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Upregulation of TRPC5 in hippocampal 
excitatory synapses improves memory 
impairment associated with neuroinflammation 
in microglia knockout IL‑10 mice
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Abstract 

Background:  Members of the transient receptor potential canonical (TRPC) protein family are widely distributed 
in the hippocampus of mammals and exert respective and cooperative influences on the functions of neurons. The 
relationship between specific TRPC subtypes and neuroinflammation is receiving increasing attention.

Methods:  Using Cx3cr1CreERIL-10−/− transgenic mice and their littermates to study the relationship between TRPC 
channels and memory impairment.

Results:  We demonstrated that Cx3cr1CreERIL-10−/− mice displayed spatial memory deficits in object location rec-
ognition (OLR) and Morris water maze (MWM) tasks. The decreased levels of TRPC4 and TRPC5 in the hippocampal 
regions were verified via reverse transcription polymerase chain reaction, western blotting, and immunofluorescence 
tests. The expression of postsynaptic density protein 95 (PSD95) and synaptophysin in the hippocampus decreased 
with an imbalance in the local inflammatory environment in the hippocampus. The number of cells positive for ion-
ized calcium-binding adaptor molecule 1 (Iba1), a glial fibrillary acidic protein (GFAP), increased with the high expres-
sion of interleukin 6 (IL-6) in Cx3cr1CreERIL-10−/− mice. The nod-like receptor protein 3 (NLRP3) inflammasome was also 
involved in this process, and the cytokines IL-1β and IL-18 activated by NLRP3 were also elevated by western blotting. 
The co-localization of TRPC5 and calmodulin-dependent protein kinase IIα (CaMKIIα) significantly decreased TRPC5 
expression in excitatory neurons. AAV9-CaMKIIα-TRPC5 was used to upregulate TRPC5 in excitatory neurons in the 
hippocampus.

Conclusions:  The results showed that the upregulation of TRPC5 improved the memory performance of 
Cx3cr1CreERIL-10−/− mice related to inhibiting NLRP3 inflammasome-associated neuroinflammation.
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Introduction
The TRPC protein family has seven members (TRPC1 to 
TRPC7) that form homo- and/or heteromorphic tetram-
ers. TRPC is a non-selective cationic membrane channel 
with Ca2+ permeability. According to sequence homol-
ogy, the family can be divided into three subfamilies: 
TRPC1, C4, and C5; TRPC3, C6, and C7; and TRPC2, 
which is a pseudogene in humans [1].

The physiological and pathological functions of TRPC, 
particularly in the central nervous system (CNS), are of 
increasing concern due to the extensive localization of 
TRPC, especially in the hippocampus. Evidence is con-
verging to show the involvement of TRPC channels in 
cognitive functions, since multiple TRPC subtypes are 
highly expressed in the hippocampus.

TRPC1 is indispensable for environmental enrich-
ment-induced spatial memory enhancement, which 
is related to long-term potentiation (LTP) induction 

and hippocampal neurogenesis [2]. The function of the 
TRPC1/4/5 subfamily plays a key role in spatial work-
ing memory formation [3], since TRPC1/4/5−/− mice 
exhibited deficiencies in adapting to a new challenge in a 
relearning task.

Neuroinflammation is a complex response to brain 
injury and a major contributor to progressive neuronal 
damage. IL-10 is a major anti-inflammatory cytokine 
that maintains the balance of the immune response and 
is an important molecule in the modulation of neuronal 
homeostasis and cell survival. At the level of the hip-
pocampus, it has been shown that IL-10 plays a key role 
in improving the learning and memory ability of animals 
under physiological and pathological conditions [4]. 
IL-10 helped to improve spatial memory performance 
in Sprague–Dawley rats treated with Escherichia coli 
[5]. Increased IL-10 levels played a role in the process 
of enriched environment alleviated LPS-induced spatial 
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learning and memory impairment [6]. IL-10 is an impor-
tant molecule in the modulation of learning and mem-
ory dysfunction, as shown by the IL-10tm1/tm1 mice that 
exhibited behavioral deficits in the MWM test [7].

Microglia are the main innate immune cells in the CNS 
and play an important role in neuroinflammation [8]. 
Microglia in the brain and are the main cytokine produc-
ers, including IL-10. Many studies have confirmed that 
IL-10 secreted by microglial cells plays a key role in the 
pathological process of neuroinflammation [9, 10]. Neu-
roinflammation can trigger cognitive impairment, and 
IL-10 can alleviate the harmful effects of neuroinflam-
mation on memory and plasticity [11–13]. The role of 
inflammasome nod-like receptor protein 3 (NLRP3) pro-
cesses involved in recognition impairment in a variety of 
nervous system diseases, has been supported by experi-
mental evidence, especially in recent years. Several stud-
ies have shown that NLRP3 can be a target for improving 
memory impairment in diabetes [14–16], sepsis-associ-
ated encephalopathy [17], hypoxemia [18], epilepsy [19, 
20], Alzheimer’s disease (AD) [21, 22], intracerebral hem-
orrhage [23], cerebral ischemia [24], and aged [25].

In our study, we focused on the effects of IL-10 induced 
from microglial cells on animal cognitive and behavioral 
abilities to explore the role of TRPC and NLRP3 in the 
hippocampus during this process.

Materials and methods
Animals
All experiments were performed on male mice that 
were 8–10  weeks old and weighed 22–26  g. All ani-
mals were on a C57BL/6 background and were main-
tained in a reversed 12-h light–dark cycle with 
free access to food and water. Tamoxifen-induci-
ble Cx3cr1CreER with IL-10flox/flox mice were bred, here-
after denoted as  Cx3cr1CreERIL-10−/−. Both littermate 
and Cx3cr1CreERIL-10−/− mice was administered with 
tamoxifen (Sigma-Aldrich, MO, USA) as a solution in 
corn oil (20 mg/ml) by intraperitoneal injection (80 μl 
per mouse) [26, 27]. Treatment with tamoxifen for 
five consecutive days eliminated IL-10 production by 
microglia, after that receiving an additional tamox-
ifen dose once a week to deplete  IL-10 in newly made 

microglia [26] (Fig.  1a). All procedures and protocols 
for this study were approved by the Ethical Commis-
sion of Nankai University based on the NIH Guide 
for the Care and Use of Laboratory Animals. B6.129-
Il10tm1.1 (Flox) Smoc mice and Cx3cr1CreER transgenic 
mice were purchased from Shanghai Model Organisms 
Center, Inc.

