CSM% diagnostics

Article

A Hybrid Method to Enhance Thick and Thin Vessels for Blood
Vessel Segmentation

Sonali Dash 100, Sahil Verma >3(, Kavita 242, Md. Sameeruddin Khan -5, Marcin Wozniak ®*{, Jana Shafi ’
and Muhammad Fazal Jjaz 3-*

check for

updates
Citation: Dash, S.; Verma, S.; Kavita;
Khan, M.S.; Wozniak, M.; Shafi, J.;
jaz, M.E. A Hybrid Method to
Enhance Thick and Thin Vessels for
Blood Vessel Segmentation.
Diagnostics 2021, 11, 2017. https://
doi.org/10.3390/diagnostics11112017

Academic Editor: Jae-Ho Han

Received: 20 September 2021
Accepted: 25 October 2021
Published: 30 October 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Electronics and Communication Engineering, Raghu Institute of Technology (A),
Visakhapatnam 531162, Andhra Pradesh, India; sonali.isan@gmail.com

Department of Computer Science and Engineering, Chandigarh University, Mohali 140413, India;
sahilverma@ieee.org (S.V.); kavita@ieee.org (K.); ed.cse@cumail.in (M.S.K.)

Bio and Health Informatics Research Lab, Chandigarh University, Mohali 140413, India

Machine Learning and Data Science Research Lab, Chandigarh University, Mohali 140413, India
Vision and Learning Research Lab, Chandigarh University, Mohali 140413, India

Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
Department of Computer Science, College of Arts and Science, Prince Sattam bin Abdul Aziz University,
Wadi Ad-Dwasir 11991, Saudi Arabia; j jana@psau.edu.sa

Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea

*  Correspondence: marcin.wozniak@polsl.pl (M.W.); fazal@sejong.ac.kr (M.F.L)

N G e W

Abstract: Retinal blood vessels have been presented to contribute confirmation with regard to
tortuosity, branching angles, or change in diameter as a result of ophthalmic disease. Although many
enhancement filters are extensively utilized, the Jerman filter responds quite effectively at vessels,
edges, and bifurcations and improves the visualization of structures. In contrast, curvelet transform
is specifically designed to associate scale with orientation and can be used to recover from noisy
data by curvelet shrinkage. This paper describes a method to improve the performance of curvelet
transform further. A distinctive fusion of curvelet transform and the Jerman filter is presented for
retinal blood vessel segmentation. Mean-C thresholding is employed for the segmentation purpose.
The suggested method achieves average accuracies of 0.9600 and 0.9559 for DRIVE and CHASE_DB]1,
respectively. Simulation results establish a better performance and faster implementation of the
suggested scheme in comparison with similar approaches seen in the literature.

Keywords: blood vessel segmentation; curvelet transform; Jerman filter; mean-C thresholding

1. Introduction

Evaluation of the physical features of the retinal vascular structure can create under-
standing of the pathological transformation generated by ocular diseases. The illustration
of the retinal vasculature is significant for analysis, treatment, viewing, assessment, and the
clinical study of ophthalmic diseases that include retinal artery occlusion, diabetic retinopa-
thy, hypertension, and choroidal neovascularization [1,2]. Blood vessels are dominating
and mainly steady structures, which appear in the retina that is detected directly in vivo.
The efficacy of cure for ophthalmologic disorders is dependent on the prompt recognition
of alteration in retinal pathology. The manual labelling of retinal blood vessels is a tedious
procedure that requires training and skill. Computerized segmentation offers reliability and
accuracy and decreases the consumption of time by a physician or a skilled technician for
hand mapping. Thus, an automatic definitive approach of vessel segmentation would be
beneficial for the prior recognition and characterization of morphological alterations in the
retinal vasculature. Generally, the feature representation and extraction in retinal images is
a difficult assignment. The foremost complications are the lighting changes, insufficient
contrast, noise effect, and anatomic changeability dependent on the individual patient.
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Many filters are suggested for the enhancement of retinal blood vessels. Jerman et al.
have recommended an improved multiscale vesselness filter, based on the ratio of mul-
tiscale Hessian eigenvalues, that produces uniform and stable acknowledgement in all
vascular structures and correctly improves the border between the vascular structure and
the background, later known as the Jerman filter [3,4]. They have assessed the proposed
enhancement filter on High-Resolution Fundus (HRF) image database. However, their
suggested method is only limited to the enhancement of retinal vasculature more uniformly.
Frangi et al. have suggested a filtering approach with multiscale for vessel enhancement
called the Frangi filter [5].

Among the human organs, the retina is the only place in which blood vessels can be
captured straight noninvasively in vivo. In the automatic retinal disease recognition, blood
vessels play a vital role, as they comprise the essential topic of screening systems. Precise
segmentation and analysis of blood vessel length, thickness, and orientation can simplify
the assessment of retinopathy of prematurity and recognition of arteriolar narrowing
assessment of vessel diameter for the detection of aliments such as hypertension, diabetes,
and arteriosclerosis, etc. [6].

