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Abstract: Background and Objectives: acute kidney injury (AKI), formerly called acute renal failure
(ARF), is commonly defined as an abrupt decline in renal function, clinically manifesting as a
reversible acute increase in nitrogen waste products—measured by blood urea nitrogen (BUN)
and serum creatinine levels—over the course of hours to weeks. AKI occurs in about 20% of all
hospitalized patients and is more common in the elderly. Therefore, it is necessary to prevent the
occurrence of AKI, and to detect and treat early, since it is known that a prolonged period of kidney
injury increases cardiovascular complications and the risk of death. Despite advances in modern
medicine, there are no consistent treatment strategies for preventing the progression to chronic
kidney disease. Through many studies, the safety and efficacy of natural products have been proven,
and based on this, the time and cost required for new drug development can be reduced. In addition,
research results on natural products are highly anticipated in the prevention and treatment of various
diseases. In relation to AKI, many papers have reported that many natural products can prevent
and treat AKI. Conclusions: in this paper, the results of studies on natural products related to AKI
were found and summarized, and the mechanism by which the efficacy of AKI was demonstrated
was reviewed. Many natural products show that AKI can be prevented and treated, suggesting that
these natural products can help to develop new drugs. In addition, we may be helpful to elucidate
additional mechanisms and meta-analysis in future natural product studies.

Keywords: acute kidney injury; prevention; natural products; antioxidant

1. Introduction

Acute kidney injury (AKI) refers to a sudden decrease in renal function and decreased
renal function is characterized by an increase in serum creatinine (sCr) levels and an ab-
normal decrease in urine output [1]. AKI, previously called acute renal failure (ARF),
is a condition of sudden kidney failure in patients with or without preexisting chronic
kidney disease (CKD); severe kidney dysfunction within a few hours or days results in a
significant decrease (oliguria) or complete elimination of urine (anuria), with electrolyte
imbalance, often requiring hemodialysis [2]. In AKI’s population-based study using the
risk, injury, failure, loss, end-stage kidney disease (RIFLE) criteria, the annual incidence
of AKI was 2147 per million people. In another collaborative study, the annual incidence
of non-dialysis and dialysis-dependent AKI was 3841 and 244 per million people, respec-
tively [3]. In addition, if not treated immediately, AKI can lead to development of CKD
overtime requiring replacement therapies such as dialysis and in the best-case kidney trans-
plantation [4]. It is known that approximately 20% of patients with a history of AKI develop
a chronic disease characterized by cardiovascular complications, and increased mortality.
Various pathological mechanisms have been suggested that progression AKI and transition
to CKD including anoxemia, thinning of microcirculation vessels, altered phenotype and
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function of cells residing in the kidneys, G2/M phase cell cycle arrest, continuous chronic
inflammation, development of epileptic fibrosis, mitochondrial fragmentation, epigenetic
modifications, activation of renin-angiotensin system, cell and tissue senescence [5].

Basically, AKI is a term that describes a clinical disease that occurs when kidney
function is severely impaired, waste builds up in the body, and electrolytes, the acid-base
balance, and water are out of balance [6]. AKI can significantly increase morbidity and
mortality. It is also common in hospitalized patients and increases the risk of CKD and
end stage renal disease (ESRD) [6]. AKI occurs in 5-10% of all hospitalized patients and is
reported in 60% of intensive care unit (ICU) patients [7]. According to recent studies have
shown that sepsis and hypovolemia are the most common causes of AKI in critically ill
patients, followed by nephrotoxic substances [8].

The definition and staging of AKI are based on the criteria RIFLE, and previously
defined criteria of the Network for Acute Kidney Injury (AKIN). In the clinical practice
guidelines on Kidney Disease Improving Global Outcome (KDIGO), AKI is defined as one
of the following: sCr increases by 0.3 mg/dL or more (26.5 umol/1 or more) within 48 h.
Or when sCr is increased more than 1.5 times baseline. This is known or estimated to have
happened within the last a week, Or urine volume < 0.5 mL/kg/h for 6 h [3].

Cellular and molecular targets are relevant to the pathogenesis of AKI, such as damage
in the plasma membrane, gene expression, alterations in the actin cytoskeleton, stress
due to accumulation of unfolded proteins on the endoplasmic reticulum, swelling with
rarefaction of the cristae, and mitochondrial fragmentation, cell-surface receptors in both
initiation and/or propagation of epithelial injury, cell proliferation limitation, lysosomal
disruption [9].