Novel object recognition (NOR) task and OLR task
Each mouse was gently handled for 3 min every day for 
three consecutive days before the behavioral test. The 
test was conducted in a bare square box (48  cm long, 
48  cm wide, 36  cm high) made of compressed wood. 
Briefly, the NOR and OLR tasks consisted of two ses-
sions: the training phase and the test phase. In the NOR 
task, during the test period, the mice were placed in the 
empty box and allowed to explore freely for 5  min to 
adapt to the environment. Two identical objects (plas-
tic boxes, 4–5  cm high) were arranged in a straight 
line along one side of the wall, 8  cm from the sides. 
The experimental mice were placed in the box facing 
the opposite wall and were free to explore and adapt 
for 5  min. After a 2-h interval, the animals were rein-
troduced into the experimental box for free explora-
tion during the experimental period. At this point, one 
of the two objects used during training was replaced 
by an object of similar size. If any of the mice pointed 
or touched the new object with its nose within 1  cm, 
it was considered exploratory. The objects were thor-
oughly cleaned between trials to avoid olfactory cues. 
The mice were tracked using a charge-coupled device 
camera connected to a personal computer (Ethovision 
2.0, Noldus, Wageningen, Netherlands).

In the OLR task, the experimental procedure was 
similar to the NOR task in the training stage. The dif-
ference was that in the test stage, the two unchanged 
objects were placed diagonally, as shown in Fig. 1.

During the training phase in both the NOR and OLR 
tasks, if the mouse total exploration time for the two 
objects was less than 10 s in 5 min, the data were elimi-
nated in a later study. The discrimination index (DI) 
and object duration were used as the NOR and OLR 

(See figure on next page.)
Fig. 1  Cx3cr1CreERIL-10−/−mice showed a decrease recognition impairment in OLR task. a Schematic of experimental design and schedule. The 
animal experimental protocol indicated the time course of various interventions utilized during the experiment. b Representative movement 
traces from the two groups on the test stage of the NOR task. There were no significant differences between the two mice in the different groups. 
There was no significant difference between the two groups in the discrimination index (c) and the new object duration (d). e Representative 
movement traces from the two groups on the test stage of the OLR task. There was a significant decrease in the location of new objects in the 
Cx3cr1CreERIL-10−/− group. There was a significant decrease in the two groups in discrimination index (f) and new object duration (g) in the test 
stage in the Cx3cr1CreERIL-10−/− group. Each dot represents a mouse. Bars represent mean ± SEM. n = 8 in each group. Significant differences were 
established by t-test, *P < 0.05
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Fig. 1  (See legend on previous page.)
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task evaluation index. The DI is the percentage of time 
each mouse spent exploring new objects and positions.

MWM task and RMWM task
The mice swam freely in the pool without platform 90 s 
on 1 day before the test, so that they could got familiar 
with the maze environment. In the training stage, each 
mouse was placed into the water with their heads facing 
the wall, and randomly selected one of the four start-
ing positions of east, west, south and north. Record the 
time it takes the animal to find the underwater platform 
(escape latency). If the escape latency exceeded 60  s, 
the mouse was guided to the platform and stayed on 
the platform for 10 s.

Training was conducted once a day at each of the four 
entry points, and the results of the day were statistically 
analyzed using the mean value of the four escape laten-
cies. The training lasted for four days.

The concealed platform was removed 24  h after 
the test. After the mice were placed in the water, 
their swimming trails for 60  s were recorded, and the 
residence time of the mice in the original platform 
quadrant and the times of platform crossover were sta-
tistically analyzed. The reversal phase started after the 
test, and the platform was moved to the opposite quad-
rant of the tank. The platform remained in this north-
west quadrant location for all training trials on days 1, 
2, and 3, but not for day 4 of the test trial (Fig.  2 and 
Additional file  1: Fig. S2). The swimming activity of 
each mouse was automatically recorded using a video 
tracking system (Ethovision 2.0, Noldus, Wageningen, 
Netherlands).

Quantitative PCR
Total RNA was extracted from hippocampal tissues 
with Trizol (Biosharp, China). The Total RNA was 
reverse transcribed into complementary DNA (cDNA) 
by using the SuperScript First-Strand Synthesis System 
for RT-PCR (Invitrogen). The primers used to measure 
gene expression are the following TRPC1 Forward-
CGT​GCG​ACA​AGG​GTG​ACT​ATTAT, Reverse-TGC​
ATC​TGC​GGA​CTG​ACA​AC; TRPC3 Forward-ACC​
CTG​CTT​TTA​CCA​CGG​TT, Reverse-GCA​TGT​TGA​
GCA​GAA​CGA​CC; TRPC4 Forward-AAA​CCC​CAT​
CGG​AAC​TGA​CC, Reverse-GCT​AGT​CCA​TCA​TCT​
CCG​CA; TRPC5 Forward-TTT​GCC​AAC​GGA​CTG​
AAC​CA, Reverse-GAA​GGG​TTT​CAA​AGA​GCG​TGG; 
TRPC6 Forward-AAG​TGA​ACG​AAG​GGG​AGC​TG, 
Reverse-ACA​GTC​TCT​CCC​CAA​GCT​TTC; TRPC7 
For ward-TCC​C T T ​TAA​CC T​G GT​G CC​GAGTC , 
Reverse-TTC​AGC​ATG​CCC​ATT​TCC​AGG; β-actin 
Forward-CGG​TTC​CGA​TGC​CCT​GAG​GCT​CTT​, 
Reverse-CGT​CAC​ACT​TCA​TGA​TGG​AAT​TGA​.

Golgi staining
Samples were treated according to instructions of the 
Rapid GolgistainTM Kit (FD, Inc., USA). Coronal sec-
tions  (100  μm in thickness) including hippocampal 
structures were prepared using a freezing microtome 
(Leica CM 1860, Germany). The Golgi staining images 
were taken using a microscope (Olympus, BX53, Japan) 
at a magnification of 100 × oil immersion. Average 
spine densities were calculated from at least 6 separate 
image stacks per animal. Image J software (NIH, MD, 
USA) was used for the morphometric analysis of digi-
tized images.

Western blotting
Protein sample concentrations were measured using the 
Pierce BCA Protein Assay Kit (Biosharp, Hefei, China). 
Equal amounts of proteins (10  μg per lane) were run 
on 10 or 12% SDS-PAGE and then transferred to PVDF 
membranes by electroblotting (Bio-Rad, Hercules, CA, 
USA). The PVDF membranes were blocked with 5% skim 
milk powder (Becton Dickinson, CA, USA) diluted with 
Tween/0.1 M PBS (TBST) for one h at room temperature 
before incubation with the primary antibody.