On the other hand, many researchers have shown the importance of mutiresolution
analysis, especially applicable for the enhancement of retinal blood vessels [7,8]. Among
the multiresolution analysis, curvelet transform is one of the important techniques for
enhancement of blood vessels. Few efforts have been introduced for enhancing the perfor-
mances of curvelet transform by extending it in various ways for the segmentation of retinal
images. Esmaeili et al. have offered a new technique for enhancing the retinal blood vessels
utilizing curvelet transform [9]. In 2011, Miri and Mahloojifar utilized curvelet transform
for the detection of the retinal image edges effectively through multistructure morphology
operators [10]. In 2016, Aghamohamadian-Sharba et al. (2015) utilized curvelet transform
to automatically grade the retinal blood vessel tortuosity [11]. In 2014, Kar et al. combined
curvelet transform with matched filter and conditional fuzzy entropy for extraction of
blood vessels [12]. In 2016, the same authors suggested another method for extraction
of blood vessels by combining curvelet transform with matched filter and kernel fuzzy
c-means [13]. Some of the significance associated with supervised and unsupervised works
for retinal vessel segmentation that are available are discussed below.

Numerous principles and approaches for retinal vessel segmentation have been de-
scribed in the literature. Fraz et al. have given a detailed report for the various approaches
available for the retinal vessel segmentation [14]. Detection of retinal blood vessel seg-
mentation can be designated into procedures on the basis of pattern recognition, vessel
tracking, match filtering, multiscale analysis, morphological processing, and model-based
algorithms. Furthermore, the pattern recognition techniques can be distributed into two
classes: supervised approaches and unsupervised approaches. Supervised approaches use
ground truth data for the classification of vessels that consider features of the blood ves-
sels. These approaches comprise principal component analysis [15], neural networks [16],
k nearest neighbour classifiers [17], and support vector machine (SVM) [18]. Some of the
unsupervised approaches include matched filtering along with specially weighted fuzzy
c-means clustering [19], radius-based clustering algorithm [20], and maximum likelihood
estimation of vessel parameters [21].

Generally, the green channel of the image is taken into consideration in most of the
vessel segmentation methods because of low level of noise and high level of contrast.
Soares et al. have recommended an approach that classified pixels as vessel or nonvessel
by utilizing supervised classification [22]. Lupascu et al. have utilized AdaBoost for the
construction of a classifier [23]. Chaudhuri et al. have proposed methods based on matched
filtering that convolves with a 2D template and designed to form the characteristics of the
vasculature [24]. Kovacs and Hajdu have also suggested an approach considering matching
of template and contour reconstruction [25]. Annunziata et al. have suggested an approach
in which the presences of exudates in retinal images are reported [26]. Zamperini et al.
have classified vessels considering the contrast, size, position, and colour by investigating
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the nearby pixels of background [27]. Relan et al. have utilized Gaussian Mixture Model
with a hope to maximize clustering for the classification of vessels [28]. Dashtbozorg
et al. have suggested a new approach to classify considering the geometry of vessels [29].
Estrada et al. have also taken graph theoretical method into consideration by extending a
global likelihood model [30]. Relan et al. have employed the least square-support vector
machine approach for the classification of veins on four-color features [31]. Vascular tortu-
osity measurement is important for the diagnosis of diabetes and some diseases related
to central nervous system. Hart et al. have suggested a tortuosity measurement and
classification of vessel segmentation and networks and also summarized the previous
works [32]. Grisan et al. have recommended a tortuosity density measure to deal with the
vessel segmentation of various lengths by adding each local turn [33]. Lotmar et al. have
originated the first approach of the first kind that is extensively used [34]. Poletti et al.
have suggested combined approaches for image-level tortuosity estimation [35]. Angle
of variation for tortuosity valuation for the diagnosis of retinopathy is considered by
Oloumi et al. [36]. Five approaches based on different principles are compared by Lisowska
et al. [37]. Perez Rovira et al. have suggested a complete system for vessel analysis, which
utilized the tortuosity measure by Trucco et al. [38,39]. Azzopardi et al. have recommended
vessel extraction by using the B-COSFIRE (Combination of Shifted Filter Responses) tech-
nique that provides rotation invariance effectively by shifting operations [40]. Mapayi et al.
have suggested of blood vessel segmentation by using GLCM (Gray Level Co-occurrence
Matix) energy information through an adaptive thresholding technique [41]. Zhao et al.
have proposed an infinite perimeter active contour model through combining intensity
information and local phase-based enhancement map for vessel extraction [42]. Zhang et al.
have suggested a new approach of segmenting the blood vessel in two ways: one is using
LID (left invariant rotating derivative), and the other one is LAD (locally adaptive deriva-
tive) frame. The results of multiscale filtering through LAD or LID give enhanced images
for vessel extraction [43].