Due to the lack of established therapeutic interventions for AKI, patients with AKI
can only rely on prophylaxis and early diagnosis of AKI to reduce adverse effects and
mortality [10]. Kashani K et al. suggested that the scope of AKI treatment should range from
risk assessment and prevention in the community to the prevention of AKI in hospitals,
the optimization of AKI treatment, and ultimately the prevention of AKI recurrence [11].
However, effective treatments are still deficient, because oxidative stress, inflammation,
damage, and repair imbalances in kidney disease are deeply involved in the pathological
process of specific AKI targets [12].

Natural products have long been used to treat and prevent various disease [13].
Several natural compounds in natural products have demonstrated good effects and high
efficacy in suppressing cell death, oxidative stress, and inflammation [12]. In several studies,
in order to examine the efficacy of these natural products, the efficacy of prevention and
treatment for AKI was been confirmed and suggested in in vivo and in vitro tests [14].

The purpose of this study was to comprehensively investigate and summarize the
mechanism by which natural products exhibit efficacy in relation to AKI in vivo and
in vitro.

2. Research Method

In order to find research results on AKI and natural products, many papers published
between 2010 and 2021 were searched for in electronic databases such as PubMed, Google
Scholar, and Embase. We identified articles for further review in compounds by performing
an initial screen of identified abstracts or titles about prevention against AKI. Papers were
considered for inclusion if they were researched on anti-oxidant and anti-inflammatory
effects. The keywords for the search were as follows: “acute kidney injury”, “AKI”, “natural

product”, “compounds”, “plant”, and “antioxidant”. The papers finally selected for the
literature review are shown in Table 1.
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Table 1. List of some natural products with potential prevention of AKI action.

Prevention/ M1n1.mal Described Effects and
Name Model Active . References
Treatment . Mechanisms
Concentration
Flavonoids
Reducing the levels of
Quercetin NRK-52F cells and Treatment 10 uM malondialdehyde, lipid ROS and [15]
HK-2 cells . . .
increasing the levels of glutathione
Increased the levels of p53 and its
. Cisplatin-induced phosphorylation, decreased the levels
Luteolin AKI in mice Treatment S0 mg/kg of PUMA-«, Bax and caspase-3 (o]
activity
Renal is- Increased the expressions of Bcl-2,
Apigenin chemia/reperfusion Prevention 20 mg/kg p-Akt, PI3K, and down-regulated the [17]
in rats expressions of Caspase3 and Bax
Suppressed levels of TNF-«, iNOS,
Cisplatin-induced . 1L-12, activation of NF-kB,
Kaempferol AKI in mice Prevention 100 mg/kg phosphorylation of IkBax and nuclear [18]
translocation of p65
Improved urinary protein excretion
.. Pregnancy-induced levels and renal tissue damage,
Icariin . . Treatment 100 mg/kg . . . [19]
hypertension mice upregulation of nephrin expression
and downregulation of ANG II
Reduced blood BUN, serum Cr,
.. Cisplatin-induced . caspase-3, TNF-«, IL-6, COXI and
Myricetin AKI in mice Prevention 30 mg/kg COXII, MDA levels and, increased 201
GSH level and catalase activity
Inhibited expression of IL-6, IL-1f3,
. LPS-induced septic TNF-a, HMGB1, iNOS and COX-2,
Fisetin AKI mice Treatment 100 mg/kg suppressed of Bcl-2, BAX and cleaved 211
caspase-3
Increased SOD, GPx, CAT and GSH
. Cisplatin-induced . levels, inactivated Nrf2, HO-1 and
Galangin AKI in mice Prevention 125mg/kg  GCrC, inhibitions of ERK and NF-kB 22]
signaling pathways
Reduced MDA, increased GSH, CAT,
. Cisplatin-induced . and SOD activities, elevated Nrf2
Tangeretin AKI in rats Prevention 8mg/kg expression, downstream effectors 23]
IL-1p and TNF-« expression
Renal is- Increased gene expression levels of
Genistein chemla./ reperfusion Prevention 15 mg/kg TLR4 and TNF-a [24]
in rats
Polyphenols
Cisplatin-induced Decreased serum creatinine and
Ellagic acid AKI in mice Treatment 75 mg/kg reduction of actn.fe caspase-3 [25]
expression
Chlorogenic LPS-induced AKI Inhibiting TLR4/NF_.KB 31gnal.1 &
. . Treatment 30 mg/kg pathway, and reduction of active [26]
acid mice
caspase-3
Renal is- Improve the levels of renal MDA
Gallic acid chemia/reperfusion Prevention 100 mg/kg P ! [27]