The membranes were washed with TBST three times 
for 10  min after the primary antibodies were incubated 
at 4  °C overnight. The membranes were then incubated 
with secondary antibodies for 1 h at room temperature, 
washed three times for 10 min in TPBS, and reacted with 
chemiluminescent substrate (Biosharp, Hefei, China). 
The bands were obtained using an ECL luminescence 
imaging system (Tanon 5200, China). The densities of the 
target protein bands were measured using Image J and 
normalized to corresponding β-actin bands. All the anti-
bodies used are listed in Table 1.

Immunostaining
Cx3cr1CreERIL-10−/− (n = 3) and littermate (n = 3) male 
mice were killed and perfused with PBS (pH = 7.4), fol-
lowed by 4% paraformaldehyde in PBS. The samples were 
immersed in a fixed solution overnight and then dehy-
drated in a gradient solution of 10, 20, and 30% sucrose 
in PBS. Each brain was embedded in O.C.T and coronal 
sections of 20 μm thickness were prepared using a freez-
ing  microtome (Leica CM 1860, Germany). The slices 
were washed three times with PBS for 5  min  before 
staining. The tissue sections were permeabilized in 0.3% 
Triton X 100 for 30  min and then blocked in 10% nor-
mal goat serum. The blocked slices were incubated with 
the corresponding primary antibodies overnight at 4 °C. 
The samples were washed in PBS three times for 5 min, 
and then incubated with fluorescent secondary antibod-
ies for 1  h at room temperature. After being washed in 
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Fig. 2  Cx3cr1CreER IL-10−/−mice showed a decrease recognition impairment in MWM task. a Representative movement traces from two groups 
during the training stage of the MWM task. Cx3cr1CreERIL-10−/−mice had more dispersed paths in the training stage, suggesting impairments in 
learning ability. There was a significant increase in escape latency (b) and average distance (c) in Cx3cr1CreERIL-10−/− mice in the training stage, while 
Cx3cr1CreERIL-10−/− mice swam faster in the MWM task (d). e Representative movement traces from the two groups on the test stage of the MWM 
task. Cx3cr1CreERIL-10−/−mice had more dispersed paths in the test stage, suggesting memory impairments. There was a significant decrease in both 
the platform crossover times (f) and time spent in the target quadrant (g) in the Cx3cr1CreERIL-10−/− group in the test stage, while the swimming 
speed was similar between the two groups during the test stage (h). Each dot represents a mouse. Bars represent mean ± SEM. n = 8 in each group. 
Significant differences were established by two-way ANOVA (b–d) and t-test in other bar graphs, *P < 0.05
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PBS three times for 5 min, the slices were incubated with 
DAPI (Beyotime, China, 1:5000). Representative images 
were obtained using a fluorescence microscope (Olym-
pus, BX53, Japan) or confocal microscopy (Olympus, 
FV1000, Japan). All the antibodies used in immunostain-
ing test are shown in Table 1.

ELISA analysis of IL‑1β and IL‑18
The hippocampus was collected and rinsed with PBS 
to remove excess blood, cut into 1–2  mm pieces and 
homogenized with a tissue homogenizer.   A total of 
1.0 mL of cracking buffer (R&D Systems) was added. The 
brains were cleaved at room temperature under mild 
agitation for 30  min and centrifuged to remove frag-
ments. The levels of IL-1β and IL 18 were determined by 
specific ELISA kits according to manufacturer instruc-
tions (R&D Systems, Inc., Minneapolis, MN, USA).

AAV injection
The hippocampal region was injected with AAV vec-
tors that included AAV9-CaMKIIα promoter-TRPC5 
2928 (9.7 × 1013 μg/ml) or AAV9-GFP. A total of 10 mice 
received AAV9-TRPC5, and another 10 mice received 
AAV9-GFP. All vectors were generated and titered using 
Vigene Biosciences (Vigene Biosciences, Inc., China).

After the mice were anesthetized (10% chloral hydrate, 
3.5 mL/kg), their brains were fixed to a stereotactic loca-
tor and the virus was injected into the bilateral middle 
regions of the hippocampus (0.5  μl/ hemisphere) using 
a 2  μl microsyringe according to the following stere-
otaxic coordinates referenced in mm from the bregma 
(AP = − 2  mm; ML =  ± 1.4  mm; DV = − 1.5  mm). Fol-
lowing injection, the microsyringe was left in place for 
5 min to prevent backflow of the solution. After surgery, 
the mice were single-housed for one week to recover well.