Tan et al. have proposed an automated approach for extraction of retinal vasculature
in which they have filtered the retinal images via a bank of Gabor kernels. The outputs are
combined to form a maximal image that is thinned to get a network of one-pixel lines, ex-
amined and clipped to locate forks and from branches. Lastly, for finding out salient points,
the algorithm known as Ramer-Douglas-Peucker is employed [44]. Farokhain et al. have
designed new sets of Gabor filters applying imperialism competitive algorithm for blood
vessel segmentation [45]. Orlando et al. have recommended vessel segmentation by condi-
tional random field model [46]. Rodrigues and Marengoni have employed a graph-based
technique utilizing Dijkstra’s shortest path algorithm and a statistic t distribution to extract
the blood vessel [47]. Jiang et al. have recommended a pretrained fully convolutional
network through transfer learning for the segmentation of blood vessels [48]. Khomri et al.
have proposed a vessel segment method using the Elite-guided Multi-Objective Artificial
Bee Colony (EMOABC) algorithm [49].

Memari et al. have suggested fuzzy c-means clustering integrated with level sets
for blood vessel segmentation. They have employed contrast limited adaptive histogram
equalisation, mathematical morphology integrated with a matched filter, the Gabor filter,
and the Frangi filter to reduce the noise and enhance the retinal images [50]. Sundaram
et al. have integrated few existing techniques such as morphological operations, bottom
hat transform, multiscale vessel enhancement (MSVE) algorithm, and image fusion for
retinal vessel segmentation [51]. Recently, Dash and Senapati have introduced an extension
of Discrete wavelet transform (DWT) by combining it with the Coye filter [52]. Dash et al.
have enhanced the image by using homomorphic filter-based enhancement to enhance
the features. Afterwards, vessels are extracted by utilizing K-mean clustering method [53].
Likewise, there are many other suggested works are available in the literature for the
improvement and detection health diseases utilizing machine learning [54-58] and deep
learning [59-64].
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Glaucoma is the second main basis of irreparable blindness worldwide. The dis-
ease progression of glaucoma can be controlled by early detection. Glaucoma leads to
deterioration of optic nerves. The ratio of the optic cup to the optic disc, also known as
the cup-to-disc ratio (CDR), is one of the important and standard measures to identify
glaucoma. Trained ophthalmologists determine the CDR value manually, which restricts
en masse screening for early detection of glaucoma. The exact value of CDR is difficult
to determine if the optic cup and optic disc are not thoroughly distinct [65]. Therefore,
an optic disc improvement technique is highly recommended. The suggested work can
improve the quality of optic disc and optic cup for glaucoma identification.

Even though, recently, deep learning has been successfully implemented for retinal
blood vessel segmentation, a lot can still be done to ameliorate the traditional unsupervised
approaches further. Wang et al. have recommended Context Spatial U-Net for blood vessel
segmentation [66]. Generally, designing a method of enhancing the contrast that generates
a visual-artifact-free output is impracticable. Selection of a particular enhancement system
is challenging due to the absence of reliable parameters for the evaluation of the quality of
the output image.

Even though most of these approaches have generated prominent results, they so
often present various complications because of noise and the imprecise nature of the retinal
vessel images. In such circumstances, numerous critical challenges still exist that must be
addressed, for instance, occurrence of false positives, poor connectivity in retinal vessels,
accuracy under noisy condition, and many more. Despite few efforts having been taken
for the enhancement of retinal vessel using curvelet transform, the improvement of the
performance of curvelet transform can still be a challenging task.

Curvelet has the advantage of modifying the curvelet coefficients; it has the ability to
enhance the edges more precisely. The multistructure elements approach has the property
of directionality feature that makes it an effective tool in edge detection. The curvelet
decomposition has the benefit of denoising as well as highlighting the edges and vessel
curvature. The Jerman filter has the advantage of producing uniform and stable effect in
all vascular structures and correctly improves the border in between the vascular structure
and the background.

In this paper, a new attempt has been made by considering the advantages of both
Jerman filter and curvelet transform for retinal vessels enhancement and mean-C threshold-
ing for segmentation. The suggested approach integrates two different techniques, Jerman
filter and curvelet transform, to improve the performance of the curvelet transform.

The paper is organized as follows: Section 2 discusses the methodology in detail.
Results and comparisons are given and discussed in Section 3. In Section 4, the conclusions
are drawn.

2. Materials and Methods

The suggested execution of the retinal blood vessel extraction system is enlightened
by curvelet transform integrated with the Jerman filter [4]. The main purpose of combining
the two techniques is to improve the traditional curvelet transform performance further for
the enhancement of retinal blood vessels. Figure 1 shows the functional block diagram of
the suggested segmentation scheme, and there are three stages of the approach that are
comprehensively described below.

2.1. Preprocessing

Due to the difficulties in capturing pictures of retinal images through pupil, the blood
vessels have unbalanced illumination. Because of the low contrast, the vessels in the dark
areas are difficult to discern. Therefore, the whole preprocessing stages are critical in
order to extract as many fine vessels as possible. Accordingly, the overall image quality
requires improvement through the preprocessing steps. Thus, the suggested method is a
unique combination of a Jerman filter with curvelet transform to improve the performance
measures of blood vessels.
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Figure 1. Schematic outline of the suggested methodology.

It can be inferred from Figure 2 that the vessels are better distinguishable in the green
channel in comparison to the blue and red one. Hence, the green channel is considered in
the entire process of vessel extraction.

a) b) <) d)

Figure 2. (a) Colour Image, (b) Red Channel, (c) Green Channel, (d) Blue Channel.