in rats

serum GSH, and GPX activity
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Table 1. Cont.
Prevention/ M1n1.mal Described Effects and
Name Model Active . References
Treatment . Mechanisms
Concentration
e Cisplatin-induced . Elevated levels of renal function
Vanillic acid AKTin rats Prevention 50 mg/kg markers and reduced antioxidant status [28]
Cisplatin-induced S
Resveratrol AKI in rats Treatment 30 mg/kg Inhibiting IRE1-NF-«B pathway [29]
Renal is- Reduced the elevated levels of IL-1/3
Anthocyanin chemla'/ reperfusion Prevention 50 mg/Kg IL-6, TNF-o, and MCP-1 [30]
In rats
Inhibiting regulation of the AMPK and
. Glycerol-induced Prevention/ Nrf2/HO-1 signaling pathway and
Curcumin AKI in Rats Treatment 200 mg/kg ameliorated activating the PI3K/Akt 311
pathway
Salvianolic Cisplatin-induced . Activation of the PI3K/Akt/Nrf2
Acid B AKI in rats Prevention 50mg/Kg pathway (321
Bakuchiol Sepsm-mduced AKI Prevention 45 mg/kg Blockade o.f the NF-KB and p38 MAPK [33]
mice signaling pathway
. Sepsis-induced AKI . Blocked by inhibiting SIRT1, and
Polydatin mice Prevention 30 mg/kg suppressed NLRP3 [34]
Eugenol Acute pancreatitis Prevention 15 mg/kg Mild TNF-« activity a.nd low Serum [35]
rats urea and creatinine levels
. Renal is-
p-Coumaric . . . Improved the Cr and BUN levels,
acid chemlaii1 r;}g;rfuswn Prevention 100 mg/kg reduction in tissue MDA, TNF-o, IL-1f [36]
Cisplatin-induced Increase in plasma activities of ALT,
Caffeic acid l?AKI in rats Prevention 100 mg/kg AST, ALP, and plasma levels of urea, [37]
reduced SOD, CAT, GST and GPx
Terpenoids
Glvevrrhetinic Meii:;ﬁl;z;ate_ Increase in circulating kidney function
yeyr S Prevention 100 mg/kg markers and TNF-«, up-regulating the [38]
acid nephrotoxicity in . :
Nrf2/ARE signaling
rats
S Sepsis-induced AKI Inhibiting reactive oxygen species,
Ursolic acid mice Treatment 20 mg/kg TNF-o, IL-1B, IL-6, and Ni-kB [39]
- Cisplatin-induced Inhibiting in caspase-3 and -9
Oleanolic acid AKI in mice Treatment 40mg/kg activations and PARP cleavage (401
Increasing the UCP2 content
.. LPS-induced AKI in . Ameliorating mitochondrial
Genipin mice Prevention 15mg/kg dysfunction, anti-inflammation, and 411
antioxidative activities
Cisplatin-induced Reduction in oxidative stress and
Pinitol p-atn . Treatment 10 mg/kg cytokines including TNF-«, IL-13 and [42]
AKI in mice .6
Managed oxidation systems of
. Cisplatin-induced . Nrf2-mediated pathway and
Linalool AKI in rats Prevention S0 mg/kg diminished TNF-a, IL-1p, IL-6, and [43]
NF-«B
Cisplatin-induced Abrogated oxidative stress and
Geraniol P Treatment 100 mg/kg downregulated the MAPK, STAT-1, [44]

AKI in rats

P53, p21 and MMP9

Abbreviation: AKI; Acute kidney injury, LPS; Lipopolysaccharides.
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3. Pathophysiology of AKI

AKl is a clinical endpoint of many processes that lead to a decreased glomerular
filtration rate and are indicators of general kidney function. Key components of the injury
process include apoptosis, necrosis, reactive oxygen species (ROS), and microvascular
injuries that cause local ischemia, endothelial dysfunction, leakage, and inflammation
(Figure 1) [45]. AKI is most commonly caused by ischemic or toxic damage and occurs in
septic situations. Components of the pathophysiology are inflammatory reactions as well
as tubular or vascular damage and their consequences [46].

