assess the
size of the chemical reaction network. This network was
generated by repeatedly applying a set of common reaction
templates, including the ones invoked in our proposed
mechanism, to generate an expanding pool of chemicals.
Comparing the total size of the resulting network to the subset
leading to the product gives an indication of the unpredictability
for the particular product obtained. The results are shown in
Figure 7d, where blue lines indicate the reaction network
relevant to product formation. The overall network is vastly
larger in size than the subset potentially leading to a product
(10" chemicals vs 10° chemicals), indicating that the observed
pathway is highly improbable to predict a priori.

B CONCLUSIONS

In summary, we showed that closed-loop approaches combining
automatic reaction execution and reactivity assessment using
machine learning can play a crucial role in the discovery of novel
reactions in unexplored parts of chemical space. Our neural
network model can abstract the reactivity from the identity of
the reagents, and we expect that this type of algorithm will also
progressively improve in accuracy when presented with
reactivity data for subsequent chemical spaces. The continuous
reactivities provided by the CNN are correlated with reagent
structural features, showing that it is possible to explore chemical
space intelligently and discover unpredictable reactions, thanks
to the unbiased nature of our system. Our results demonstrate
the possibility of NMR-driven universal reactivity detection as a
key enabler of autonomous discovery in a closed loop. Within
this framework, we also show the potential of reactivity-first
chemical space search and its suitability to the discovery of novel
molecules and mechanisms.

B MATERIALS AND METHODS

General Experimental Remarks. Chemicals and solvents
were supplied by Fisher Chemicals, Sigma-Aldrich, Lancaster
Chemicals Ltd., and Tokyo chemicals industry, used as received.
Deuterated solvents were obtained from Goss Scientific
Instruments Ltd. and Cambridge Isotope Laboratories Inc. All
commercial starting materials were used as supplied, without
further purification. Off-line NMR data were recorded on a
Bruker Advance 600 MHz or a Bruker Advance 400 MHz
instrument, in deuterated solvent, at T = 298 K, using TMS as
the scale reference. Chemical shifts are reported using the 6-
scale, referenced to the residual solvent protons in the
deuterated solvent for 'H and *C NMR (i.e, 'H, § (CDCl,)
=7.26; °C, 5 (CDCl;) = 77.16). All chemical shifts are given in
ppm, and all coupling constants (J) are given in Hz (J) as
absolute values. Characterization of spin multiplicities: s
singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd =
double doublet, dt = double triplet, dq = double quartet, and ddt
= double doublet of triplets. Chromatographic separation of the
reaction mixture was achieved with a reverse phase column by
Agilent (Poroshell 120 HPH C18, 3.0 X 100 mm, 2.7 gm) on a
Thermo Fisher UltiMate 3000 HPLC instrument. The MS
apparatus was a Bruker MaXis Impact instrument, acquisition
range at 50—2000 m/z.

Liquid Handling Platform. The control over the fluids was
performed using C3000 model TriContinent pumps (Triconti-
nent Ltd., Auburn, CA). They were equipped with distribution
(3-way) and 90°/120° (2-way) valves. S mL syringes
(TriContinent) were used for all functions except the pumps
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connected to the MS instrument and the photocatalysts which
used a 0.5 mL syringe. The pumps were connected to the
computer and each other by a daisy chain with an RS232 serial
communication cable and DA-15 connectors. The liquid
connectivity was assured using PTFE tubing (1/16” 1.6 mm
OD x 0.8 mm ID) cut to the desired length and PEEK/PTFE
flangeless fittings. To perform a reaction, the robot mixed 2 mL
of the selected starting materials (from 1 M stock solutions) into
the mixer flask and then moved the mixture into one of the six
round-bottom flasks (25 mL). They were placed on top of two
hot plates for magnetic stirring, and three of them were
irradiated with a visible-light LED (Thorlabs). After 3 h, the
mixture was analyzed, and the flask was washed with 5 mL of
DMSO three times. The software to control the platform was
written in Python and was optimized to continuously run six
reactions in parallel.

