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Abstract: In order to make a piezoelectric vibration energy harvester collect more energy on a broader
frequency range, nonlinearity is introduced into the system, allowing the harvester to produce mul-
tiple steady states and deflecting the frequency response curve. However, the harvester can easily
maintain intra-well motion rather than inter-well motion, which seriously affects its efficiency. The
aim of this paper is to analyze how to take full advantage of the nonlinear characteristics to widen
the bandwidth of the piezoelectric vibration energy harvester and obtain more energy. The influ-
ence of the inter-permanent magnet torque on the bending of the piezoelectric cantilever beam is
considered in the theoretical modeling. The approximate analytical solutions of the primary and
1/3 subharmonic resonance of the harvester are obtained by using the complex dynamic frequency
(CDF) method so as to compare the energy acquisition effect of the primary resonance and sub-
harmonic resonance, determine the generation conditions of subharmonic resonance, and analyze
the effect of primary resonance and subharmonic resonance on broadening the bandwidth of the
harvester under different external excitations. The results show that the torque significantly affects
the equilibrium point and piezoelectric output of the harvester. The effective frequency band of
the bistable nonlinear energy harvester is 270% wider than that of the linear harvester, and the 1/3
subharmonic resonance broadens the band another 92% so that the energy harvester can obtain more
than 0.1 mW in the frequency range of 18 Hz. Therefore, it is necessary to consider the influence
of torque when modeling. The introduction of nonlinearity can broaden the frequency band of the
harvester when it is in primary resonance, and the subharmonic resonance can make the harvester
obtain more energy in the global frequency range.

Keywords: strong nonlinearity; piezoelectric vibration energy harvester; primary resonance; subharmonic
resonance; bandwidth; complex dynamic frequency (CDF) method

1. Introduction

The battery is a traditional energy storage device. Many devices (such as intelligent
home equipment, implantable medical equipment, environmental monitors) rely on batter-
ies for energy supply. However, the battery cannot achieve long-term energy supply due
to limited life, energy storage, and power efficiency and often needs frequent replacement
or maintenance. An increasing number of researchers have paid attention to topics such as
collecting energy from the environment to eliminate the demand for batteries or extend
batteries’ life. Vibration energy is typical mechanical energy in the environment. There are
many ways to produce it, such as the surrounding environment, wind flow, fluid move-
ment, mechanical work, and human behavior. Piezoelectric vibration energy harvesters
are widely used in research for low power electronic devices such as embedded electronic
devices, implantable biomedical devices, wireless sensor nodes, and portable electronic
devices due to their simple structure, long life, high power density, and no need for an
initial voltage source.
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The piezoelectric cantilever beam is the most commonly studied and discussed struc-
ture in a piezoelectric vibration energy harvester because of its simple structure and
convenient modeling. In the linear piezoelectric cantilever beam structure, the mass is
usually added to the free end of the cantilever beam [1], which can reduce and adjust the
system’s resonance frequency and improve the mechanical response and output power
under low-frequency excitation. However, the main limitation of linear vibration energy
harvester is that the natural frequency is single, and the resonance peak is very narrow.
When the excitation frequency deviates from the resonant frequency of the harvester, very
little power can be generated [2]. The vibration frequency of the environment usually
fluctuates in a specific range. In order to obtain better output performance and maintain
higher acquisition efficiency, a broadband harvester is required. Introducing nonlinearity
into the harvester can broaden the frequency bandwidth of the system, increase the me-
chanical response amplitude and power output. Nonlinear spread spectrum technology
makes use of nonlinear stiffness [3,4], the piecewise linear effect generated by the collision
process [5,6], and multi-steady-state motion [7,8] to deflect the amplitude–frequency curve
of the energy harvester, ensure a large amplitude in a wide frequency range, achieve the
effect of broadening the frequency band, and improve the acquisition efficiency of the
energy harvester.

The realization of the multi-steady state of the piezoelectric vibration energy harvester
mainly uses the magnetic field force provided by permanent magnets. A different number
of steady states can be obtained by using different arrangement modes of permanent
magnets. Erturk et al. [9] propose a bistable piezoelectric vibration energy harvester
with two stable positions. The device consists of a piezoelectric cantilever beam and
three permanent magnets. A permanent magnet is installed at the tip of the cantilever
beam, and two permanent magnets are fixed near the tip of the cantilever beam. The
experimental results show that compared with the linear harvester, the system has a
wider effective frequency band and higher output power. Since then, bistable piezoelectric
vibration energy harvesters have been studied by many researchers. Zhou et al. [10]
propose a triple steady-state piezoelectric vibration energy harvester, which consists of
a piezoelectric cantilever beam with a permanent magnet at the tip and two external
permanent magnets. Compared with the bistable energy harvester with deeper potential
wells, the triple steady-state arrangement has a shallow potential well, which allows the
harvester to easily produce large amplitude vibration between wells and higher energy
output on a broader frequency range.

For the nonlinear piezoelectric energy harvester, the forward sweep can obtain a wider
effective bandwidth than the reverse sweep when the sweep is conducted. Therefore, the
nonlinear harvester cannot always obtain a higher amplitude as the external excitation
frequency varies. Qing et al. [11] propose a lambda-shaped piezoelectric energy harvester,
which can produce much higher power than the cantilever piezoelectric energy harvester
but still has the shortcomings of the linear energy harvester. Li et al. propose [12] a
generalized multi-mode piezoelectric energy harvester. The model consists of the main
cantilever beam and multiple branches. The effective bandwidth of the harvester can be
adjusted by changing the branch parameters and tip mass. It can overcome the drawbacks
of the linear piezoelectric energy harvester and avoid the drawbacks mentioned above of
nonlinear energy harvesters. Sun et al. [13] propose a horizontal asymmetric U-shaped
piezoelectric energy harvester model by combining multi-mode and nonlinear force. The
asymmetric U-shaped structure gives the model multi-mode properties, while the nonlin-
earity introduced by magnetic force improves the energy output of the harvester, reduces
the resonant frequency, and broadens the effective bandwidth. The above studies improved
the efficiency of energy acquisition by changing the structure of the piezoelectric energy
harvester. However, the complex structure may have problems in practical application and
model manufacturing.

