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Abstract: Background and Objectives: Telomeric zinc finger-associated protein (TZAP) is a telomere
regulation protein, previously known as ZBTB48. It binds preferentially to elongated telomeres,
competing with telomeric repeat factors 1 and 2. TZAP expression may be associated with carcino-
genesis, however; this study has not yet been performed in lung cancer. In this study, we examined
the clinicopathological and prognostic values of TZAP expression in non-small cell lung cancer
(NSCLC). Materials and Methods: Data were collected from The Cancer Genome Atlas. The clinical
and prognostic values of TZAP for NSCLC were examined in adenocarcinoma (AD) and squamous
cell carcinoma (SCC). Results: TZAP expression significantly increased in NSCLC tissues compared
with normal tissues. In AD, TZAP expression was lower in patients with higher T stage (p = 0.005),
and was associated with lymph node stage in SCC (p = 0.005). Survival analysis showed shorter
disease-free survival in AD patients with lower TZAP expression (p = 0.047). TZAP expression
did not have other clinical or prognostic value for AD and SCC. Conclusions: TZAP expression is a
potential prognostic marker for NSCLC, especially in patients with AD.
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1. Introduction

Telomeres, composed of TTAGGG repeated sequences, are nucleoprotein complexes
that cap the ends of eukaryotic chromosomes [1]. Telomeres in normal somatic cells are
shortened by approximately 0-200 base pairs during cell division. The critical length
initiates replicative senescence or apoptosis [2,3]. Therefore, telomere regulation within an
optimal length is necessary for cellular process [1-3]. In cancer cells, telomere shortening is
inhibited by telomerase reverse transcriptase (TERT), whereas the remaining cells maintain
telomere length using alternative lengthening mechanisms [4,5]. As a result of this process,
longer telomeres are created and are cut back to previous levels by a shortening process [6].
A current study showed that ZBTB48, as a zinc finger protein, now known as telomeric zinc
finger-associated protein (TZAP), rapidly shortens telomeres [7]. Although this suggests
that TZAP regulation may influence cancer pathogenesis, it has not been evaluated in
various cancers.

Lung cancer is the leading risk factors of cancer-related deaths, and has poor survival
rates [8]. Many causes of lung cancer are well-known, such as smoking, occupational
agents, radiation, and environmental pollutants [9,10]. They influence telomere regulation
in human diseases, especially in non-small cell lung cancer (NSCLC). It was controversial
that deregulation of telomere length has a prognostic value for patients with NSCLC,
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and may therefore aid clinicians in making therapeutic decisions [11,12]. Therefore, we
analysed TZAP expression in NSCLC for the first time.

Recently, advanced genomic profiling using next-generation sequencing allowed to
recognize the genetic characteristics of cancer. Large-scale cancer genome studies, such as
The Cancer Genome Atlas (TCGA), have been used to investigate genes in different cancer
types [13,14]. More so, TCGA can investigate specific histological types of lung cancer, as
adenocarcinoma (AD) and squamous cell carcinoma (SCC), using histological data and
clinical parameters. Therefore, our primary goal was to study the clinicopathological and
prognostic value of TZAP expression in NSCLC using RNA-seq gene expression data
obtained from TCGA datasets.

2. Materials and Methods

Primary data from TCGA data portal were downloaded in March 2021. The TCGA
dataset consisted of 1130 samples, including 1019 primary tumor tissues (517 AD and
502 SCC) and 111 normal solid tissues taken adjacent to the tumor. During the RNA-seq
data analysis of NSCLC, AD and SCC datasets were sorted from TCGA with TZAP mRNA
expression and clinical parameters. This study followed the publication guidelines for
using TCGA datasets (http:/ /www.cancer.gov/about-nci/organization/ccg/research/
structrual-genomics/tcga/using-tcga/citing-tcga, accessed on 8 March 2021). Overall
survival (OS) and disease-free survival (DFS) was the duration from the date of biopsy to
the date of the last follow-up visit or to the date of death due to any cause and to the date
of any type of recurrence, respectively.

For statistical analyses, the Statistical Package for the Social Sciences (SPSS), version
24.0, for Windows (IBM, Armonk, NY, USA) was used. Chi-square and Mann—-Whitney U
tests were performed for categorical and continuous variables, respectively. For survival
analysis, the mean gene expression was used as a cut-off to divide the patients into high-
and low-expression groups. Survival analysis was performed using the Kaplan-Meier
method, and the log-rank test was used to identify statistically significant differences
between the two groups. Statistical significance was defined as a two-tailed p-value < 0.05.

3. Results

TZAP expression was statistically higher in NSCLC than in normal tissues (Figure 1).
In AD, the median level of TZAP expression was 8.65 £+ 0.59, which was statistically
higher than that in normal tissues (8.35 & 0.32, p < 0.001). In SCC, TZAP expression was
significantly different (8.56 £ 0.54 vs. 8.40 £ 0.38; p = 0.027).
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Figure 1. TZAP expression in lung cancer and normal tissues: (A) adenocarcinoma; (B) squamous
cell carcinoma.
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The clinical characteristics according to TZAP mRNA expression in AD and SCC are
summarized in Tables 1 and 2, respectively. TZAP expression was lower in AD patients with
higher T stage (p = 0.005), higher N stage (p = 0.065), and epidermal growth factor receptor
(EGFR) mutation positivity (p = 0.066), although the N stage and EGFR mutation were not
statistically significant. This indicated that lower TZAP expression had an association with
clinical characteristics, inducing poorer prognosis.

Table 1. Clinical characteristics of TZAP mRNA expression in lung adenocarcinoma.