2.1.1. Enhancement of Vasculature Jerman Filter

Although various enhancement filters are extensively utilized, the responses of the
filters are not uniform in between vessels of distinct radii. A close-to-uniform response is
achieved for the entire vascular structure by initially considering the filter that uses the
ratio of multiscale Hessian eigenvalues.

To handle with the deviations of intensity and outline of the targeted structures, noise,
etc., the indicator function is approximated by smooth enhancement functions. Through
maximization of a specified enhancement function, a multiscale filter response F(x) is then
achieved, at each point x, over a span of scale s, as given below:

F(x) = sup{v[eig(x,s)] : Smin < 5 < Smax} (1)

where H(X, s) is the hessian of F(x) at x and scale s.

The vasculature mostly contains straight vessels and rounded structures such as
bending vessels and bifurcations and vascular pathologies, for example, aneurysms.
The elongated tube type structures, for instance, vessels, can be enhanced by considering
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the eigenvalue A, of H (x,s), m=1, 2, ... E that can be calculated fast for 2 x 2 Hessian
matrices in 2D images with the analytic approach. The elongated structures are specified
by Ay I>>1A1 1 for 2D images (E = 2) in which A; is a bright (dark) structure on a dark
(bright) background. For differently shaped structures, the eigenvalue relationships can be
achieved in the same way.
Frangi et al. (1998) suggested a function in which a factor is used to suppress the
rounded structures, as described below [5]:
P 2[32
Jerman et al. (2016) removed the factor and reduced Frangi’s function as:

2 2
VE = <1—exp<—2§}z‘;>> <1—exp<—251<32>> 2)

where S3 = /A 4+ A3 + A is the second order measure of image structure that is desig-

natedasSp = | Y )\iz, where D indicates dimension, and 4 = % discriminates between
i<D

tubular and planar structures. Parameters o« and K control the sensitivity of the mea-

sures o and S, respectively. In 2D, the corresponding transformed Frangi’s enhancement

function comprises only the second factor of Function (1), which is given as:

ve=[1—ex i 3
F p 2K2 ()

where S, = 1/?\% + ?\%.
M

8
The original Sato’s enhancement function consists the factor (1 + W) ,6 >0 for
the suppression of rounded structures (Sato et al. 2000) [67]. By eliminating this aspect,

Jerman et al. (2016) derived the equation as [4]:

¥
Vs = [As] (;i) 4)

, with g = ||/ VA3 and B = constant.

where y controls the sensitivity.
Li et al. (2003) suggested an alike enhancement function that is without the suppres-
sion of spherical structures, stated as [7]:

A

Vg = —
A3

©)

that can be factored into |A;| x Ay /A3. As reported by to Li et al. (2003), the first factor
denotes the magnitude and the second likelihood of an elongated structure.

The terminologies of the entire abovementioned enhancement functions are, by some
means, proportional to the magnitude or squared magnitude of A, or A;. By utilizing
e* =~ 1 + x to approximate the second order factor in Function (1), Jerman et al. (2016)
derived the following [4].

s? 1
(1 —exp<—2K2>>2K2(7\%+7\§+7\§) ©6)

That explains Frangi’s Function (1) is proportional to the squared magnitude of A,
and Ags.

The dependency of the enhancement functions on the magnitude of A, or Az is executed
mostly to suppress the noise in image regions with low and uniform intensities in which
all eigenvalues have low and alike magnitudes.
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For regularizing the value of A3 at each scale p, the following formulation is considered:

Asif A3 > tTmax,As(x, p)
Am(p) = ¢ TmaxA3(x, p) if0 < A3 < tmaxA3(x, p) @)
0 otherwise

where T is the cut-off threshold between 0 and 1.
By this eigenvalue regularization mentioned above, the enhancement function can be
described individually of the relative brightness of the structures of importance as follows:

3
U = MAn {3} (8)

Accordingly, Jerman et al. (2016) derived the enhanced filter function as [4]:

0ifAy < 0VAm < 0

. Am
1if Ay > >0 9)

Va = ;
A3 (Am—2A2) {%ﬁ} otherwise

The suggested enhancement function is considering a ratio of eigenvalues with range
response values from 0 to 1. Figure 3a presents the green channel, and Figure 3b,g shows
the images obtained by applying the Jerman filter on the green channel of the blood vessel.
Figure 4 displays the filtered images after the disk is removed.

()

Figure 3. Comparison of green channel- and Jerman-filtered images with different T values. (a) Green
channel, (b) t=0.5,(c) t=0.6,(d)t=0.7,(e) T=0.8, (f) t=09,(g) T=1.

2.1.2. Enhancement of Vasculature by Curvelet Transform

The Jerman-filtered transformed images are further processed through curvelet trans-
form. The purpose of choosing curvelet transform is explained below.

In the curvelet transform, the curvelets are designed to pick up curves utilizing only
a small number of coefficients. Therefore, the curve discontinuities are managed finely
with curvelets. Main advantages of curvelet transform are its sensitivity in the direction
of directional edges and contours and its ability to signify them by few sparse nonzero
coefficients. Thus, in comparison to wavelet transform, curvelet transform can proficiently
illustrate the edges and curves with a smaller number of coefficients. Furthermore, curvelet
transforms are utilized to enhance the contrast of an image by highlighting its edges in
several scales and directions.
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Figure 4. Retinal images obtained from a Jerman filter after the disks are removed for different
T values.