The frequency sweep of a nonlinear piezoelectric energy harvester cannot reveal all the
steady-state behaviors it can achieve, and frequency sweep does not reveal the subharmonic
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motion. Syta et al. [14] studied the subharmonic vibration of a bistable harvester at a
specific frequency, and the system showed different motion behaviors under different
initial conditions. Huguet et al. [15–17] propose a complete subharmonic orbit analysis to
predict the contribution to the global bandwidth of bistable energy harvesters and study
the effects of different parameters on the response through experiments. Syta and Huguet
mainly studied subharmonic motion by numerical simulation and experimental methods
but did not study the influence of subharmonics on broadening the frequency band under
different external excitations. Huguet also used the harmonic balance method to study the
robustness of subharmonic motion, but for strongly nonlinear systems, sufficient harmonic
terms are needed to obtain more accurate asymptotic solutions. Therefore, this paper
theoretically investigates how to make full use of nonlinear characteristics to broaden the
bandwidth of the energy harvester of the piezoelectric cantilever beam structure.

The theoretical method for solving strongly nonlinear vibration has always been a dif-
ficulty. In order to solve this problem, Wang et al. [18] proposed a single-degree-of-freedom
complex dynamic frequency (CDF) method, applied it to the study of strongly nonlinear
vibration energy harvester, and experimentally verified the method’s effectiveness. This
paper extends this method based on this theory and studies the above strongly nonlinear
vibration problem.

In modeling the piezoelectric cantilever beam harvester, the magnetic repulsion be-
tween permanent magnets is generally considered [19,20]. The torque between permanent
magnets also affects the bending of piezoelectric cantilever beams, thereby affecting the
piezoelectric effect. Kim et al. [21] established a model considering the torque between
permanent magnets but did not analyze the influence of torque. This paper discusses the
influence of torque on the piezoelectric cantilever vibration energy harvester.

In this paper, the energy harvester of the piezoelectric cantilever beam structure is
studied. The permanent magnets provided nonlinearity for the harvester, and the magnetic
repulsion and torque between them are considered. In order to achieve a bistable state,
the distance between the free-end permanent magnet of the cantilever beam and the fixed
permanent magnet is determined according to the static analysis. The approximate analyti-
cal solution and amplitude–frequency relationship of the strongly nonlinear harvester’s
steady-state motion are obtained using the CDF method. The broadening effect of primary
resonance and subharmonic resonance on the bandwidth of the harvester is compared
and analyzed.

The rest of this paper is organized as follows. Section 2 gives the piezoelectric
cantilever beam dynamics model considering the torque between permanent magnets.
Section 3 outlines the static analysis of the system. In Section 4, the approximate analytical
solutions and amplitude–frequency relations of the system’s primary and subharmonic
resonance are obtained using the CDF method. Section 5 analyzes the system’s dynamic
characteristics and compares the differences in the energy obtained by the primary reso-
nance and the 1/3 subharmonic resonance in the global operating frequency range and
the variation of the subharmonic response with different external excitations. Section 6
summarizes the full-text results.

2. Theoretical Model

The piezoelectric material as an energy transfer device directly affects the collection ef-
ficiency of the harvester. Currently, commonly used piezoelectric materials [22–24] include
piezoelectric ceramics, piezoelectric polymer, and piezoelectric composites. Piezoelectric
ceramics have a high electromechanical coupling coefficient and low cost but are brittle
and easily fractured, piezoelectric polymers are flexible but have low electromechanical
coupling coefficients, and piezoelectric composites combine the advantages of piezoelectric
ceramics and piezoelectric polymers with excellent piezoelectric properties and strong flex-
ibility. Therefore, in this paper, piezoelectric composites are used as piezoelectric materials
of the piezoelectric energy harvester.
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The mechanical model of the piezoelectric cantilever beam is shown in Figure 1. L is
the length of the composite beam, which consists of a substrate beam and two piezoelectric
plates. The materials of the substrate and piezoelectric plate are beryllium bronze QBe1.9
and FMC M2807 P2. A layer of the piezoelectric plate is pasted on the substrate’s top
and bottom surfaces, and the substrate is rigidly connected to the piezoelectric plates
without considering the influence of the multilayer beam. One end of the composite beam
is fixed on base C, and the other is free. Permanent magnet A is fixed to the free end of
the composite beam, and permanent magnet B is fixed to another side of base C. The two
permanent magnets are mutually exclusive and horizontally aligned. When the system is
in equilibrium, the gravity of the composite beam and permanent magnet A has no effect
on the deformation of the piezoelectric cantilever beam. P(t) is the basic motion; x is the
axial spatial coordinate; t is the time coordinate; z(x,t) is the transverse deformation of the
position on the cantilever beam at any time; and Fx, Fz, and Mc are the magnetic force in
the x-direction, the magnetic force in the z-direction, and the torque in the y-direction of
the permanent magnet A under the action of the permanent magnet B, respectively. The
physical parameters and material properties of the piezoelectric cantilever beam vibration
system are shown in Table 1.
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Figure 1. Nonlinear piezoelectric cantilever beam model: (a) front view; (b) vertical view.

Table 1. Physical parameter values of the piezoelectric cantilever beam vibration system.

Parameter Symbol Value

Substrate properties

Length L 85 mm
Width b 15 mm

Thickness hs 0.6 mm
Density ρs 8300 kg/m3

Young’s modulus Es 130 GPa

Piezoelectric plate
properties

Length Lp 37 mm
Width bp 10 mm

Thickness hp 0.3 mm
Density ρp 5440 kg/m3

Young’s modulus Ep 30,336 GPa
Piezoelectric constant d31 −170 pC/N

Permanent magnet
properties

Length Lm 10 mm
Height hA, hB 15 mm

Thickness lA, lB 5 mm
Density ρA, ρB 7500 kg/m3

Residual flux density Br 1.25 T
Vacuum permeability µ0 4π × 10−7 N/A2

Due to the sizeable length/thickness ratio of the beam, this paper only considers
the bending deformation of the piezoelectric cantilever beam; regardless of the shear
deformation and the influence of the rotational inertia of the section around the neutral axis,
the piezoelectric cantilever beam is regarded as an Euler–Bernoulli beam. The nonlinear
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magnetic force at the free-end boundary is regarded as a concentrated load, as shown in
Figure 2.
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The influence of temperature and residual stress on the piezoelectric cantilever beam
is not considered in the modeling. According to the Hamilton principle, the governing
equation of the harvester can be written as