TZAP Expression
High (%, N) Low (%, N) p Value
Age 0.558
<65 years 51.3 (121) 48.7 (115)
>65 years 48.6 (124) 51.4 (131)
Sex 0.320
Male 47.6 (107) 52.4 (118)
Female 52.1(139) 47.9 (128)
T stage 0.005
T1 57.2 (95) 42.8 (71)
T2 50.0 (130) 50.0 (130)
T3 35.6 (16) 64.4 (29)
T4 22.2 (4) 77.8 (14)
N stage 0.065
NO 53.1 (169) 46.9 (149)
>N1 44.2 (72) 55.8 (91)
M stage 0.579
MO 47.5 (154) 52.5 (170)
M1 41.7 (10) 58.3 (14)
EGFR mutation 0.066
(+) 48.3 (14) 51.7 (15)
) 31.0 (57) 69.0 (127)

TZAP: telomeric zinc finger-associated protein; EGFR: epidermal growth factor receptor.

Table 2. Clinical characteristics of TZAP expression in lung squamous cell carcinoma.

TZAP Expression
High (%, N) Low (%, N) p Value

Age 0.114
<65 years 45.5 (86) 54.5 (103)
>65 years 52.8 (158) 47.2 (141)

Sex 0.215
Male 48.3 (175) 51.7 (187)
Female 54.8 (69) 45.2 (57)

T stage 0.399
T1 53.2 (58) 46.8 (51)
T2 47.6 (136) 52.4 (150)
T3 57.1 (40) 42.9 (30)
T4 43.5 (10) 56.5 (13)

N stage 0.005
NO 55.0 (171) 45.0 (140)
>N1 41.5 (71) 58.5 (100)

M stage 0.124
MO 48.6 (195) 51.4 (206)

M1 143 (1) 85.7 (6)

In SCC, lower TZAP expression was observed in patients with a higher N stage
(p = 0.005). It was also associated with cancer metastasis (51.4% vs. 85.7%); however; it
did not have significance (p = 0.124). TZAP expression was not associated with other
characteristics in patients with AD.
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For survival analysis, follow-up was performed during 2622 + 245 days (range:
4-7062 days) in AD and 2128 + 126 days (range: 2-5287 days) in SCC, respectively. Uni-
variate survival analysis revealed that OS in AD patients was not associated with TZAP
expression (2595.66 £ 336.70 vs. 2679.27 &+ 332.14 days, p = 0.131; Figure 2A); however, a
shorter DFS was found in AD patients with lower TZAP expression (2422.98 + 490.78 vs.
2833.90 & 372.97 days, p = 0.047; Figure 2B).
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Figure 2. Survival analysis in adenocarcinoma: (A) overall survival; (B) disease-free survival.

In SCC, TZAP expression did not have any prognostic values of OS (2215.91 + 174.72
vs. 194647 + 148.77 days, p = 0.805; Figure 3A) and DFS (2614.32 + 215.95 vs.
2812.18 + 218.12 days, p = 0.679; Figure 3B).
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Figure 3. Survival analysis in squamous cell carcinoma: (A) overall survival; (B) disease-free survival.

4. Discussion

This is the first study to examine TZAP mRNA expression in NSCLC. TZAP expression
may be a chief factor for telomere regulation in cancers [7]. When its expression is not
sufficient in cancer cells, cells with longer telomeres can easily change into immortal
cells, anticipating cancer development [4,5]. In this way, TZAP expression could mediate
telomere trimming, thereby restricting abnormally long telomeres [15-20]. However, TZAP
expression has not been documented in various cancers, thus, this hypothesis should
be confirmed.

The Cancer Genome Atlas datasets showed that TZAP mRNA expression may play
a significant role in pancreatic and colorectal cancers [17]. Here, we recognized the clin-
ical and prognostic value of TZAP mRNA expression in NSCLC. Previous studies have
suggested that telomere regulation plays a major role in NSCLC pathogenesis [11,12]. As
expected, we found that TZAP expression was lower in AD patients with higher T and
N stages, suggesting poorer prognosis. Moreover, it tended to be associated with EGFR
mutations. Our previous study showed that telomere length was longer in AD than in SCC
(45% vs. 22%), although the difference did not get statistical significance (p = 0.100) [12].
These results were consistent with the hypothesis that insufficient TZAP expression could
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lead to the generation of long telomeres in AD, thus promoting cancer development via
immortal cells [7,12,18]. In SCC, lower TZAP expression is related to lymph node invasion;
however, it does not have other clinical characteristics and prognostic values. Its precise
mechanism is still unclear and should be examined in other cancers.

Insufficient TZAP expression may induce longer telomere length [20]. A strong cor-
relation between longer telomeres and increased risk of NSCLC, especially AD, has been
reported [21-23]. Moreover, telomerase activity and telomere regulation gene polymor-
phisms are associated with a higher risk of adenocarcinoma and longer telomere length,
suggesting that patients with adenocarcinoma may be affected by telomerase activity and
telomere length [11,12,21-23]. Therefore, genetic studies of telomere regulation genes, such
as TERT, telomeric repeat-binding factor 2 (TRF2), and TZAP, should be added to explain
the mechanism of AD pathogenesis. Additionally, the patients enrolled in this study re-
ceived different therapeutics after the surgery; therefore, this difference may influence the
prognosis regardless of TZAP expression.

It is the limitation of this study using bigdata, and further studies should clarify
mechanisms of telomere regulation via TZAP expression in cancer patients.

5. Conclusions

We studied the expression of TZAP in patients with NSCLC. Telomeric zinc finger-
associated protein changes have great significance as clinical and prognostic markers in
AD. The present study warrants future molecular study to clarify the mechanisms of TZAP
for its clinical potential.
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