Table 1  Antibodies

Antibody Species/clonality Source (Catalogue No.) Dilution Usage

Anti-NMDAR2A Rabbit/polyclonal Abcam/ab124913 1:1000/1:200 WB/IF

Anit-NMDAR2B Rabbit/polyclonal Abcam/ab65783 1:1000/1:200 WB/IF

Anti-GAD67 Mouse/monoclonal Abcam/ab26116 1:1000 WB

Anti-TRPC1 Rabbit/polyclonal Proteintech/19482-1-AP 1:1000/1:200 WB/IF

Anti-TRPC3 Rabbit/polyclonal CST/77934 1:1000/1:200 WB/IF

Anti-TRPC4 Rabbit/polyclonal Abcam/ab83689 1:1000/1:200 WB/IF

Anti-TRPC5 Rabbit/polyclonal Proteintech/25890-1-AP 1:1000/1:200 WB/IF

Anti-TRPC6 Rabbit/polyclonal Abcam/ab101622 1:1000/1:200 WB/IF

Anti-SYP Rabbit/polyclonal Beyotime/AF8091 1:1000/1:200 WB/IF

Anti-PSD95 Rabbit/polyclonal Abcam/ab18258 1:1000/1:200 WB/IF

Anti-parvalbumin Rabbit/polyclonal Abcam/ab11427 1:1000 WB

Anti-β-Actin Rabbit/polyclonal Abcam/ab8227 1:3000 WB

Anti-Camkllα Mouse/monoclonal Abcam/ab22609 1:200 IF

Anti-TNF-α Rabbit/polyclonal Abcam/ab9739 0.1 μg/ml WB

Anti-Iba-1 Rabbit/polyclonal Fujifilm/PTK1381 1:1000/1:200 WB/IF

Anti-Iba-1 Mouse/monoclonal Proteintech/66827-1-Ig 1::200 IF

Anti-IL-1β Rabbit/polyclonal Abcam/ab9722 1:100 WB

Anti-IL-6 Rabbit/polyclonal Abcam/ab208113 1:1000 WB

Anti-IL-10 Mouse/monoclonal Proteintech/60269 1:200 IF

Anti-IL-10 Rabbit/polyclonal Abcam/ab9969 0.1 μg/ml WB

Anti-GFAP Rabbit/polyclonal Ab33922/ab7260 1:1000/1:200 WB/IF

Anti-Nlrp3 Rabbit/polyclonal Wanleibio/WLH3383 1:1000 WB

Anti-IL-18 Rabbit/polyclonal Wanleibio/WL01127 1:1000 WB

Anti-IL-18 Rabbit/polyclonal Proteintech/10663-1-AP 1:1000 WB

Anti-caspase-1 Rabbit/monoclonal Beyotime/AF1681 1:1000 WB

Anti-ASC Rabbit/monoclonal Proteintech/67494-1-Ig  1:1000 WB

HRP-conjugated Anti-mouse IgG Abcam/ab205719 1:5000 WB

HRP-conjugated Anti-rabbit IgG Abcam/ab205718 1:5000 WB

Alexa Fluor 488-conjugated anti-mouse Ig G Goat Proteintech/SA00013-2 1:200 IF

Alexa Fluor 594-conjugated anti-rabbit IgG Goat Proteintech/SA00013-4 1:200 IF

Alexa Fluor 594-conjugated anti-mouse IgG Goat Proteintech/SA00013-3 1:200 IF
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Data analysis
All data were expressed as mean ± SEM. One-way or 
two-way ANOVA were used for data analysis based on 
different experimental designs or datasets followed by 
multiple comparison test or by unpaired, two-tailed 
t-test. Values of P < 0.05 were considered statistically 
significant.

Results
Microglia knockout (KO) IL‑10 impaired the learning 
and memory ability of mice
Before the experiment, all mice were detected by PCR 
and classified (Additional file  1: Fig. S1a). To test the 
learning and memory abilities of mice, we tested NOR 
and OLR in our study. Figure  1a shows the experimen-
tal procedure. There was no difference between the two 
groups during NOR detection in both the training and 
test stages, not only in the discrimination index, but also 
in object duration time history detection (P > 0.05, n = 8, 
t-test, Fig. 1b–d).

During the OLR task, Cx3cr1CreERIL-10−/− mice 
showed reduced memory capacity. In the test stage, 
discrimination index (t = 2.387, P = 0.031 < 0.05, n = 8, 
t-test,) and object duration (t = 2.357, P = 0.034 < 0.05, 
n = 8, t-test) decreased in the Cx3cr1CreERIL-10−/− group 
(Fig. 1e–g).

There was no difference between the two groups in 
NOR, but there was a difference in OLR, indicating that 
the two groups had differential sensitivity in spatial loca-
tion recognition [28]. We further detected the learning 
and memory abilities of the two groups using MWM. 
The results showed that both the escape latency to the 
platform [F (1, 14) = 10.96, P < 0.01, two-way ANOVA, 
Fig.  2b] and the average distance [F (1, 14) = 10.36, 
P < 0.01, two-way ANOVA, Fig. 2c] in the target quadrant 
increased in KO group during the learning stage. In the 
test stage, the mice in the KO group showed a decrease in 
both platform crossover times (P < 0.05, n = 8, t-test) and 
time spent in the target quadrant (P < 0.05, n = 8, t-test, 
Fig. 2f ). In the reversal MWM test, the KO mice showed 
a decreased ability in the learning stage, but not in the 
memory stage (Additional file 1: Fig. S2).

TRPC4 and TRPC5 decreased in hippocampi 
of Cx3cr1CreERIL‑10−/− mice
Since spatial learning relies heavily on hippocampal activ-
ity, in addition to TRPC2, other TRPC subtypes  were 
detected via RT-PCR since TRPC2 is not expressed in 
the hippocampus [29]. RT-PCR results showed that the 
mRNA levels of TRPC1, 3, 4 and 5 decreased in the hip-
pocampus (Fig.  3a). Using western blot to detect the 
protein expression levels of these TRPC subtypes, also 

revealed that TRPC4 (t = 3.130, P = 0.020 < 0.05, n = 4, 
t-test) and TRPC5 (t = 5.910, P = 0.001 < 0.01, n = 4, 
t-test) were decreased in the hippocampus (Fig.  3b–f). 
Immunofluorescence results in the CA3 region further 
verified the results (Fig. 3g).

Synaptic proteins decreased in hippocampi 
of Cx3cr1CreERIL‑10−/− mice
Hippocampal synaptic proteins are one of the struc-
tural bases of spatial learning and memory. We tested 
the expression of glutamate receptors NR2A and 
NR2B, synaptic protein postsynaptic density protein 
95 (PSD95), and synaptophysin in the hippocampus. In 
our results, NR2A and NR2B were not affected in the 
KO mice (P > 0.05, n = 4, t test, Fig.  4a–c), but PSD95 
(t = 4.398, P = 0.005 < 0.01, n = 4, t-test) and synapto-
physin (t = 2.850, P = 0.029 < 0.05, n = 4, t-test) were 
decreased in Cx3cr1CreERIL-10−/− mice compared to 
their littermates, as determined by western blot analy-
ses (Fig. 4a, d and e). The immunofluorescence results of 
PSD95 and synaptophysin in the CA3 region are shown 
in Additional file  1: Fig. S3, which was consistent with 
that of western blotting. The fluorescence intensity was 
reduced in both PSD95 and synaptophysin in the KO 
group. Golgi staining showed a significant decrease in the 
number of apical dendrites (t = 5.303, P = 0.0003 < 0.001, 
n = 6, t-test, Fig. 4g and i) and basal dendrites (t = 5.071, 
P = 0.0005 < 0.001, n = 6, t-test, Fig. 4h and j) in the hip-
pocampus of the Cx3cr1CreERIL-10−/− mice.

Synaptophysin is an integral membrane protein of 
small synaptic vesicles and has been identified as a use-
ful marker for synaptic density [30]. PSD95 is a protein 
localized to the postsynaptic density of synapses [31] 
and plays a key role in synapse stabilization and plastic-
ity [32], suggesting that microglia-derived IL-10 may 
play a role in synaptic protein synthesis through under-
lying mechanisms, thus affecting the spatial learning and 
memory ability of Cx3cr1CreERIL-10−/− mice.