δ

t2∫
t1

(T −U)dt + δ

t2∫
t1

Wdt = 0, (1)

where T is the system’s kinetic energy, U is the system’s potential energy, W is the energy of
the magnetic repulsion and torque, and δ is the variational symbol. According to Figure 1,
the kinetic energy of the substrate is

Ts =
1
2

ρs As

L∫
0

[ .
z(x, t) +

.
P(t)

]2
dx, (2)

where As is the section area of the substrate, and ρs is the substrate’s material density. The
kinetic energy of the piezoelectric plate is

Tp = ρp Ap

Lp∫
0

[ .
z(x, t) +

.
P(t)

]2
dx, (3)

where Ap is the section area of the piezoelectric plate, and ρp is the piezoelectric plate’s
material density. The kinetic energy of free-end permanent magnet A is

Tm =
1
2

ma

[ .
z(L, t) +

.
P(t)

]2
+

1
2

Ja

[
∂z(x, t)

∂x∂t

∣∣∣∣
x=L

]2
, (4)

where ma is the mass of permanent magnet A, and Ja is the rotational inertia of permanent
magnet A. The bending strain energy of the substrate is

Us =
1
2

Es Is

L∫
0

[z′′ (x, t)]2dx, (5)

where Es is the substrate’s Young’ s modulus, and Is is the section inertia moment of the
substrate, Is = bh3

s /12. The bending strain energy of the piezoelectric plate is

Hp = Ep Ip

Lp∫
0

[z′′ (x, t)]2dx− 1
2

e31b(hp + hs)
.
λ(t)z′(Lp, t)− 1

4
Cp

.
λ(t)2, (6)

where Ep is the piezoelectric plate’s Young’ s modulus, Ip = (4h2
p + 6hphs + 3h2

s )bhp/12 is
the inertia moment of the piezoelectric plate, e31 = Epd31 is the effective piezoelectric stress
constant, b is the width of the substrate, hs and hp are the substrate and piezoelectric thick-
ness, λ(t) is the flux linkage, Cp = bεS

33Lp/hp is the capacitance, εS
33 = ε31ε0 is the dielectric

constant of medium, and ε31 is the relative dielectric constant of the piezoelectric plate.
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By considering the first-order vibration mode of the piezoelectric cantilever beam, we
can set

z(x, t) = η(t)φ(x), (7)

where φ(x) is the vibration mode function of the beam, and η(t) indicates the vibration
mode of the beam as a function of the generalized time coordinate. Since the research object
is a variable-section beam, the vibration mode function of the beam needs to be expressed
in segments,

φ(x) =
{

φ1(x), 0 < x < Lp,
φ2(x), Lp < x < L,

, (8)

φi(x) = ci1 sin βi + ci2 cos βi + ci3sinhβi + ci4 cosh βi (9)

where ci1 ∼ ci4(i = 1, 2) are determined by the piezoelectric cantilever beam boundary
conditions and continuity conditions, and βi represents eigenvalues.

Let the virtual work of moment My0, MyL and shear Qz0, QzL acting on the ends of
the cantilever beam at the corresponding virtual displacement on the boundary be

t2∫
t1

[
Qz0δz(0, t)−QzLδz(L, t)−My0δz′(0, t) + MyLδz′(L, t) + I(t)δλ

]
dt, (10)

where δz(x, t) = δ
n
∑

i=1
ηi(t)φi(x) =

n
∑

i=1
φi(x)δηi(t), I(t) = −

.
λ(t)/RL. Equations (2)–(10) are

substituted into Equation (1) and organized to obtain the system control equation

..
η(t) + 2ξω

.
η(t) + ω2η(t) + θv(t) = −γ

..
P(t)−QzLφ2(L) + MyLφ2

′(L), (11)

1
2

Cp
.
v(t)− θ

.
η(t) +

v(t)
RL

= 0 (12)

where ξ is the damping ratio. The damping source in the system consists of mechanical
damping and air damping, and the specific value of the damping ratio is determined by
the experiment; ξ = 0.0178 is taken in this paper. ω is the natural frequency of the system,

v(t) = −
.
λ(t) is the voltage, γ = (ρs As + 2ρp Ap)

Lp∫
0

φ1(x)dx + ρs As
L∫

Lp

φ2(x)dx + maφ2(L)

is the base excitation coefficient, and θ = e31b(hp + hs)φ1
′(Lp)/2 is the electromechanical

coupling terms. The normalization condition is

(ρs As + 2ρp Ap)

Lp∫
0

φ1(x)2dx + ρs As

L∫
Lp

φ2(x)2dx + maφ2(L)2 + Jaφ2
′(x)2 = 1, (13)

(Es Is + 2Ep Ip)

Lp∫
0

φ1
′′ (x)2dx + Es Is

L∫
Lp

φ2
′′ (x)2dx = ω2, (14)

In order to obtain the natural frequency and mode of the system, the Euler–Bernoulli
beam transverse vibration equation without damping free vibration [25] is used,

EI(x)
∂4z(x, t)

∂x4 + m(x)
∂2z(x, t)

∂t2 = 0, (15)

where EI(x) is flexural stiffness of composite section, and m(x) is mass per unit length of
composite beam. Substituting Equation (7) into Equation (15) yields

EI(x)
d4φ(x)

dx4 −m(x)ω2φ(x) = 0, (16)
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where ω is the natural frequency of the system. Equation (16) can be rewritten as

d4φ(x)
dx4 − β4φ(x) = 0, (17)

where β4 = m(x)ω2/EI(x). For the segmented beam whose vibration mode function is
shown in Equation (8), we have