Acute Kidney injury

Oxidative Intlammatory
Stress Response

Glycyrrhetinic acid Ursolic acid

Inflammatory Mediators

{ Glutathion
(GSH)concentration

Figure 1. Oxidative stress and inflammatory response mechanisms involved in the pathogenesis of
aucte kidney injury and some effect compounds. Abbreviation ROS; Reactive oxygen species, CAT;
catalase, GPX; Glutathione peroxidase.

Inflammation is mediated in part by the adhesion of leukocytes to diseased endothelial
cells. Ischemic AKI is the most common cause of AKI in hospitalized patients, with an
average mortality rate of 50% [47]. In response to injury, surface expression of the leukocyte
adhesion molecules ICAM-1 and P and E selectins is increased on endothelial cells [47-49].
In vivo imaging studies have shown that leukocytes adhere to the wall of peritubular
capillaries within hours of reperfusion [50]. Treatment aimed at reducing endothelial /white
blood cell interactions by targeting these endothelial adhesion molecules can maintain
blood flow and prevent ischemia reperfusion induced nephropathy [47]. Endothelial cells
can also be a source of chemokines such as fractalkine (CX3CL1), which is expressed after
kidney injury, and can promote are infiltration of macrophages [47].
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4. Natural Products for the Prevention of AKI

Since AKI is a multifactorial disease and can be associated with co-morbidities, there is
no pharmacological approach in clinic to reverse the renal injury. Currently, maintenance of
volume homeostasis and correction of biochemical abnormalities are still the goals for the
treatment of AKI. Therefore, prevention is always critical for this disease. Some functional
components from food materials have been reported to have the ability to protect renal
functions, indicating long-term administration of these components might be an effective
approach to prevent AKI [51].

As shown in Figure 1, the TGF-f3 receptor, TNF receptor, caspase-3, caspase-9, etc., then
these receptors activate downstream pathways, further ROS production and inflammatory
responses, eventually leading to kidney damage. Several effective natural products sup-
press cisplatin, lipopolysaccharide (LPS), Ischemia-Reperfusion (I/R)-stimulated inhibiting
the NF-«B pathway and reducing inflammation. Moreover, some compounds reduce
apoptosis by inhibiting TGF-f3, Akt, and p53 pathways. Additionally, some compounds
can reduce ROS production.

Many compounds, including flavonoids, polyphenols, terpenes, alkaloids, saponins,
and quinones, have multiple beneficial pharmacological activities such as antioxidants and
anti-inflammatories [52]. Oxidative stress is considered an AKI factor. Natural products
derived from plants have strong anti-inflammatory and antioxidant properties. There
have been many studies to investigating the effect of common herbal extracts and their
constituents on AKI [53]. This section discusses extracts of several plants and isolated
compounds used for the prevention and treatment of AKI.

4.1. Flavonoids

Flavonoids are found in many plant foods, including vegetables, fruits, and herbs. The
flavonoid activity depends on the structure of the hydroxylated phenol [54]. Flavonoids
are known to have anti-cancer, anti-inflammatory, and antioxidant effects [55-57].

Quercetin is a naturally occurring flavonoid compound commonly found in more
than 20 fruits and vegetables and is the most abundant in the diet. It has been of medical
interest because it is known for its pharmacological effects such as anti-inflammatory,
antihypertensive, vasodilator, anticholinergic, and anti-atherosclerosis treatment [58]. Y.
Wang et al. reported that quercetin inhibited ferroptosis in renal proximal tubular epithelial
cells. This compound blocked the typical morphologic changes of ferroptotic cells by
reducing the levels of malondialdehyde (MDA) and lipid ROS and increasing glutathione
levels [15].

Luteolin is a flavonoid component found not only in peanut shells, but also in parsley,
celery, pepper, and chamomile, and is known to have anticancer, anti-inflammatory, and
antioxidant effects [59]. Treatment with luteolin in mice treated with cisplatin can signifi-
cantly improve renal dysfunction and reduce renal tubular cell damage, oxidative stress,
and apoptosis [16].

