Table 1.
Network | Task | Dataset | Loss Function | Data Augmentation |
---|---|---|---|---|
ReLayNet [35] | 7 layers and fluid | Duke SD-OCT public DME dataset [37] 11 B-scans each (512 × 740 px), 110 images in total |
Weighted Dice and Cross Entropy Loss | horizontal flip, spatial translation, cropping |
3D ReLayNet [38] | 7 layers | 13 volumes (13 normal subjects), 10 B-scans each, 130 images in total |
Cross Entropy Loss | none |
FCN8 [39] | 4 layers | 10 volumes (5 patients with CSC, 5 normal eyes), 128 B-scans each (512 × 1024 px), 1280 images in total |
Weighted Cross Entropy Loss | none |
LFUNet [40] | 5 layers and fluid | 58 volumes (25 diabetic patients, 33 healthy subjects), 245 B-scans each (245 × 245 px), 14210 images in total |
Weighted Dice and Cross Entropy Loss | horizontal flip, rotation, scaling |
DRUNet [41] | 6 regions | 100 scans (40 healthy, 41 POAG, 19 PACG), single B-scan through ONH each (468 px width), 100 images in total |
Jaccard Loss | horizontal flip, rotation, intensity shifts, white noise, speckle noise, elastic deformation, occluding patches |
Uncertainty UNet (U2-Net) [42] |
photoreceptor layer | 50 volumes (50 patients: 16 DME, 24 RVO, 10 AMD+CNV), 49 B-scans each (512 × 496 px), 2450 images in total |
Cross Entropy Loss | none |
UNet with pretrained ResNet weights [43] |
4 layers | 23 volumes (23 AMD patients), 128 B-scans each (1024 × 512 px), 1270 images in total |
Weighted Log Loss | horizontal flip, rotation |
2 cascaded UNets with residual blocks [44] |
8 layers and pseudocysts | 35 volumes (35 patients: 21 with macula sclerosis, 14 healthy), 49 B-scans each (496 × 1024 px), 1715 images in total |
1st: Dice Loss, 2nd: MSE Loss |
horizontal flip, vertical scaling |