β1
4 =

(ρs As + 2ρp Ap)ω2

Es Is + 2Ep Ip
, β2

4 =
ρs Asω2

Es Is
, (18)

fixed-end boundary conditions: {
φ1(x)|x=0 = 0,
φ1
′(x)|x=0 = 0,

(19)

free-end boundary conditions:{ [
Es Isφ2 ′′ (x)−ω2 Jaφ2

′(x)
]

x=L = 0,[
Es Isφ2 ′′′ (x) + ω2maφ2(x)

]
x=L = 0,

(20)

and continuity conditions:
φ1(Lp) = φ2(Lp),
φ1
′(x)|x=Lp

= φ2
′(x)|x=Lp

,
(Es Is + 2Ep Ip)φ1

′′ (x)
∣∣
x=Lp

= Es Is φ2 ′′ (x)|x=Lp
,

(Es Is + 2Ep Ip)φ1
′′′ (x)

∣∣
x=Lp

= Es Is φ2 ′′′ (x)|x=Lp
,

(21)

By combining the eight Equations in (19)~(21), we can obtain the linear homogeneous
equations for c11 ∼ c14 and c21 ∼ c24. In order to obtain the non-zero solution, the
determinant of the coefficient matrix is set to zero, and the first-order natural frequency of
the system can be obtained as ω = 154 rad/s. By using the above normalization conditions,
all the unknown variables c11 ∼ c14 and c21 ∼ c24 can be obtained, and the modal function
of the piezoelectric cantilever beam is

φ1(x) = 7.6745 sin(13.65x)− 8.4921 cos(13.65x)
−7.6745sinh(13.65x) + 8.4921 cosh(13.65x)

φ2(x) = 8.89501 sin(14.99x)− 13.8796 cos(14.99x)
−15.4554sinh(14.99x) + 15.5211 cosh(14.99x)

. (22)

3. Static Analysis

In the study of nonlinear vibration energy harvesters, many researchers [26–28] pro-
vide nonlinear force for the vibration energy harvester by introducing magnetic force. The
magnetic dipole method and the magnetization current method are common methods to
calculate magnetic force. Tan et al. [29] prove that both methods produce errors when the
permanent magnet spacing is sufficiently small. However, the magnetic dipole method
results in closer calculations to experimental measurements than the magnetization current
method. This section firstly uses the magnetic dipole method to derive the magnetic force
and torque expressions [30]. Secondly, the equilibrium point of the harvester is determined.
Finally, the effect of torque on the harvester is analyzed.
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3.1. Magnetic Force and Torque

The structure of the piezoelectric cantilever beam is shown in Figure 1, where the
permanent magnets A and B are simplified as magnetic dipoles A and B, respectively. The
magnetic induction intensity generated by dipole B at the location of dipole A is given by

BBA = − µ0

4π
∇mB·r

r3 , (23)

where µ0 is the vacuum permeability. mB is the magnetic moment of magnetic dipole B,
and the size of the magnetic moment is related to the volume of the permanent magnet.
For example, mB = MBVB, MB is the magnetization of the permanent magnet B, and VB
is the volume of the permanent magnet B. For permanent magnets, magnetization can be
estimated by residual flux density, MB = Br/µ0. r is the vector from the center of magnetic
dipole B to the center of magnetic dipole A. The force and torque applied by magnetic
dipole B to magnetic dipole A are respectively

FBA = −∇(−BBA·mA) = −
µ0

4π
∇
[(
∇mB·r

r3

)
·mA

]
, (24)

Mc = mB × BBA (25)

where mA is the magnetic moment of the magnetic dipole A. According to the vector
differential principle, the following can be obtained

FBA =
3µ0mAmB

4πr4

[
r̂·(m̂B·m̂A) + m̂A(r̂·m̂B)

+m̂B(r̂·m̂A)− 5r̂(r̂·m̂A)(r̂·m̂B)

]
, (26)

Mc =
µ0mAmB

4πr3 [3(m̂B·r̂)(m̂A × r̂) + (m̂B × m̂A)] (27)

where mA = mAm̂A, mB = mBm̂B and r = rr̂. m̂A, m̂B, and r̂ are unit vectors.
Figure 3 shows the geometric relationship diagram when the free-end displacement of

the piezoelectric cantilever beam is z. The magnetic force in the z-direction and the torque
in the y-direction can be obtained as follows

Fz =
3µ0mAmBz

4πr5L

[
d−

√
L2 − z2 − 5d

r2

(
z2 − d

√
L2 − z2

)]
, (28)

Mc =
µ0mAmBz

4πr5L

(
3d2 + 3d

√
L2 − z2 − r2

)
. (29)
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3.2. Equilibrium Points of the System

By analyzing the equilibrium point and stability of the autonomous system corre-
sponding to Equations (11) and (12), the static bifurcation characteristics of the piezoelectric
cantilever beam system are obtained. Fourier expansion omits higher-order terms for
magnetic force and torque applied to the free end of a piezoelectric cantilever beam

QzL = −Fz = −
(

a1z + a2z3
)

, (30)

MyL = Mc = b1z + b2z3, (31)
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where a1, a2, b1, and b2 are the corresponding Fourier expansion coefficients, respectively.
Letting z1 = η, z2 =

.
η, and z3 = v in Equations (11) and (12), we obtain .

z1.
z2.
z3

 =

 z2
−2ξωz2 −ω2z1 + α1z1 − α2z3

1 + θz3
−µz3 − ϑz2

, (32)

where α1 = a1φ(L)2 + b1φ(L)φ′(L), α2 = −a2φ(L)4 − b2φ(L)3φ′(L), µ = 2/(CpRL), and
ϑ = 2θ/Cp.

The system has three fixed points: (0,0,0),
(
±
√
(α1 −ω2)/α2, 0, 0

)
. According to the

Routh–Hurwitz criterion, there is a stable zero fixed point when α1 < ω2, and there are two
stable nonzero fixed points and an unstable zero fixed point when α1 > ω2, so α1 = ω2

is a bifurcation point. By substituting the parameters, it can be determined that when the
distance between permanent magnets d < 25 mm, the system produces bistable motion.