Apigenin is found in herbs such as thyme and parsley, and in orange, peppers. It
can improve I/R damage to the heart, brain and liver of rats, as well as epithelial cells of
the proximal tubules of the human kidney in vitro. medicine. It can also reduce induced
nephrotoxicity [60]. X. Wang et al. reported that apigenin significantly up-regulates the
expression of B-cell lymphoma 2 (Bcl-2) and phosphor-Akt (p-Akt), Phosphoinositide
3-kinase (PI3K), while down-regulating the expressions of Caspase3 and Bax induced by
hypoxia/reoxygenation injury [17].

Kaempferol is a natural dietary flavonoid compound with many adaptive biological
activities, including antioxidant and estrogenic activity. Z. Wang et al. evaluated the effect
of kaempferol on mechanisms related to nephrotoxicity in a cisplatin-induced AKI mouse
model. Pretreatment with kaempferol has been observed to reduce kidney damage [18].

Icariin is the main active flavonolic glycoside of the epimedium. It is widely used
in medical treatment due to its anti-tumor properties and potential for and osteoporosis
treatment and has been shown to slow cell aging [61,62]. Icariin may improve urinary
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protein excretion and renal tissue damage in pregnancy induced hypertension rats, and
its main mechanism is mediated in part by the up-regulation of nephrin expression and
down-regulation of Ang II [19].

Myricetin is commonly found in fruits, berries, and vegetables. It has been shown
to have a variety of biological activities, including antioxidant and anti-inflammatory ef-
fects [63]. Milicetin significantly increases GSH level and caspase activity, and at the
same time improves renal tissue histopathology and significantly decreases levels of
blood urea nitrogen (BUN), serum creatinine, caspase-3, TNF-«, IL-6, COXI, COXII and
MDA. This study suggests a protective and promising prophylactic strategy to prevent
nephrotoxicity [20].

Other flavonoids including genistein, hesperetin, galangin, and fisetin, also prevent
AKI—they are listed in Table 1 [21-24] and their chemical structures are shown in Figure 2.

Figure 2. Chemical structures of flavonoids with potential preventive effects of aucte kidney injury.
(A) Quercetin; (B) Luteolin; (C) Apigenin; (D) Kaempferol; (E) Icariin; (F) Myricetin; (G) Fisetin;
(H) Galangin; (I) Tangeretin; (J) Genistein.

4.2. Polyphenols

Polyphenols are found in vegetables, fruits, grains, chocolate, and beverages such
as wine, coffee, black tea, and green tea [64]. Growing research shows that polyphenols
may play an important role in health by regulating body weight, chronic disease, cell
proliferation, and metabolism [65]. Epidemiological studies in humans and animals have
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shown that various polyphenols have anti-inflammatory and antioxidant properties, as
well as therapeutic and prophylactic effects in obesity, cancer, cardiovascular, and neurode-
generative diseases [66—69].

Ellagic acid is an antioxidant and anti-inflammatory polyphenol compound found in
tea, berries, nuts, and grapes [70-72]. Neamatallah et al. reported that ellagic acid nano
improved the histopathological changes induced by cisplatin, such as tubular dilatation,
necrosis, and degeneration [25].

Chlorogenic acid is one of the most readily available phenolic compounds in coffee,
tea and other foods, and a well-known antioxidant [73]. This compound dose-dependently
attenuated LPS-induced kidney histopathologic changes, serum BUN, and creatinine levels,
and also suppressed LPS-induced TNF-«, IL-6, and IL-1p production both in serum and
renal tissues [26].

Gallic acid is a low-molecular weight triphenol compound that has been shown to
have strong antioxidant activity in many studies [74-76]. It provides effective protection
against oxidative damage caused by active substances commonly found in biological
systems [77,78]. Ahmed Vander H et al. reported that pretreatment with gallic acid can
significantly increase levels of renal MDA, serum glutathione, and glutathione peroxidase
activity after renal ischemia-reperfusion injury [27].

Vanillic acid is a phenolic derivative obtained from edible plants and fruits with
antibacterial, antifilarial and hepatoprotective properties [79,80]. Due to the presence
of carboxyl groups, vanillic acid is an important antioxidant and inhibits inflammatory
mediators, inhibiting NF-«B in mice stimulated with LPS [79]. Sindhu G et al. suggested
that pretreatment with vanillic acid (50 and 100 mg/kg) restored elevated levels of kidney
function markers and reduced antioxidant status to near normal when compared to mice
treated with cisplatin alone [28].