Hippocampal inflammatory activity enhanced 
in Cx3cr1CreERIL‑10−/− mice
To determine whether changes in IL-10 level in micro-
glia affect inflammation in  vivo, the levels of glial 
marker Iba1 (for microglia) and GFAP (for astrocytes) 
were tested. Our results showed increased protein 
expression of GFAP (t = 4.583, P = 0.005 < 0.01, n = 4, 
t-test) and Iba1(t = 2.698, P = 0.036 < 0.05, n = 4, t-test, 
Fig.  5a–c), which was consistent with enhanced immu-
nofluorescence levels of Iba1 and GFAP-positive cells in 
the hippocampal CA3 region (Fig.  5m). The increased 
expressions of GFAP and Iba1 suggested that the behav-
ioral changes in KO mice were involved in inflammation 
activation.
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We also investigated whether the inflammasome 
NLRP3 pathway was upregulated in the hippocampus. 
Protein expression of NLRP3 inflammasome compo-
nents, NLRP3 (t = 3.976, P = 0.007 < 0.01, n = 4, t-test), 

caspase-1 (t = 4.055, P = 0.0067 < 0.01, n = 4, t-test), Pro-
IL-1β (t = 5.784, P = 0.001 < 0.01, n = 4, t-test), IL-1β 
(t = 3.757, P = 0.009 < 0.01, n = 4, t-test), Pro-IL-18 
(t = 4.562, P = 0.003 < 0.01, n = 4, t-test), IL-18 (t = 3.092, 

Fig. 3  The decrease of both TRPC4 and TRPC5 in the hippocampi of Cx3cr1CreER IL-10−/−mice. a RT-PCR results of TRPC isoforms in the 
hippocampus (n = 3 in each group, t-test). The marked significance is the comparison of the same isoform in the Cx3cr1CreER IL-10−/− with the 
littermate. b western blotting bands of TRPC1, TRPC3, TRPC4, and TRPC5 in littermates and in Cx3cr1CreER IL-10−/−mice. Bar graphs represent 
densitometric plots of protein expression in littermate and Cx3cr1CreER IL-10−/−mice in TRPC1 (c), TRPC3 (d), TRPC4 (e), and TRPC5 (f). Each dot 
represents a mouse. Bars represent mean ± SEM. n = 4 in each group, Significant differences were established by t-test. g Expression of TRPC1, 
TRPC3, TRPC4, and TRPC5 in the CA3 region of mouse hippocampal slices. Immunofluorescence images were captured with a 20 × objective. Green, 
immunoreactivity of TRPC1, TRPC3, TRPC4, and TRPC5; blue, nuclei stained with DAPI. Merged images of each TRPC isoform and DAPI staining. 
*P < 0.05, **P < 0.01, ***P < 0.001
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P = 0.02 < 0.05, n = 4, t-test) were significantly increased 
in the hippocampi of KO mice compared to their lit-
termates (Fig. 5a, d–i, k and l). There was no change on 
the ASC protein expression (t = 0.820, P = 0.443 > 0.05, 
n = 4, t-test). In addition, our results showed that IL-10 
(t = 2.922, P = 0.03 < 0.05, n = 4, t-test, Fig. 5k) decreased 
and IL-6 (t = 4.887, P = 0.003 < 0.01, n = 4, t-test, Fig. 5l) 
increased in the hippocampi of Cx3cr1CreERIL-10−/− 
mice. Immunofluorescence co-localization of NLRP3 and 
Iba1 showed that the increase of NLRP3 was not mainly 
located in microglia (Fig. 5n).

TRPC5 down‑regulated in excitatory neurons 
in the hippocampi of Cx3cr1CreERIL‑10−/− mice
The balance between the central inhibitory and facili-
tatory systems may serve as a principal mechanism 
in memory activation and regulation [33]. TRPC is 
expressed in both the inhibitory and excitatory neu-
rons of the CNS [34]. We explored how downregu-
lation of TRPC in Cx3cr1CreERIL-10−/− mice affects 
memory by affecting network excitation and inhibitory 
balance. Our results showed that gene KO did not affect 
the content of GAD67 (t = 1.430, P = 0.20 > 0.05, n = 4, 
t-test, Fig.  6a, b), but could enhance the content of Pv 
(t = 13.53, P < 0.0001, n = 4, t-test, Fig.  6a, c), which is a 
specific subtype of gamma aminobutyric acid (GABA) 
interneurons that may subserve distinct behavioral 
functions and behavior-dependent network activities 
[35]. Inhibition of the GABAergic system has memory-
facilitating effects, whereas stimulation produces mem-
ory impairment. These results suggest that the effect of 
TRPC4 or 5 downregulation on learning and memory 
in Cx3cr1CreERIL-10−/− mice mainly acted on excitatory 
neurons. Immunofluorescence showed increased TRPC5 
co-localization in the hippocampus with CaMKIIα (an 
excitatory neuron marker) (Fig. 6d).

Upregulation of TRPC5 in excitatory neurons can improve 
memory impairment in Cx3cr1CreERIL‑10−/− mice
CaMKIIα was used as the promoter of the AAV9 virus, 
specifically upregulating TRPC5 in excitatory neurons 
(Fig. 7b, c). The expression of TRPC5 after AAV9 injec-
tion in hippocampus were tested by western blotting [F 
(3, 8) = 24.99, P < 0.001, Fig.  7d]. After injection of the 

virus for 4 weeks, we performed MWM tests in all groups 
of mice. The results of MWM showed differences in 
escape latency to the platform [F (3, 16) = 8.137, P < 0.01] 
and average swimming distance [F (3, 16) = 13.00, 
P < 0.001] during the learning phase. The KO mice treated 
with AAV-9 TRPC5 injection showed an improved 
behavioral performance compared to KO-GFP group 
(P < 0.05, Fig.  7e, f ). In the training stage, the KO mice 
treated with TRPC5 exhibited alleviated memory dam-
age in both platform crossover times [F (3, 16) = 7.053, 
P < 0.01, Fig. 7h] and in time spent in the target quadrant 
[F (3, 16) = 12.81, P < 0.001, Fig. 7i].