If the term containing damping does not appear in Equation (32), the energy function
of the system is

L(z1, z2) =
ω2 − α1

2
z2

1 +
α2

4
z4

1 +
1
2

z2
2, (33)

The contour diagram of the energy function L(z1, z2) shown in Figure 4 is obtained by
assigning different initial values to z1 and z2. There are four different types of curves (or
points) in the figure: L(z1, z2) > 0, L(z1, z2) = 0, −(α1 −ω2)

2/(4α2) < L(z1, z2) < 0, and
L(z1, z2) = −(α1 −ω2)

2/(4α2) from outside to inside. It can be seen that different initial
conditions may lead to different motion modes.
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3.3. Effect of Torque

Figure 5 shows the static bifurcation diagram of the equilibrium point. It can be seen
from the figure that when the distance between the permanent magnets d is small, there
is almost no difference in the equilibrium position in both cases. When d > 20 mm, the
effect of torque on the equilibrium position is greater as d increases. In order to study the
influence of torque on the energy output of the harvester, the effect of torque on the RMS
voltage and power is analyzed below when d > 20 mm.
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Figure 6a gives the RMS voltage versus load resistance for the harvester. The RMS
voltage increases as the load resistance increases and eventually increases to saturation.
Figure 6b shows the corresponding power versus load resistance, where the power first
increases and then decreases with the increasing load resistance. It can be observed from
Figure 6 that torque affects voltage and power. Figure 7 shows the relationship between
the relative error of the output power and the load resistance without considering the
torque. The results show that when the load resistance is small and the distance between
permanent magnets is large, not considering that the torque causes a large error, and the
maximum error can reach 18.96% when d = 24 mm.
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4. Approximate Analytical Solution

Since the system is a strongly nonlinear vibration system, the approximate analytical
solution of the system is obtained using the complex dynamic frequency (CDF) method
and compared with the multiscale method and the numerical solution.

For convenience, we rewrite Equations (11) and (12) as

..
η(t) + ω2η(t) = f (η,

.
η, v), (34)

.
v(t) + µv(t)− ϑ

.
η(t) = 0, (35)

where f (η,
.
η, v) = −2ξω

.
η(t) + α1η(t)− α2η(t)3 − θv(t) + γ

..
P(t), and the expressions of

α1, α2, µ, and ϑ are the same as (32),
..
P(t) = P cos(Ωt + φ).

4.1. Complex Dynamic Frequency (CDF) Method of Primary Resonance

The complex dynamic frequency (CDF) method is used to solve the primary resonance
solution of the system Equations (34) and (35). It can clearly be seen from Equation (35)
that v and η have the same form of analytic expression, so set{

η = ζ + ζ,
.
η = i(ω10 + εω11)(ζ + ζ),

(36)

v = (Γ1 + iΓ2)ζ + (Γ1 − iΓ2)ζ, (37)

where ζ = aeiω10t/2, ζ = ae−iω10t/2, a is the amplitude; ω10 is a constant for the un-
determined frequency; ω11 is a dynamic frequency, a function of time t; Γ1 and Γ2 are
undetermined coefficients; and ε is the bookkeeping parameter. The approximate analytical
solution of the system can be obtained by applying the CDF method and the harmonic
balance method to Equations (34) and (35), respectively,{

η = a cos(ω10t),
.
η = −a(ω10 + ω11) sin(ω10t),

(38)

v =
aϑω10

µ2 + ω2
10
[ω10 cos(ω10t)− µ sin(ω10t)], (39)

where ω11 = a2α2 cos(2ω10t)/(8ω10). Combining Equation (7), we can obtain the actual
vibration response, {

z(L, t) = φ2(L)a cos(ω10t),
z′(L, t) = −φ2(L)a(ω10 + ω11) sin(ω10t),

(40)

and obtain the amplitude–frequency response relation,[
4a
(
ω2 −ω2

10
)
− 4aα1 + 3a3α2 + 4aΓ1θ

4Pγ

]2

+

(
aνω10 + aΓ2θ

Pγ

)2
= 1, (41)

tan φ =
4(aνω10 + aΓ2θ)

4aω2 − 4aω2
10+3a3α2 − 4α1a+4aΓ1θ

, (42)

where Γ1 = ϑω2
10/(µ2 + ω2

10), Γ2 = ϑµω10/(µ2 + ω2
10).

Rewriting Equation (39) as

v = V cos(ω10t + ϕ), (43)
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where V = aω10ϑ/
√

µ2 + ω2
10 is the amplitude of voltage, cos ϕ = ω10/

√
µ2 + ω2

10,

sin ϕ = µ/
√

µ2 + ω2
10, the average power is

Pav =
V2

2RL
, (44)

Substituting Equation (44) into (41), and considering f = ω10/(2π), we can obtain the
relationship between average power Pav and excitation frequency f,

PavRL
32π2γ2 f 2P2ϑ2(4π2 f 2+µ2)

[
−4α1

(
4π2 f 2 + µ2)+ 16π2 f 2(−4π2 f 2 + θϑ + ω2)

+4µ2(ω2 − 4π2 f 2)+ 3α2PavRL(4π2 f 2+µ2)
2

2π2 f 2ϑ2

]2

+
2PavRL[ν(4π2 f 2+µ2)+θµϑ]

2

γ2P2ϑ2(4π2 f 2+µ2)
= 1

(45)

4.2. Complex Dynamic Frequency (CDF) Method for 1/3 Subharmonic Resonance

The complex dynamic frequency (CDF) method is used to solve the 1/3 subharmonic
resonance solutions of the system Equations (34) and (35). The solution of the system is
set to {

η = ζ + ζ + ξ + ξ,
.
η = i

(ω10
3 + εω11

)
(ζ − ζ) + iω10(ξ − ξ),

(46)

v = (Γ1 + iΓ2)ζ + (Γ1 − iΓ2)ζ + (Γ3 + iΓ4)ξ + (Γ3 − iΓ4)ξ, (47)

where ζ = aeiω10t/3/2, ζ = ae−iω10t/3/2, ξ = bei(ω10t+φ)/2, ξ = be−i(ω10t+φ)/2, and
b = −9Pγ/

(
8ω2

10
)
. Differentiating Equation (46) with respect to t, we can obtain
.
η =

.
ζ +

.
ζ + iω10(ξ − ξ),

..
η = iε

.
ω11(ζ − ζ) + i

(ω10
3 + εω11

)
(

.
ζ −

.
ζ)−ω2

10(ξ + ξ),
, (48)

Solving Equation (48) we can obtain
.
ζ =

1
2

[
η +

..
η

i
(
εω11 +

ω10
3
) + iε

.
ω11

.
η(

εω11 +
ω10

3
)2 +

εω10
.