Resveratrol is a polyphenolic substance that is produced when plants are exposed to
adverse environmental conditions such as fungi and pests. It is derived from a variety of
edible plants such as grapes, berries and peanuts [81]. Its anti-inflammatory effect may
prevent AKI caused by sepsis [82]. Resveratrol significantly ameliorated serum creatinine.

BUN, and histopathological lesions induced by cisplatin. In addition, it leads to
significantly increased expression of Fas ligand, tumor necrosis factor-o (TNF-), caspase-8
and Bcl-2 associated protein X apoptosis regulator (Bax), and decreased expression of anti-
apoptosis regulators. Resveratrol administration significantly altered the cisplatin-induced
changes in proteins associated with apoptosis [29].

Anthocyanins are water-soluble pigments that can be red, purple, blue or black
depending on environmental pressure, such as solar radiation and low nitrogen content [83].
Anthocyanins contribute significantly to the antioxidant properties of some colored foods
such as grapes and berries [84]. Li L. et al. showed that anthocyanins are effective against
AKI by reducing inflammation, oxidative stress, lipid peroxidation and apoptosis [30].

Other flavonoids such as curcumin, salicylic acid B, bakuchiol, polydatin, eugenol,
p-coumaric acid and caffeic acid also have noticeable effects [31-37,85,86], and are listed in
Table 1, while their chemical structures are shown in Figure 3.

4.3. Terpenoids

Terpenoids, also known as isoprenoids, are the largest type of secondary metabo-
lites in plants, accounting for about 60% of phytochemicals [87]. They have a distinctive
fragrance and are used in spices and in traditional pharmaceuticals for perspiration, an-
tipyretic, and analgesic effects [88,89]. Terpenoids are also used for cancer treatment
and prevention, cardioprotection, endocrinology /reproductive dysfunction, nutritional
supplements, conventional medicine, immunology, anti-inflammation, menopause, and
neuroprotection [90].

Glycyrrhetinic acid is an effective ingredient of Glycyrrhiza glabra L. (Liquorice). It
is very sweet and is used extensively as a conditioner and flavoring agent to treat a va-
riety of inflammatory conditions [91]. Sana M et al. reported that glycyrrhetinic acid
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has a protective effect on methotrexate-induced nephrotoxicity and the possible mech-
anisms for activating the Nrf2/ARE signaling pathway to reduce oxidative stress and
inflammation [38].

Q o]
0, OH / oH 2
[¢] HO.
OH
HO OH
o J‘\\\\OH OH
HO
HO o HO o,
“on OH
o HO

(A)

Figure 3. Chemical structures of polyphenols with potential preventive effects for aucte kidney
injury. (A) Ellagic acid; (B) Chlorogenic acid; (C) Gallic acid; (D) Vanillic acid; (E) Resveratrol;
(F) Anthocyanin; (G) Curcumin; (H) Salvianolic Acid B; (I) Bakuchiol; (J) Polydatin; (K) Eugenol;
(L) p-Coumaric acid; (M) Caffeic acid.

Ursolic acid (UA) is a naturally occurring triterpene compound found in various
plants such as fruits and vegetables. Ursolic acid has been studied for its beneficial effects,
such as anti-inflammatory, antioxidant, anti-apoptotic, and anti-cancer effects [92]. Recently,
it was demonstrated that ursolic acid can treat sepsis in animal models [93]. According
to a recent study, ursolic acid can protect against AKI-induced sepsis by inhibiting ROS
and inflammatory cytokines, including TNF-«, IL-1§3, and IL-6, in the kidneys of septic
mice [39].

Oleanolic acid is a pentacyclic triterpenoid compound that is found in plant of the
Oleaceae family such as the olive plant [94]. It is a natural product isolated from some
food and medicinal plants. It is a triterpenoid that has many health benefits including
antioxidant, anti-inflammatory, and anti-apoptotic effects [95]. Oleanolic acid inhibited
the increase in proapoptotic caspase-3 and -9 activation and a simultaneous increase in
poly (ADP-ribose) polymerase (PARP) cleavage activation in a concentration-dependent
manner [40]. Genipin, pinitol, linalool, geraniol, malbiin, betulinic acid, butyric acid, and
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corosolic acid can also be used to prevent AKI and listed in Table 1 [41-44], while their
chemical structures are shown in Figure 4.

(D) (E)

Figure 4. Chemical structures of terpenoids with potential preventive effects of aucte kidney injury.
(A) Glycyrrhetinic acid; (B) Ursolic acid; (C) Oleanolic acid; (D) Genipin; (E) Pinitol; (F) Linalool;
(G) Geraniol.