The effects of TRPC5 on Cx3cr1CreERIL10−/− mice 
by suppressing NLRP3‑associated neuroinflammation
The mechanism of TRPC5 upregulation in excitatory 
neurons contributes to the improvement behavioral per-
formance in KO mice. We used immunofluorescence to 
detect GFAP, Iba1, and NLRP3 in the brain regions of 
the hippocampus. The results showed that increasing the 
expression of TRPC5 inhibited the number of GFAP [F 
(3,8) = 28.01, P < 0.001, Fig.  8a, d], Iba1 [F (3,8) = 8.011, 
P < 0.01, Fig. 8b, e] and NLRP3 [F (3,8) = 49.59, P < 0.001, 
Fig. 8c, f ] positive cells in the hippocampus, especially in 
the CA3 region. We then tested NLRP3-related cytokines 
IL-1β and IL-18 in the hippocampus by ELISA, and the 
results showed that increased TRPC5 expression in KO 
group down-regulated both the expression levels of 
IL-1β [F (3,12) = 2.773, P < 0.001, Fig.  8g] and IL-18 [F 
(3,12) = 0.360, P < 0.01, Fig. 8h].

Discussion
IL-10 is a key cytokine that represses excessive inflam-
matory responses and is linked to anti-inflammatory and 
protective functions in the CNS [36]. In the CNS, IL-10 is 
mainly produced by astrocytes and microglia. Our results 
showed that Cx3cr1CreERIL-10−/− mice showed impaired 
spatial cognition, suggesting that microglia-targeted pro-
duction of IL-10 plays an important role in hippocam-
pal function. This result is similar to the results of other 
relevant studies, in which IL-10tm1/tm1 male mice with a 
low expression of IL-10 exhibited defective learning and 
memory behaviors in the MWM test [7]. A recent study 
showed that IL-10 produced from microglial cells in 

Fig. 4  The expression of synaptic proteins in hippocampus of Cx3cr1CreER IL-10−/−mice. a Western blotting bands of NR2A, NR2B, PSD95, and 
synaptophysin in littermates and in Cx3cr1CreERIL-10−/−mice. Bar graphs represent densitometric plots of protein expression in littermate and 
Cx3cr1CreERIL-10−/−mice in NR2A (b), NR2B (c), PSD95 (d), and synaptophysin (e). Each dot represents a mouse. Bars represent mean ± SEM. n = 4 in 
each group. Significant differences were established by t-test. Spine density of the littermates and the Cx3cr1CreERIL-10−/− mice by Golgi staining (f). 
The spine density decreased in the pyramidal cells in both apical dendrites (g and i) and basal dendrites (h and j) in hippocampus. Scale (l). Images 
were captured with a 10 × objective (f) and 100 × objective (g). Bars represent mean ± SEM. n = 6 in each group. Significant differences were 
established by t-test. *P < 0.05, **P < 0.01, ***P < 0.001

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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Fig. 5  Neuroinflammatory activity enhanced in the hippocampus in Cx3cr1CreERIL-10−/−mice. a Western blotting bands of inflammation-related 
molecules in littermates and Cx3cr1CreER IL-10−/−mice. Bar graphs represent densitometric plots of protein expression in littermate and 
Cx3cr1CreERIL-10−/− mice in GFAP (b), Iba1 (c), NLRP3 (d), caspase-1 (e), Pro-IL-1β (f), IL-1β (g), Pro-IL-18 (h), IL-18 (i), ASC (j), IL-10 (k), and IL-6 (l). Each 
dot represents a mouse. Bars represent mean ± SEM. n = 4 in each group. Significant differences were established by t-test. m Expression of GFAP 
and Iba1 in CA3 region in mice hippocampal slices. Immunofluorescence images, captured with a 10 × objective. Green, immunoreactivity of GFAP 
and Iba1; blue, nuclei staining with DAPI. The merged images of GFAP, Iba1 and DAPI staining. n Immunofluorescence co-localization of NLRP3 and 
Iba1 in CA3 region in mice hippocampal slices. Immunofluorescence images, captured with a 10 × objective. Green, immunoreactivity of NLRP3; 
Red, immunoreactivity of Iba1; Blue, nuclei staining with DAPI. The merged images of NLRP3, Iba1 and DAPI staining. *P < 0.05, **P < 0.01
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non-learned helpless mice is necessary to maintain learn-
ing and memory [13]. Intranasal administration of IL-10 
increased dendritic spine density by 2.0- and 4.3-fold in 
the dentate gyrus of non-learned helpless and learned 
helpless mice [13].

We detected mRNA levels of TRPC subtypes in the 
hippocampus other than TRPC2, a pseudogene in 
humans. TRPC1, 3, 4, and 5 mRNA levels decreased. 
Further results confirmed that TRPC4 and TRPC5 pro-
tein levels were down-regulated. These results can be 
linked to our recent study, in which the protein expres-
sion of TRPC5 is down-regulated in the medial prefron-
tal cortex and amygdala in Cx3cr1CreERIL-10−/− mice 
[27]. In other researches, recombinant IL-10 results in 
the decreased expression of N-cadherin, which interacts 
with TRPC4 and TRPC6 during the formation of stress 
fiber [37]. IL-10 produced in B lymphocytes depends on 
the upregulation of TRPC1 protein [38]. These studies 
provide clues to the interaction between IL-10 and TRPC 
channels.

The KO mouse showed a poor performance in MWM 
with the decrease of TRPC4 and TRPC5 in hippocam-
pus. This result could be linked to another related study, 
in which the TRPC1/4/5 channels were relevant to 

synaptic transmission for working memory formation 
and in relearning tasks in the hippocampus [3]. Contro-
versially, TRPC1/4/5 KO did not affect mouse reference 
memory in that study. Based on the synaptic plasticity 
deficit, it could be difficult to explain how TRPC1/4/5 
KO can specifically affect working memory without 
affecting the reference memory [3]. Notably, during the 
training phase in the MWM task, TRPC1/4/5−/− mice 
showed a similar decrease in learning ability. This differ-
ence may also be related to the interaction of TRPC sub-
types, since the expression of TRPC1 protein in our study 
did not change in mice.

The cognitive impairment caused by 
Cx3cr1CreERIL-10−/− mice is closely related to a decrease 
in synaptic transmission. Synaptic transmission involves 
the release of neurotransmitters from presynaptic neu-
rons, which then bind to specific postsynaptic recep-
tors. Synaptic proteins PSD95 and synaptophysin 
were tested in our study, and an obvious decrease in 
presynaptic synaptophysin and postsynaptic density 
protein PSD95 suggested that the memory deficits of 
Cx3cr1CreERIL-10−/− mice depend on structural changes 
in synaptic associated proteins, which is a dual mecha-
nism involving presynaptic and postsynaptic processes. 