ω11
(
ξ − ξ

)(
εω11 +

ω10
3
)2 +

ω2
10
(
ξ + ξ

)
i
(
εω11 +

ω10
3
) − iω10

(
ξ − ξ

)]
, (49)

By solving Equations (34), (46) and (49) simultaneously, and considering Ω = ω10,
we obtain(

aω2
10

18 + ε 1
3 aω10ω11 + ε2 1

2 aω2
11

)
cos
(

ω10t
3

)
=
(
− 1

2 aΓ2θ − 1
6 aνω10 − 1

2 aε
.

ω11

)
sin
(

ω10t
3

)
+ 3

8 a2bα2 cos
(

ω10t
3 + φ

)
+
(

3a3α2
8 − aα1

2 + 3
4 ab2α2 +

1
2 aΓ1θ + aω2

2

)
cos
(

ω10t
3

)
+ 3

8 a2bα2 cos
(

5ω10t
3 + φ

)
+ 3

8 ab2α2 cos
(

5ω10t
3 + 2φ

)
+ 3

8 ab2α2 cos
(

7ω10t
3 + 2φ

)
+ 1

8 b3α2 cos(3ω10t+3φ) + 1
8 a3α2 cos(ω10t) +

(
− 1

2 bΓ4θ − 1
2 bνω10

)
sin(ω10t + φ)

+

(
3
4 a2α2b− Pγ

2 + 3α2b3

8 − α1b
2 + 1

2 bΓ3θ + bω2

2 −
bω2

10
2

)
cos(ω10t + φ)

. (50)

Letting the coefficients corresponding to cos(ω10t/3) and sin(ω10t/3) in (50) be zero,
we obtain the amplitude–frequency response relationship of the system as follows,(

36α1 − 36ω2 − 27a2α2 − 54b2α2 − 36Γ1θ + 4ω2
10

27abα2

)2

+

(
12Γ2θ + 4νω10

9abα2

)2
= 1. (51)

tan φ = − 12(3Γ2θ + νω10)

36α1 − 36ω2 − 27a2α2 − 54b2α2 − 36Γ1θ + 4ω2
10

(52)

Balancing the other harmonic terms of the Equation (50), the dynamic frequency of
the system is obtained
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ω11 = 3
80aω10

[(
70a2bα2 − 40Pγ + 30b3α2 − 40α1b + 40bω2 − 40bω2

10 + 40bΓ3θ
)

cos
(

2ω10t
3 + φ

)
+10a3α2 cos

(
2ω10t

3

)
− (40bΓ4θ + 40bνω10) sin

(
2ω10t

3 + φ
)
+ 15ab2α2 cos(2ω10t+2φ)

+15ab2α2 cos
(

2ω10t
3 + 2φ

)
+ 30ab2α2 cos

(
4ω10t

3 + 2φ
)
+ 20a2bα2 cos

(
4ω10t

3 + φ
)

+b3α2 cos
(

2ω10t
3 + 3φ

)
+ 2b3α2 cos

(
4ω10t

3 + 3φ
)
+4b3α2 cos

(
8ω10t

3 + 3φ
)
+ 3b3α2 cos(2ω10t+3φ)

] . (53)

Substituting Equations (46) and (47) into Equation (35), balancing corresponding
harmonic terms, we obtain

Γ1 =
ω2

10ϑ

9µ2 + ω2
10

, Γ2 =
3µω10ϑ

9µ2 + ω2
10

, Γ3 =
ω2

10ϑ

µ2 + ω2
10

, Γ4 =
µω10ϑ

µ2 + ω2
10

, (54)

When 1/3 subharmonic resonance occurs in systems Equations (34) and (35), the
approximate analytical solution is

η = a cos
(

ω10t
3

)
+ b cos(ω10t + φ)

.
η = −a(ω11 + ω10) sin

(
ω10t

3

)
− bω10 sin(ω10t + φ)

v = aω10ϑ

9µ2+ω2
10

[
ω10 cos

(
ω10t

3

)
− 3µ sin

(
ω10t

3

)]
+ bω10ϑ

µ2+ω2
10
[ω10 cos(ω10t + φ)− µ sin(ω10t + φ)]

, (55)

Combined with Equation (7), the actual response of the harvester when 1/3 subhar-
monic resonance occurs can be obtained.

5. Dynamic Analysis

Figure 8 shows the amplitude–frequency response diagram of the system, where
Figure 8a is the primary resonance. The purple line is the amplitude–frequency relationship
obtained with the multi-scale method. The multi-scale method [31,32] has been widely
used in the research of energy harvesters, so the iterative process of the multi-scale method
is not listed in this paper. The multi-scale method effectively solves weakly nonlinear
vibration problems, but accurate results cannot be obtained for strongly nonlinear vibration
problems. It can be seen from Figure 8a that for the object studied in this paper, the results
obtained using the multi-scale method differ significantly from the numerical solutions.
The results obtained using the CDF method are in better agreement with the numerical
solution. Therefore, it is feasible to use the CDF method for the theoretical analysis in this
paper. As shown from Figure 8a when the excitation frequency is between 8.5 and 17.4 Hz,
one frequency corresponds to multiple amplitudes in the system, one unstable solution,
and two stable solutions. The larger values represent the inter-well motion in the stable
solution, and the smaller values represent the intra-well motion. The trajectories of the
response amplitudes during forward and reverse sweep are indicated by arrows 1© and 2©,
respectively. The steady-state response at the former excitation frequency during the sweep
is the initial condition for the vibration at the latter excitation frequency. It is easily obtained
that the steady-state motion amplitude of the system depends on the initial condition in the
frequency range of single-frequency multi-amplitude. As shown in Figure 4, the system has
two centers and a saddle point. When the initial conditions are different, some orbits in the
system surround the center, and the other orbits are around the three fixed points, which
leads to the results in Figure 8a. The amplitude–frequency response of the corresponding
linear system is shown in Figure 8b. It can be seen from the figure that the linear system
does not have a single-frequency multi-amplitude phenomenon, and the forward and
reverse sweep results are the same. In Figure 8a, the frequency range of amplitude greater
than 4 mm is 0~17.4 and 0~8.5 Hz for the forward sweep and reverse sweep, respectively.
In Figure 8b, the frequency range of amplitude greater than 4 mm is 23.5~25.8 Hz. It can
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be seen that the introduction of strong nonlinearity in the harvester not only reduces the
resonant frequency but also expands the effective frequency range by at least 270%.
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Figure 8c gives the amplitude–frequency response relationship of the nonlinear sys-
tem when 1/3 subharmonic resonance occurs. It can be seen from the figure that only
in a specific frequency range, i.e., 10.1~17.9 Hz, the system is likely to undergo 1/3 sub-
harmonic resonance. Comparing Figure 8a,c, it is found that the frequency range of
the single-frequency multi-amplitude occurring in the primary resonance is roughly the
same as that of the 1/3 subharmonic resonance. In this frequency range, due to differ-
ent initial conditions of the system, three different steady-state responses can be gener-
ated: large-amplitude vibration between wells, small-amplitude vibration in wells, and
1/3 subharmonic vibration.