The details of mathematical formulations are discussed as follows.

Donoho and Ducan (2000) suggested curvelet transform that is derived from ridgelet
transform [8]. The curvelet transform is appropriate for objects that are smooth away from
discontinuities across curves. Curvelet transform handles curve discontinuities in a fine
manner because it is designed to handle curves utilizing only a small number of coefficients.
The multiwavelet transformation offers better spatial and spectral localization of an image
when compared with other multiscale representations. However, here, the curvelet via
wrapping is implemented, as it is faster and has less computational complexity. In this
method, the Fourier plane is divided into a number of concentric circles referred to as scale;
each of these concentric circles is again divided into a number of angular divisions referred
to as the orientation. This combination of the scale and the angular division is known as
parabolic wedges. As these radial wedges capture the structural activity in the frequency
domain, high anisotropy and directional sensitivity are the inherent characteristics of the
curvelet transform. Next, to find out the curvelet coefficients, inverse FFT is taken on each
scale and angle. The curvelet transform consists of four stages and is implemented as
given below.

Initially in the subband decomposition, the image is first decomposed into logyN
(N is the size of the image) wavelet subbands, and then curvelet subbands are formed by
forming partial reconstruction from these wavelet subbands at various levels. The subband
decompositions are denoted as:

f— (Pof, Alf, Azf, . )

where Py— lowpass filter, A— bandpass (highpass) filters.

The image is distributed into resolution layers Py. All layers include the particulars
of various frequencies. In the next step of smooth portioning, every subband is smoothly
windowed into ‘squares’ of a suitable measure. A grid of dyadic squares is described as:

kq k1+1:|x|:k2 k2+1:| I, (10)

I(Sr kikp) = [zs’ 75 95’ os
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Let p be a smooth windowing function. For every square, P is a displacement of
P localized close to I. The multiplication of Asf with P; yields a smooth dissection of the

function into ‘squares’.
hy = P1Af (11)

This stage follows the windowing partition of the subbands isolated in the former
step of the algorithm.
Ast —— PiAfT € I (12)

In the next step of renormalization, every resultant square is renormalized to unit scale.

For a dyadic square I, let the following define an operator that transports and renormalizes

f so that the part of the input supported near I becomes the part of output supported near
the unit square.

TIf(X1X2) = ZSf(2Sx1 - kerSXZ - kz ) (13)

In this step, each square resulting in the previous step is renormalized to unit scale.
g =Ty 'hy (14)

where Ty is the operator, and T; ! is the inverse opearator.
Finally, inverse curvelet transform is applied to achieve the curvelet enhanced image.
The digital curvelet transform applied on a 2D image f(x,y), such that 0 < x <M and
0<y <N, gives a set of curvelet coefficients C(s, 0, k1, k;) as follows.

0<x<M

C(s, 8, kikp) = 2 f(X,¥) @s,0 kik, (X ) (15)
0<y<N

’

Here, ‘s’ is the scale or no of decomposition level, ‘0’ is the orientation, ‘k;” and ‘ky
are spatial location of curvelet, and ¢ and ‘f(x,y)” are the image in spatial domain. As the
decomposition level increases, the curvelets become thinner and sharper. The schematic
diagram of the general steps of the curvelet transform is given in Figure 5. Furthermore,
the enhanced images obtained from curvelet transform are presented in Figure 6. Figure 6b
represents the curvelet transformed image on the green channel. Figure 6¢-h presents the
enhanced curvelet transform retinal images through the Jerman filter.

Retinal fundus

v

Green Channel

@]
[
2
(@]
o
Set to Zero

1
1
1
. ¥ !
1
Detail subband ]
; e IS
1
1
1

I
I
Coarsest subband _] :
I
I

v o
o
Detail subband ——-L/|'

Edge Enhancement
Muluply by o

Coefficients Modification

e o e e e e e e e e —

Figure 5. General steps of curvelet transform.
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() (0 (8) (h)

Figure 6. Effect of curvelet transform on green channel- and Jerman-filtered images (a) Green

channel, (b) Curvelet transformed image of green channel, (c-h) Jerman filter integrated with curvelet
transform for different values of .

2.2. Mean-C Thresholding

In this research, mean-C thresholding method is considered in which a threshold is
computed for every pixel in the image based on some local statistics such as mean and
median. The threshold is updated every time. The core benefit of this approach is that it
can be applied to unevenly illuminated images. The steps of the mean-C thresholding are
described as follows.

The novel mean-C thresholding proceeds in two steps—background elimination and
vessel segmentation. For background elimination, a mean image is first generated by
convolving the enhanced image with a mean filter of window size “W’. This average filter
smooths the background for the poorly illuminated image. This mean filtered image
is subtracted from the enhanced image to produce a difference image. Now with an
appropriate threshold value ‘C’, the image is binarised. The values of the parameters ‘W’
and ‘C’ are chosen empirically [58].

i.  Initially, the mean filter with window size N x N is chosen.

ii. The transformed image achieved through all the processes is convolved with the
mean.

iii. By taking the difference of the convolved image and the transformed image, a new
difference image is obtained.

iv. The difference image is thresholded with the constant value C. Experimentally,
the value of C is fixed as 0.039.

v.  The complement of thresholded image is computed.