Fig. 6  The effects of knocking out IL-10 from Microglia in interneuron and the increase of TRPC5 in excitatory neuron. a Western blotting bands of 
GAD67 and parvalbumin in littermates and in Cx3cr1CreER IL-10−/−mice. Bar graphs represent densitometric plots of protein expression in littermate 
and Cx3cr1CreERIL-10−/−mice in GAD67 (b) and parvalbumin (c). Each dot represents a mouse. Bars represent mean ± SEM. n = 4 in each group. 
Significant differences were established by t-test. d Colocalization of TRPC5 and CaMKIIα in CA3 region in hippocampal slices. Immunofluorescence 
images, captured with a 20 × objective. Green, immunoreactivity of TRPC5; red, immunoreactivity of CaMKIIα, a marker of excitatory neurons, blue, 
nuclei staining with DAPI. The merged images of TRPC5, CaMKIIα and DAPI staining. ***P < 0.001
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Notably, the glutamate receptors NR2A and NR2B were 
not involved in this process.

IL-10 is a key cytokine that has been shown to inhibit 
excessive inflammation associated with anti-inflamma-
tory and protective functions in the CNS. IL-10 exerts 
anti-inflammatory effects by inhibiting monocyte/mac-
rophage-derived cytokines, including TNF-α, IL-1β, 
IL-6, and IL-18. It has been reported that immune dys-
function is commonly associated with the progression of 
many CNS diseases, such as neuropsychiatric disorders 
and neurodegenerative disorders [36, 39]. Moreover, the 
role of cytokines is of particular interest because they 
are involved in cognitive impairment in hippocampal-
dependent memory [40].

The increase in the number of GFAP- and Iba1-
positive cells indicates an imbalance in local neu-
roinflammation in the hippocampus. Furthermore, 

Cx3cr1CreERIL-10−/− mice exhibited a marked upregu-
lation of NLRP3 in hippocampus, and accordingly 
caspase-1 increase and subsequent IL-1β and IL-18 
processing and release, compared with littermate mice, 
accompanied by the downregulation of IL-10 and 
upregulation of IL-6. These results suggest that KO 
IL-10 from microglia may affect the behavioral perfor-
mance of animals by altering the balance of local pro-
inflammatory and anti-inflammatory networks. The 
NLRP inflammasome has been identified as a multi-
protein complex that plays a pathogenic role in nervous 
system diseases. Among these types of inflammas-
omes, NLRP3 has been implicated in several chronic 
inflammatory responses and is associated with many 
CNS diseases [41]. Baicalin increases the performance 
of APP/PS1 transgenic mice in MWM by suppressing 
NLRP3 inflammasomes to alleviate microglia-mediated 

Fig. 7  Upregulation of TRPC5 in hippocampal excitatory neurons improving the learning and memory ability of Cx3cr1CreER IL-10−/−mice. a 
Schematic of experimental design and schedule. The animal experimental protocol indicated the time course of various interventions utilized 
during the experiment. b, c Schematics of AAV9-CaMKIIα-TRPC5 (b) and stereotaxic injection in the hippocampus (c). d The expression level of 
TRPC5 in hippocampus by Western blotting after AAV9 injection (n = 3). There was a significant increase in both escape latency (e) and average 
distance (f) in KO + TRPC5 compared to the KO group in the training stage. g Representative movement traces from the four groups on the test 
stage of the MWM task. The mice in the KO + TRPC5 group had more convergent paths in the test stage in the target quadrant, suggesting memory 
improvements. There was a significant increase in both the platform crossover times (h) and time spent in the target quadrant (i) in the KO + TRPC5 
group in the test stage compared with the KO group. Each dot represents a mouse. Bars represent mean ± SEM. n = 5 in each group, Significant 
differences were established by two-way ANOVA (e, f) and one-way ANOVA (h, i). *P < 0.05, **P < 0.05

Fig. 8  Upregulation of TRPC5 in hippocampal excitatory neurons inhibiting the neuroinflammation in hippocampus. a–c Expression of GFAP 
(a), Iba1 (b), and NLRP3 (c) in the CA3 region of hippocampal slices. Immunofluorescence images were captured with a 10 × objective. Red, 
immunoreactivity of GFAP, Iba1, and NLRP3; blue, nuclei stained with DAPI. The merged images of GFAP, Iba1 and DAPI staining. Bars represent 
positive cells in GFAP (d), Iba1 (e) and NLRP3 (f) at mean ± SEM. n = 3 in each group. Bars showed the levels of IL-1β (g) and IL-18 (h) by ELISA test in 
the hippocampus at mean ± SEM. n = 4 in each group. Significant differences were established by one-way ANOVA. *P < 0.05, **P < 0.01, ***P < 0.001

(See figure on next page.)
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Fig. 8  (See legend on previous page.)
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neuroinflammation [42]. Activation of the NLRP3 
inflammasome plays a role in the gastrodin-induced 
amelioration of cognitive impairment in diabetic rats 
[43], and NLRP3 inflammation, a molecular marker 
involved in inflammatory response, is known to play a 
key role in the development of cognitive impairment.

TRPC channels are widely expressed in the brain 
and are related to a variety of neuronal functions [44], 
but in general TRPC4 and TRPC5 are the predomi-
nant subtypes in the rodent brain [45]. In our study, 
we observed that both TRPC4 and 5 decreased in hip-
pocampi of KO mice, which indicated that both channels 
could contribute to the spatial memory impairment of 
Cx3cr1CreERIL-10−/− mice, although it is difficult to judge 
which of these channels contributes to cognitive impair-
ment. TRPC5 is highly expressed in the hippocampus 
[46, 47]. TRPC channels have been implicated in presyn-
aptic and postsynaptic neuronal processes. To date, the 
physiological function of TRPC channels in the brain is 
unknown. In cultured neurons, TRPC5 insertion and 
TRPC5-mediated Ca2+ influx are important determi-
nants of hippocampal neurite growth rate and growth 
cone morphology [48, 49].