Figure 9 is the relationship between the average power and the excitation frequency of
the nonlinear system, where Figure 9a is the primary resonance and can be obtained from
Equation (45), Figure 9b is 1/3 subharmonic resonance, similar to the primary resonance,
which can be obtained by deformation of Equation (51). In the primary resonance, the
maximum power is 1.8 mW when the excitation frequency is 17.3 Hz, and the minimum
power is less than 0.01 mW when the excitation frequency is 15~17.3 Hz. However,
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according to Huguet et al. [16], the inter-well motion is less robust in the range of 8.5 to
17.3 Hz, so the maximum power obtainable is 0.7 mW. When 1/3 subharmonic resonance
occurs, the maximum power obtained is 0.25 mW, which is 36% of the maximum power of
the primary resonance and exceeds 2500% of the minimum power of the primary resonance.
Although the power of the subharmonic resonance is smaller than the power of the inter-
well motion of the primary resonance, it is much larger than the intra-well motion of the
primary resonance. Therefore, the 1/3 subharmonic resonance expands the band of the
nonlinear energy harvester by 92% so that the energy harvester can obtain more than
0.1 mW power in the frequency range of 18 Hz. Meanwhile, Figures 8 and 9 prove that the
CDF method can predict the primary resonance and 1/3 subharmonic resonance behavior.
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Figure 9. Average power versus frequency with p = 9 m/s2, d = 24 mm, RL = 1000 kΩ: (a) nonlinear system (primary
resonance); (b) nonlinear system (1/3 subharmonic resonance).

Figure 10 shows the spectrum of the system at different excitation frequencies when
the 1/3 subharmonic resonance occurs. It can be found that the response contains two
frequency components, indicating that when 1/3 subharmonic resonance occurs, the
primary harmonic and the 1/3 subharmonic coexist. When the excitation frequency in-
creases, the primary harmonic component of the response becomes smaller and smaller,
and the 1/3 subharmonic component becomes larger and larger as a whole. Combined
with Figure 8c, the same conclusion can be drawn by observing that the primary harmonic
coefficient a increases and the 1/3 subharmonic coefficient b decreases as the excitation
frequency increases in Equation (55).
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Figure 11 illustrates the components of the time-domain diagram when the system un-
dergoes 1/3 subharmonic resonance. Figure 11c,f shows the time-domain diagrams of the
system’s displacement when 1/3 subharmonic resonance occurs at the excitation frequency
f = 14 Hz and f = 17.5 Hz, respectively. When the system undergoes 1/3 subharmonic
resonance, the response contains the primary harmonic and 1/3 harmonic. Figure 11c is
superimposed from the results of Figure 11a,b, where Figure 11a is the primary harmonic
and Figure 11b is the 1/3 harmonic. Since the period of the 1/3 harmonic is three times that
of the primary harmonic, the superposition results in the same period as the 1/3 harmonic
period. Similarly, Figure 11f is a superposition of the results of Figure 11d,e. Comparing
Figure 11a,b,d,e, it can be seen that the higher the excitation frequency, the smaller the
primary harmonic component and the larger the 1/3 harmonic component. The primary
harmonic can be regarded as a small perturbation applied to the 1/3 harmonic. The smaller
the perturbation, the more stable the superposition result.
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Figure 11. Displacement time-domain diagram: displacement time-domain diagrams when the
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The conditions for 1/3 subharmonic resonance of the system are discussed below.
Equation (51) is rewritten to

729α2
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[
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10
)]

ã
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2 = 0

(56)

where ã = a2. According to Weda’ s theorem, the condition for the existence of positive
real roots is{ (

72ω2 − 72α1 + 72Γ1θ − 8ω2
10 + 81α2b2)α2 < 0,
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[
2551.5b2α2 − 54

(
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(
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(57)