Benchtop NMR Spectroscopy. The online NMR spectra
were recorded using a Spinsolve benchtop NMR from Magritek
(60 MHz). Shimming was performed before each experiment
directly on the sample. The instrument was equipped with a flow
cell to allow online analysis. The cell was designed to go through
the instrument, and its location placed the thicker part (5 mm
diameter) at the center of the magnets. Both the inlet and outlet
were connected to normal PTFE tubing with screw caps (Figure
S1). The flow cell allowed automatic reaction monitoring in real
time by pumping 3 mL of solution from the reaction mixture.
The instrument was controlled with Python through a TCP
connection with the API exposed by Spinsolve software.

Benchtop MS Spectroscopy. The spectra were recorded
using an Advion Expression CMS equipped with an ESI
(electrospray ionization) module. The mass spectrometer was
controlled using a Python library created to wrap around the
binary libraries supplied by Advion. Before injection, the mixture
was diluted by taking 0.1 mL of reaction mixture into the syringe
and adding with 0.4 mL of acetonitrile. 0.4 mL of the diluted
solution was pumped into waste and the process repeated five
times to obtain a 10”* M solution. After each injection, the
instrument was cleaned by flushing it with acetonitrile and a
water/acetonitrile 1:1 solution.

Automatic Reactivity Assignment. NMR data were
checked manually, and a reactivity value was assigned between
0 and 3. The mixture spectrum was compared with the
superimposition of the starting materials’ spectra, and the
criteria for the assignment are the appearance of new peaks, their
intensity, peaks shifting, and reagent peaks disappearing.
Although there were borderline cases between two values,
some general guidelines were followed: (a) absolutely no
difference or a slight shift = 0, (b) one peak appearing or a big
shift, medium intensities = 1, (c) two or three peaks appearing in
high intensity = 2, and (d) more than three peaks appearing with
a high intensity = 3. Before the training of the neural network,
the NMR spectra were resampled to rescale them from 4878 to
271 points. They were then normalized to 1, and the solvent
peak was removed by cutting the spectrum at 3 ppm. In order to
avoid overfitting, a random scaling (y-axis) and shifting (x-axis)
were applied on both the mixture spectrum and the reagent
superimposition during training. A 2 X 271 matrix obtained by
the processed spectra of the mixture and the superimposition of
the starting materials was used as input for the neural network.
Details about the neural network architecture can be found in
Section S2.3. The network was trained on 440 reactions
obtained from combinations of chemical space 1 (Figure 3b)
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and used to assess its accuracy on 1018 reactions from chemical
space 2 (Figure 3c).

Reactivity Predictions and Automatic Space Explora-
tion. The reactivity data assigned by the neural network were
correlated with the starting materials represented as 56
dimensional fingerprint vectors. The fingerprints were calcu-
lated from the reagents SMILES using the encodin% part of the
junction tree autoencoder developed by Jin et al.”” The other
reaction conditions (presence of acid, base, and photocatalyst)
were fed into the model as a one-hot encoded vector. The
software for training and testing the neural network was written
using the Tensorflow library for Python. The network was used
to run a simulation of the chemical space exploration where data
from the full data set were progressively (in batches of SO
reactions) accessed following the reactivity predictions
generated by the linear regressor. The simulation was
implemented in Python.

General Procedure for Synthesis of Products 25, 26,
27, 28, and 29. Diethyl 2-bromomalonate (2 mmol, 0.41 mL),
p-toluenesulfonylmethyl isocyanide (2 mmol, 0.39 g), and water
(0.8 mmol, 15 uL) are mixed in 4 mL of anhydrous DMSO and
stirred for 24 h at 30 °C. The reaction mixture is diluted with
water (20:1) and extracted with ethyl acetate. The organic phase
is separated and washed with brine. Mg,SO, is then added to the
reaction mixture, and after filtration, the solvent is removed
under reduced pressure. Products 27 and 29 precipitated as
white solids during the evaporation of ethyl acetate; they are
isolated by filtration and washed with ethyl acetate. Products 25,
26, and 28 were purified with a chromatographic column.

Code availability. Online code repositories are provided for
training and testing the Reactify neural network (https://github.
com/croningp/Reactify); reactivity-first chemical space explo-
ration, cheminformatic estimation of the novelty and predict-
ability of the trimer 29 discovery (https://github.com/
croningp/ Rx1st); and the junction tree variational autoencoder
for chemical structures (https://github.com/croningp/JTNN-
VAE). The code is provided under the MIT license. Relevant
data sets have been deposited online at https://zenodo.org/
record/4670997.

Safety Statement. No unexpected or unusually high safety
hazards were encountered in the work reported.
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