In our study, we used CaMKIIα as a promoter to spe-
cifically express TRPC5 in pyramidal neurons. The 
results showed that high expression of TRPC5 could 
improve spatial cognitive impairment in IL-10 KO mice. 
Furthermore, the results suggested that the effect of 
TRPC5 on behavioral improvement in IL-10 KO mice 
might be related to its inhibition of neuroinflammation. 
Increasing the expression of TRPC5 in excitatory neu-
rons can reduce the high expression of GFAP and Iba1 in 
Cx3cr1CreERIL-10−/− mice. Several other studies have also 
focused on the role of TRPC5 in inflammation. Growing 
evidence has linked the activation of TRPC5 complexes 
to inflammation. TRPC5−/− mice showed enhanced syn-
ovitis and local inflammation, and the TRPC4/5 antago-
nist ML204 increased the levels of TNF-α and IL-10 in 
synovial fluid. In TRPC5 KO and wild-type mice treated 
with TRPC4/5 antagonists, IL-10 secretion was found to 
be elevated to regulate a highly inflammatory response. 
The absence or antagonism of TRPC5 increases the local 
secretion of many key pro-inflammatory cytokines, such 
as TNF-α and IL-1β [50]. TRPC5−/− mice pretreated 
with thioredoxin also showed that cytokines, TNF-α 
and IL-6, in the peritoneum were exacerbated in the 
systemic inflammatory response [51]. There have also 
been conflicting studies on the relationship between 
TRPC5 and inflammation. Expression of TRPC5 in nasal 
polyps was positively correlated with the number of 
eosinophils, IL-6 expression and inflammation [52], sug-
gesting that these pathways may respond differently to 
different inflammatory responses. Immunofluorescence 

co-localization of NLRP3 and Iba1 showed the increase 
of NLRP3 without co-localization with microglia in KO 
mice. The results suggested that  the increase of NLRP3 
could depend mainly on excitatory neurons, which make 
up the majority of the cell population. According to Py 
et  al.’s study [53], TRPC1 was identified as a substrate 
for caspase-11, which regulates inflammatory responses, 
and TRPC1 deficiency could increase IL-1 β secretion 
which depended on the NLRP3 activator triggering. 
These results provide some clues for the downregulation 
of NLRP3 by TRPC5-AAV9 injection in excitatory neu-
rons. However, the specific mechanism needs to be fur-
ther studied.

TRPC5 may also directly affect the learning and mem-
ory ability of animals by improving the efficiency of syn-
aptic transmission. Some studies have shown that TRPC5 
regulates synaptic plasticity by changing the presynaptic 
Ca2+ homeostasis of hippocampal neurons [54] and both 
TRPC4 and 5 channels contribute to persistent firing in 
CA1 pyramidal cells [55]. In another study, TRPC5 chan-
nels, profoundly regulate synaptic plasticity and elevate 
the rate of spontaneous release,  indicating a key role of 
TRPC5 in short-term plasticity. In addition, the specific 
activation of TRPC4/5 induced a significant increase 
in the mEPSC frequency in  hippocampal neurons of 
wild-type mice [54]. TRPC5 is also an important deter-
minant  at neurite outgrowth rates, growth cone mor-
phology [49] and plateau potentials of excitatory neurons 
in the hippocampus [56].

Conclusions
Our results using Cx3cr1CreERIL-10−/−mice indicated 
the involvement of TRPC4 and 5 channels in recog-
nition impairment.  Specific high expression of the 
excitatory neuron TRPC5 can improve the behavio-
ral  performance of KO mice. However, a limitation in 
our present study does not preclude the role of TRPC4 
in the process. Future research should focus on resolving 
the observations mentioned above and determining the 
molecular mechanisms between TRPC and the inflam-
masome NLRP3 system. In addition, it is also essential 
to clarify how TRPC interacts with NLRP3 affect the 
behavioral performance in the KO mouse. In a specific 
environment, an attempt should be made to clarify the 
relationship between the cooperative compensation of 
various subtypes of TRPC functions and the behavioral 
representation of animals.
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Additional file 1. Fig. S1 Identification of knockout mice by PCR analysis. 
PCR analysis in Cx3cr1wt/wt and Cx3cr1wt/CreER mice. a. PCR analysis for 
Flox homozygous. b. PCR analysis for Cre heterozygous. c. PCR analysis for 
FACS-purified macrophages in blood 7 d after final tamoxifen treatment 
for the presence of conditional undeleted (1165 bp) or deleted IL-10 
alleles (558 bp). d. A schematic of the DNA assembly, location of Cre, 
IL-10 gene and other components, along with nucleotide size before and 
after disruption. e. Immunofluorescence images, captured with a 10× 
objective, Green, Iba1; Red, immunoreactivity of IL-10; blue, nuclei staining 
with DAPI. Merged images of Iba1, IL-10 and DAPI stain. The arrow marks 
showed the co-location of the Iba1 and IL-10. f. Western bolting analysis 
of FACS-purified littermates and Cx3cr1CreERIL10-/- cerebral cortex 
microglia 7 d after tamoxifen. Fig. S2. Cx3cr1CreER IL-10-/-mice shown 
a decrease recognition impairment in RMWM task. a: Representative 
movement traces from two groups on the training stage of RMWM task. 
Cx3cr1CreERIL-10-/-mice had more dispersed paths in training stage, sug-
gesting learning ability impairments. There was a significant increase both 
in escape latency (b) and in average distance (c) in Cx3cr1CreERIL-10-/- 
group in training stage, while both groups of mice swim at the same 
speed (d). e: Representative movement traces from two groups on the 
test stage of RMWM task. There was no significant difference in platform 
crossover times (f), time in target quadrant (g) and swimming speed 
(h). Each dot represents a mouse. Bars represent mean±SEM. n = 8 in 
each group. Significant differences were established by two-way ANOVA 
(b-d) and t-test in other bar graphs, *P<0.05. Fig. S3. Immunofluores-
cence staining results of synaptic proteins in hippocampal CA3 region. a: 
Expression of PSD95 and synaptophysin in the CA3 region of mouse hip-
pocampal slices. Immunofluorescence images were captured with a 20× 
objective, green, immunoreactivity of PSD95 and synaptophysin; blue, 
nuclei stained with DAPI. The merged images of PSD95, synaptophysin, 
and DAPI staining. There was a decrease in the expression of PSD95 and 
synaptophysin in the hippocampus of Cx3cr1CreERIL-10-/-mice. b: Immu-
nofluorescence images, captured with a 20× objective. Green, immunore-
activity of NR2A and NR2B; blue, nuclei staining with DAPI. Merged images 
of NR2A, NR2B and DAPI stain. There was no difference in the expression 
of NR2A and NR2B in the hippocampus of two groups.
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