It can be seen from Equation (57) that the conditions for the 1/3 subharmonic reso-
nance of the nonlinear system are related to excitation frequency, excitation amplitude,
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linear stiffness coefficient, and nonlinear stiffness coefficient. Figure 12 is derived from
Equation (57) and shows the range of the excitation amplitudes and frequencies that can
occur for the 1/3 subharmonic resonance with other parameters held constant. When
p < 1.5 m/s2, the 1/3 subharmonic resonance does not occur at any excitation frequency;
when f < 5.5 Hz, the 1/3 subharmonic resonance does not occur at any excitation ampli-
tude. In the region where the 1/3 subharmonic resonance can occur in the system, the
corresponding excitation frequency range increases with excitation amplitude. Similarly, as
the excitation frequency increases, the corresponding excitation amplitude range increases.
Therefore, for a piezoelectric energy harvester whose parameters have been determined,
the method can be used to grasp the external excitation conditions for its generation of the
1/3 subharmonic resonance; if a piezoelectric energy harvester is to be designed to broaden
the bandwidth using the 1/3 harmonic resonance under specific environmental conditions,
the method can be used to invert the parameters of the harvester and provide theoretical
guidance for the design of the harvester.
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Figure 13 is the diagram of the relationship between the response displacement
amplitude and the excitation amplitude of the system (if not specified, it refers to the case
of the primary resonance). When the excitation amplitude is less than 5.9 m/s2, the system
has only a small vibration; when the excitation amplitude is 5.9~36.7 m/s2, the system has
a single excitation amplitude corresponding to multiple response amplitudes, one unstable
solution, and two stable solutions; and when the excitation amplitude is greater than
36.7 m/s2, the system can maintain large vibration. The trajectories of response amplitudes
during forward and reverse sweep are shown by arrows 3© and 4©, respectively. When
sweeping, the steady-state response under the previous excitation amplitude is the initial
condition for the vibration at the next excitation amplitude. It can be easily seen that
the steady-state motion of the system depends on the initial condition in the multi-value
excitation amplitude region. This is similar to Figure 8a, where there is a jump during
sweeping. For the range of excitation amplitudes that can produce multi-values, we cannot
guarantee that the system always vibrates with large amplitudes. If the system performs
small amplitude vibration, the efficiency of the energy harvester is greatly reduced. We are
interested in considering the effect of 1/3 subharmonic motion.
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Figure 14 shows the relationship between response amplitude and excitation ampli-
tude under different excitation frequencies obtained using the CDF method. When the
excitation amplitude is in the range of 0 to 10 m/s2 and the excitation frequency is 4, 10, and
16 Hz, the excitation amplitude range of the system with large vibration is 0.7~10, 3.2~10,
and 7.7~10 m/s2, respectively; the range of excitation amplitude that can ensure the system
vibrates greatly is 1.5~10 m/s2, 0, and 0 respectively. High-frequency excitation can obtain
a large amplitude response, thus obtaining a higher output power. However, the excitation
amplitude range of multi-values is wide, and only small vibration in the multi-values may
be obtained, so as to obtain the smaller output. At this time, the low-frequency excitation
can obtain a larger response amplitude, but this limits the bandwidth of the system. If
the 1/3 subharmonic motion is considered, when the excitation frequencies are 4, 10, and
16 Hz, the excitation amplitude ranges of 1/3 subharmonic motion in the system are 0,
3.2~8.7, and 7.2~32.7 m/s2. The excitation amplitude range of 1/3 subharmonic motion
is basically in the range of multi-valued excitation amplitude generated by primary reso-
nance, and it enlarges with the increase in excitation frequency. Although the amplitude
of 1/3 subharmonic resonance is smaller than that of the large amplitude motion of the
primary resonance, it is larger than that of the small amplitude of the primary resonance.
If 1/3 subharmonic motion is considered instead of the small amplitude motion of the
primary resonance, the harvester can obtain more energy. For f = 4 Hz, the system has no
1/3 harmonic resonance, consistent with Figure 12. Combined with the previous analysis,
when p > 1.5 m/s2, f > 5.5 Hz, 1/3 subharmonic resonance occurs in the system, and when
p is larger, the frequency range of 1/3 subharmonic resonance is wider. At this point,
the 1/3 subharmonic resonance can replace intra-well motion, so that the harvester can
obtain higher energy output in the broader frequency range. In practical application, the
CDF method can provide theoretical guidance for the parameter design of the harvester
to obtain higher power output in the environment of low-frequency excitation and small
excitation amplitude.
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6. Conclusions

In this paper, the influence of nonlinear characteristics on the bandwidth of a piezo-
electric vibration energy harvester is studied using the CDF method. Firstly, we modified
the model, considered the influence of torque on the bending of the cantilever beam when
modeling with the Hamiltonian principle, and compared it with the situation without
considering the torque. It is found that torque greatly influences the equilibrium point
and piezoelectric output of the harvester. In the range of bistable parameters, with the
increase in permanent magnet spacing, the influence of torque also increases. Therefore, the
influence of torque should be considered in the theoretical modeling. Secondly, the static
analysis of the system is carried out to obtain the static bifurcation behavior and determine
the parameter conditions for the bistable state of the harvester. Then, the approximate
analytical solution and amplitude–frequency relationship of the primary resonance and
1/3 subharmonic resonance of the system are obtained using the CDF method. Finally,
the CDF method is used to analyze the dynamic behavior of the energy harvester. The
introduction of nonlinearity makes the harvester produce a bistable state and increases
the bandwidth of primary resonance. When the 1/3 subharmonic vibration occurs in
the harvester, it mainly contains the primary harmonic and the 1/3 subharmonic, and
with the increase in the excitation frequency, the larger the proportion of the subharmonic.
At the same time, it is found that the frequency range of 1/3 subharmonic vibration is
within the frequency range of multi-values generated by the primary resonance, and the
subharmonic motion’s amplitude is greater than that of the intra-well motion. Similarly,
1/3 subharmonic resonance also increases the excitation amplitude’s bandwidth of the
harvester at a specific excitation frequency. Therefore, to a certain extent, the subharmonic
motion can compensate for the low energy collection efficiency caused by the low robust-
ness of inter-well motion. Making full use of the nonlinear characteristics of a system
can effectively broaden the bandwidth of the piezoelectric vibration energy harvester and
improve the efficiency of obtaining environmental energy. The theoretical method (CDF)
can accurately predict the dynamic behavior of this kind of strongly nonlinear vibration
energy harvester and provide guidance for its theoretical research.
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In the next step, the parameters of the harvester model are optimized by considering
the effects of residual stress, temperature, damping, and the dimensions of the multilayer
beam. On this basis, the following studies will be carried out.

1© An optimal load resistance exists in the system. A more significant power can be
output under the same conditions when the optimal load resistance is obtained. However,
the variation of the load resistance may affect the dynamic behavior of the system. De-
termining the optimal load by integrating the mechanical system and the circuit system
remains to be studied.

2© Subharmonic resonance occurs only within a specific range related to the excita-
tion frequency, excitation amplitude, linear stiffness coefficient, and nonlinear stiffness
coefficient. By adjusting these parameters, the subharmonic resonance can maximize the
bandwidth of the harvester.
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