Skip to main content
. 2021 Nov 12;21(22):7521. doi: 10.3390/s21227521

Table 1.

Summary of neural networks used for pixel-wise semantic segmentation of retina layers in OCT images.

Network Task Dataset Loss Function Data Augmentation
ReLayNet [35] 7 layers and fluid Duke SD-OCT public DME dataset [37]
11 B-scans each (512 × 740 px),
110 images in total
Weighted Dice and Cross Entropy Loss horizontal flip, spatial translation, cropping
3D ReLayNet [38] 7 layers 13 volumes (13 normal subjects),
10 B-scans each,
130 images in total
Cross Entropy Loss none
FCN8 [39] 4 layers 10 volumes (5 patients with CSC, 5 normal eyes),
128 B-scans each (512 × 1024 px),
1280 images in total
Weighted Cross Entropy Loss none
LFUNet [40] 5 layers and fluid 58 volumes (25 diabetic patients, 33 healthy subjects),
245 B-scans each (245 × 245 px),
14210 images in total
Weighted Dice and Cross Entropy Loss horizontal flip,
rotation, scaling
DRUNet [41] 6 regions 100 scans (40 healthy, 41 POAG,
19 PACG),
single B-scan through ONH each (468 px width),
100 images in total
Jaccard Loss horizontal flip, rotation,
intensity shifts, white
noise, speckle noise,
elastic deformation,
occluding patches
Uncertainty UNet
(U2-Net) [42]
photoreceptor layer 50 volumes (50 patients: 16 DME, 24 RVO,
10 AMD+CNV),
49 B-scans each (512 × 496 px),
2450 images in total
Cross Entropy Loss none
UNet with
pretrained ResNet
weights [43]
4 layers 23 volumes (23 AMD patients),
128 B-scans each (1024 × 512 px),
1270 images in total
Weighted Log Loss horizontal flip,
rotation
2 cascaded UNets
with residual
blocks [44]
8 layers and pseudocysts 35 volumes (35 patients: 21 with macula sclerosis,
14 healthy),
49 B-scans each (496 × 1024 px),
1715 images in total
1st: Dice Loss,
2nd: MSE Loss
horizontal flip, vertical scaling