2.3. Summary of the Proposed Method

The summary of the contribution of the suggested method is given below.

Step 1: Extract the green channel from the fundus image.

Step 2: Apply the Jerman filter with different t value that is the cut-off threshold
between 0 and 1. In the experiment, T value varies from 0.5 to 1.

Step 3: Afterwards, Jerman-filter-enhanced images are applied on curvelet transform
to improve the curvelet transform.

Step 4: Curvelet decomposition of level ‘s’ = 5 and orientation 6 = 16 are applied to
each channel individually (as described in Equation (15)). It gives a set of curvelet coeffi-
cients for each level of decomposition (i.e. for s =1, 2.., 5). As the level of decomposition
increases, the curvelet becomes thinner and finer, and hence, the s=1 corresponds to the
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core’s region, and s=5 corresponds to the finest or high-frequency region. The increase in 6
value increases the no of coefficient significantly. Hence, the no of decomposition level and
the orientation are chosen very precisely to achieve the best representation of the curves
and singularities with minimum complexity.

Step 5: Then the image enhancement is performed by modifying the curvelet co-
efficients in such a way that the high-frequency curvatures and edges are emphasized,
and the low-frequency cores regions are deemphasized. This coefficient modification
scheme is unique and specific to the problem. Here, all the coefficients for s = 1 are set
to zero, and the coefficients for all other values of s are multiplied by ‘o’. The value of ‘o’
is fixed at 1.2.

Step 6: Apply Inverse Curvelet transform on the modified set of curvelet coefficient to
produce the enhanced image. As the coefficient modification set all core levels to zero and
fine level coefficients are enhanced, in the reconstructed image, the background appears
darker, and the curvatures and edges are highlighted. Various authors have suggested
several strategies for coefficient modification; however, the suggested modification is very
simple and straightforward and gives efficient enhancement.

Step 7: Mean C thresholding is applied on the curvelet-enhanced images to produce
the vessel network.

Step 8: Mean C thresholding result contains some small, disconnected, vessel-like
structures. These may be due to the noise. Thus, a postsegmentation fine tuning is
performed by morphological opening operation, which successfully removes the artefacts.

3. Results

The performance of the recommended approach is analysed and compared with
the other approaches by implementing it on publicly available DRIVE and CHASE_DB1
databases. The DRIVE database images are divided into two sets—training data set and
testing data set. Each data set consists of 20 retinal colour images, corresponding mask,
and two sets of corresponding manually segmented results. The manual segmented result
given by the first ophthalmologist is treated as the ground truth image. The training data
set is usually used in supervised methods to train the network. As the suggested scheme is
an unsupervised method, we have considered only the test data set.

The CHASE_DB1 (Child Heart and Health Study in England) dataset contains of child
retinal images of both the eyes. The images are taken at 30° field of view with resolution of
960 x 999 pixels by hand-held NM-200-D fundus camera. The images consist of uneven
illumination at the background and poor contrast blood vessels. Segmentation results of
the first of the two observers are deployed as the ground truth.

To analyse and quantify the method’s efficiency the segmented result is compared
with the ground truth and several performance measures like sensitivity, accuracy, and
specificity are computed, as per the equation defined below. The accuracy is defined as the
ability of algorithm to differentiate the vessel and nonvessel pixels correctly. To estimate
the accuracy, one has to calculate the proportion of true positive and true negative in
all evaluated cases. The accuracy displays conventionality of the segmentation result.
Mathematically, it is defined as:

Accuracy = IP+1IN
Y= TP+ N+ IN + FP

(16)
Sensitivity quantifies the techniques of capability to identify the correct vessel pixel.

Mathematically, it is stated as:

TP
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While specificity is a measure of the capability to identify the background pixels.

e TN

Specificity = TN £ FP (18)
.. TP

Precision = TP + EP (19)

where TP, TN, FP, and FN are defined as follows:

True positive (TP) = counts pixel is accurately recognized as a vessel.

False positive (FP) = counts pixel is inaccurately recognized as vessel.

True negative (TN) = counts pixel is accurately recognized as background.

False negative (FN) = counts pixel is inaccurately recognized as background.

The first experiment is carried out for the original curvelet transform on both DRIVE
and CHASE_DB1 databases. Table 1 shows the performance measures of the retinal blood
vessel segmentation utilizing original curvelet transform with c-mean thresholding on
DRIVE database. The average sensitivity, specificity, and accuracy values were computed
and achieved as 0.6687, 0.9835, and 0.95570, respectively, for DRIVE database. Similarly,
Table 2 shows the performance measures of the original curvelet transform on CHASE_DB1
database. The average sensitivity, specificity, and accuracy values were computed and
found to be 0.6160, 0.9694, and 0.9432, respectively, for CHASE_DB1 database.

Table 1. Performance evaluation of the original curvelet transform on DRIVE database.