5. Discussion

In this paper, 30 papers related to the prevention and treatment of AKI through natural
products were reviewed. The AKI animal model was induced by drugs by cisplatin, LPS,
Methotrexate, contrast, and glycerol. In addition, various induced-AKI models were tested,
such as I/R injury, pregnancy, pancreatitis, and sepsis. Among the induced AKI models,
14 cases of cisplatin, 5 cases of I/R injury, LPS, and sepsis, 1 case of contrast, methotrexate,
pregnancy-induced hypertension, glycerol, pancreatitis were tested. The main clinical
features for evaluating renal function in AKI are an increase in sCr levels and BUN, and
a decrease in urine output. In this case, 30 natural products tested in vivo showed the
effect of reducing sCr levels and BUN, and this mechanism appeared was confirmed
through various pathways. These pathways were involved in apoptosis, anti-oxidant,
and inflammation.

We reviewed effective natural products against AKI by dividing them into flavonoids,
polyphenols, and terpenoids according to their structural characteristics; flavonoids (quercetin,
luteolin, apigenin, kaempferol, icariin, myricetin, fisetin, galangin, tangeretin, and genis-
tein), polyphenols (ellagic acid, gallic acid, chlorogenic acid, vanillic acid, resveratrol,
anthocyanin, curcumin, salvianolic acid B, bakuchiol, polydatin, eugenol, p-coumaric acid,
and caffeic acid), and terpenoids (glycyrrhetinic acid, ursolic acid, oleanolic acid, linalool,
pinitol, genipin, pinitol, and geraniol) with a total of 30.

Natural products medicine has been practiced to prevent, treat, and cure diseases
for thousands of years. Natural products medicine involves using natural compounds,
which have relatively complex active ingredients with varying degrees of side effects. Some
of these herbal medicines are known to cause nephrotoxicity. Some of the nephrotoxic
components from herbs are alkaloids, anthraquinones, flavonoids, and glycosides from
natural compounds that cause kidney toxicity [96]. The kidney is the route of excretion of
most of the substances present in the natural compounds. The high blood flow rate and
sizeable endothelial surface area of the kidneys ensure delivery of large amounts of toxin
to the renal parenchyma. High concentrations may be reached in the medulla because of
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active tubular transport, especially during a state of fluid deprivation. The exact incidence
of kidney injury due to nephrotoxic natural compounds is not known.

It is worth noting that inflammatory and antioxidant compounds derived from natural
products have therapeutic effects in the AKI-induced model by cisplatin, LPS, sepsis, renal
I/R, and hypertension. Further studies are needed to determine the beneficial effects
of specific products on humans and other animals with kidney disease to elucidate the
detailed mechanisms of their renal protective effects. In addition, while certain natural
products are excellent at preventing kidney damage in vitro and in vivo, it is necessary to
further researches on the optimal dose to protect against a variety of renal damage.

6. Conclusions

AKI is a rapid loss in renal function over a period of hours to days, and a major
worldwide health problem. As a result of the decline in renal function, nitrogenous wastes
accumulate in the body, resulting in hypernatremia in the blood, and abnormalities in body
fluid and electrolyte balance. AKI occurs in about 10% of hospitalized patients and about
30% of patients admitted to the intensive care unit. Despite advances in modern medicine,
there are no consistent treatment strategies for preventing the progression to CKD. In this
paper, we described the pathogenesis of AKI and the findings of natural products that may
potentially assist us in prevention and treatment. So this review summarizes the studies on
the effects of three types of natural products on AKI. Studies involving this review have
mainly focused on anti-inflammatory and anti-oxidant properties. The causes and clinical
features of AKI are very diverse. Hence, studies on natural products with preventive and
therapeutic effects related to various causes of AKI should be continuously conducted.

The phytochemicals in medicinal plants have attracted significant attention due to
the fewer side effects and being cost-effective. Many compounds such as flavonoids,
polyphenols, and terpenoids are effective against induced AKI models. Although natural
compounds play an essential role in preventing AK]I, it is not yet clear whether these
natural compounds can be used as drugs or dietary supplements.

In the future, more research is needed to evaluate the efficacy of plants in AKI preven-
tion, and we expect that this review could be used as a basic paper for meta-analysis, the
prevention and treatment of AKI afterward.
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