Image Sensitivity Specificity Accuracy Precision
Retina 1 0.689029 0.983848 0.957543 0.806914
Retina 2 0.681326 0.98826 0.956828 0.868788
Retina 3 0.662299 0.982472 0.950555 0.807091
Retina 4 0.612176 0.994229 0.959083 0.914874
Retina 5 0.625776 0.99155 0.957283 0.884459
Retina 6 0.619286 0.98656 0.950812 0.832454
Retina 7 0.645363 0.982846 0.952006 0.790952
Retina 8 0.646095 0.981693 0.952819 0.768638
Retina 9 0.64762 0.985057 0.95771 0.792622
Retina 10 0.619679 0.989112 0.958707 0.836174
Retina 11 0.663699 0.98082 0.952431 0.772854
Retina 12 0.690874 0.979726 0.954785 0.763055
Retina 13 0.560464 0.990786 0.948715 0.868271
Retina 14 0.751659 0.969751 0.952118 0.686101
Retina 15 0.714534 0.973168 0.954658 0.672419
Retina 16 0.680373 0.984199 0.956767 0.810371
Retina 17 0.665984 0.977015 0.950761 0.727612
Retina 18 0.703259 0.97927 0.957401 0.744855
Retina 19 0.804903 0.986169 0.971133 0.840365
Retina 20 0.69116 0.983526 0.962026 0.769065

The second experiment is conducted for the proposed curvelet transform integrated
with the Jerman filter. Table 3 shows the results of the average sensitivity, specificity, and
accuracy values that are boosted to 0.7528, 0.9933, and 0.96008, respectively on DRIVE
database. Likewise, Table 3 shows the results of average sensitivity, specificity, and accuracy
values are boosted to 0.7078, 0.9850, and 0.9559, respectively on CHASE_DB1 database.
For the calculation of the average values of the performance parameters, the highest values
achieved from the various values of T are considered. All the performance parameters are
calculated with T value between 0.5 and 1. The cut-off threshold value T can be varied from
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zero to one. However, experimentally, it is observed that selecting a low value of T below
0.5 supresses the elongated structures, and a high value supresses the bifurcation response.
It is observed that better segmentation is achieved when the T value is on the lower side,
i.e., 0.5; poor segmentations are achieved as the T value is increased and on the higher side.
As the image illuminations vary for different images, various values of T are utilized in
the experiment. Accordingly, the image can be enhanced, and the value of T can be fixed.
The enhancement function of the multiscale filter (Function (1)) is calculated with scales
from smin = 3 t0 Smax = 16 pixels with step 0.5.

Table 2. Performance evaluation of the original curvelet transform on CHASE_DB1 database.

Image Sensitivity Specificity Accuracy Precision
Retina 1 0.605098 0.969179 0.943788 0.595448
Retina 2 0.588396 0.957322 0.923329 0.526972
Retina 3 0.670129 0.969808 0.946311 0.653783
Retina 4 0.622163 0.978558 0.947489 0.697793
Retina 5 0.632404 0.971317 0.943688 0.651083
Retina 6 0.582326 0.978046 0.944288 0.66521
Retina 7 0.609928 0.968976 0.94101 0.624149
Retina 8 0.613154 0.972105 0.947597 0.595198
Retina 9 0.600965 0.970603 0.951395 0.567225
Retina 10 0.597453 0.963862 0.937151 0.588464
Retina 11 0.619103 0.961833 0.940899 0.556381
Retina 12 0.592585 0.965196 0.937655 0.564901
Retina 13 0.597962 0.973663 0.947481 0.576893
Retina 14 0.692803 0.972191 0.95296 0.648084

Table 3. Performance Comparison of the recommended approach.

Approach Year Sensitivity Specificity Accuracy
DRIVE CHASE_ DB1 DRIVE CHASE_DB1 DRIVE CHASE_DB1
Kar et al. [12] 2016 0.7548 - 0.9792 - 0.9616 -
Azzopardi et al. [40] 2015 0.7655 0.7585 0.9704 0.9587 0.9442 0.9387
Mapayi et al. [41] 2015 0.7650 - 0.9724 - 0.9511 -
Zhao et al. [42] 2015 0.742 - 0.982 - 0.954 -
Zhanetal. 13 . R . N
Tan et al. [44] 2016 0.7743 0.7626 0.9725 0.9661 0.9476 0.9452
Farokhain et al. [45] 2017 0.693 - 0.979 - 0.939 -
Orlando et al. [46] 2017 0.7897 0.7277 0.9684 0.9712 - -
Rodrigues and Marengoni [47] 2017 0.7223 - 0.9636 - 0.9472 -
Jiang et al. [48] 2018 0.7121 0.7217 0.9832 0.9770 0.9593 0.9591
Khomri et al. [49] 2018 0.739 - 0.974 - 0.945 -
Memari et al. [50] 2019 0.761 0.738 0.981 0.968 0.961 0.939
Sundaram et al. [51] 2019 0.69 0.71 0.94 0.96 0.93 0.95
Dash and Senapati [52] 2020 0.7403 - 0.9905 - 0.9661 -
Dash et al. [53] 2020 0.7203 0.6454 0.9871 0.9799 0.9581 0.9609
Original Curvelet Transform 0.6687 0.6160 0.9835 0.9647 0.9557 0.9432

Suggested approach (Jerman filter
integrated with Curvelet 0.7528 0.7078 0.9933 0.9850 0.9600 0.9559
transform)
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4. Discussions

The segmented images of the DRIVE and CHASE_DB1 databases by the suggested
approach are represented in Figures 7 and 8, respectively. The first retinal original image
of the DRIVE database is given in Figure 7a, while Figure 7b is the corresponding ground
truth image. Figure 7c represents the vessel extracted by applying the curvelet transform
enhanced method. Figure 7d-i shows the vessels extracted by the suggested method with
different t values of the Jerman filter. From the figures, it is clearly visible that, when
increasing the T values from 0.5 to 1 with an increment step of 0.1, the small branching
vessels are disconnected from the main vessels, and correspondingly, the accuracy also
reduced. The t value at 0.5 finely preserved the vessel connectivity that is noticeably
observed from Figure 7d. Furthermore, when the vessel-extracted image 7d is compared
with the ground truth image 7b, it is noted that the thin vessels are more prominently
detectable in Figure 7d.

(h) (i)

Figure 7. (a) Original image of DRIVE dataset, (b) Ground truth image, (c) Segmented image from original curvelet,
(d) Segmented image of the suggested technique with T = 0.5, (e) Segmented image of the suggested technique with T = 0.6,
(f) Segmented image of the suggested technique with T = 0.7, (g) Segmented image of the suggested technique with T =0.8,
(h) Segmented image of the suggested technique with T = 0.9, (i) Segmented image of the suggested technique with T =1.
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(2)

(h) (1)

Figure 8. (a) Original image of CHASE-DBI dataset, (b) Ground truth image, (c) Segmented image from original curvelet,

(d) Segmented image of the suggested technique with T = 0.5, (e) Segmented image of the suggested technique with T = 0.6,

(f) Segmented image of the suggested technique with T = 0.7, (g) Segmented image of the suggested technique with t=10.8,

(h) Segmented image of the suggested technique with T = 0.9, (i) Segmented image of the suggested technique with T =1.

For Figure 7, the first retinal original image of the CHASE_DB1 database is given in
Figure 7a, while Figure 7b is the corresponding ground truth image. Figure 7c represents
the vessel extracted by applying curvelet transform enhanced method. Figure 7d—i shows
the vessels extracted by the suggested method with different t values of the Jerman
filter. All the observations of Figure 8 for CHASE_DB1 database are as explained for
DRIVE database.

Thus, experimentally, it is noted that the existing curvelet transform enhancement
method fail to extract many thin vessels accurately. The main advantage of the suggested
approach is that it does not have postprocessing module after segmentation.

Table 3 represents the comparison of the performance measures of the recommended
approach (that is computed for 0.5 as T value) with other approaches presented in the
literature. The performance of the proposed technique on DRIVE and CHASE_DB1 datasets
are related with other techniques with reference to sensitivity, specificity, and accuracy:
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Kar et al. [12], Azzopardi et al. [40], Mapayi et al. [41], Zhao et al. [42], Zhang et al. [43],
Tan et al. [44], Farokhain et al. [45], Orlando et al. [46], Rodrigues and Marengoni [47],
Jiang et al. [48], Khomri et al. [49], Memari et al. [50], Sundaram et al. [51], Dash and Senapati [52],
and Dash et al. [53]. It establishes that the recommended method accomplishes a higher
accuracy in comparison with many state-of-the-art methods while retaining comparable
sensitivity and specificity value.

As the suggested work is to improve the traditional curvelet transform, from Table 3
it is observed that there is a significant improvement in the results by the suggested
method compared to traditional curvelet transform technique both for the DRIVE and
CHASE_DBI1 databases. Furthermore, the suggested approach outperforms the state-of-
the-art-of methods.

5. Conclusions

This paper recommends a new technique for making curvelet transform approach
more robust for retinal blood vessel segmentation by integrating it with the Jerman filter for
different cut-off threshold values () of the Jerman filter. For segmentation purpose, mean-
C thresholding technique is employed. The integration of the Jerman filter and curvelet
decomposition strongly intensify both thick and thin vessels and hence delivers better
segmentation performance than the original curvelet transform. Simulation results establish
that the suggested integrated scheme effectively detects the blood vessels and outperforms
the state-of-the-art approaches in terms three performance indicators, sensitivity, accuracy,
and specificity, over two public databases, DRIVE and CHASE_DBI1. The achieved average
sensitivity, specificity, and accuracy of segmented images are 0.7528, 0.9933, 0.9600 and
0.7078, 0.9850, 0.9559 on DRIVE and CHASE_DBL1 databases, respectively.

Additionally, the proposed approach can be employed in a real-time scenario, as the
approach is an unsupervised technique that does not need any training data.

Even though the segmentation performances are promising, they can further be
improved by considering the optimum set of curvelet coefficients. In the future, this
approach can be extended for classification of abnormal and healthy image by assimilating
deep-learning-based classifiers.
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