Figure 2.
Influence of dietary properties on molecular signaling and muscular adaptation. (A): Vegan (VEG), vegetarian (VGT) and omnivorous (OMN) diets possess unique nutritional properties. This affects differential levels of polyunsaturated fatty acids, dietary fibers, plant- and animal-based protein sources, creatine and leucine. (B): Diet composition affects molecular signaling pathways. (C): Molecular signaling activates mitochondrial and myofibrillar protein synthesis and degradation and hereby modulates skeletal muscle adaptation and (D): exercise performance.Omnivorous diets (OMN, blue section) possess a lower amount of dietary fiber. This negatively affects the gut microbiome and reduces intestinal short chain fatty acid (SCFA) production. This induces increased FOXO and NF-κB signaling which can increase protein degradation. Reduced amounts of SCFA activate AMPK signaling to a lower extent which decreases AMPK-induced PGC-1α activation and affects mitochondrial biogenesis. In contrast, OMN diets contain elevated amounts of DHA/EPA and taurine, which enhances PPAR-induced PGC-1α activation. Taurine also activates AMPK signaling, leading to an overall moderate effect on mitochondrial biogenesis. OMN diets contain low amounts of plant-based protein sources but high amounts of animal-based protein with a higher leucine and creatine content. These two diet dependent factors lead to an activation of mTOR-based signaling which enhances the potential for increased myofibrillar protein synthesis (MFPS). Vegan diets (VEG, green section) possess a higher amount of dietary fiber. This positively affects the gut microbiome and enhances the intestinal SCFA production. This reduces FOXO and NF-κB signaling which leads to a decreased protein degradation. Increased amounts of SCFA activate AMPK to a higher extent which increases AMPK-induced PGC-1α activation and enhances mitochondrial biogenesis. In contrast, VEG diets contain reduced amounts of DHA/EPA and taurine which leads to a decreased PPAR-induced PGC-1α activation. The low taurine content also decreases AMPK activation leading to an overall moderate effect on mitochondrial biogenesis. VEG diets contain high amounts of plant-based protein but low amounts of creatine- and leucine-rich animal-based proteins. Therefore, a VEG diet result in a lower activation of mTOR-based signaling which reduces the potential for increased MFPS.Vegetarian diets (VGT, yellow section) possess a higher amount of dietary fiber. This positively affects the gut microbiome and enhances the intestinal SCFA production. This reduces FOXO and NF-κB signaling which leads to a decreased protein degradation. Increased amounts of SCFA activate AMPK to a higher extent which increases AMPK-induced PGC-1α activation and enhances mitochondrial biogenesis. In contrast, VGT diets contain reduced amounts of DHA/EPA and taurine which leads to a decreased PPAR-induced PGC-1α activation. The low taurine content also decreases AMPK activation leading to an overall moderate effect on mitochondrial biogenesis. VGT diets contain high amounts of plant-based protein but low amounts of creatine- and leucine-rich animal-based proteins. Therefore, a VEG diet result in a lower activation of mTOR-based signaling which reduces the potential for increased MFPS.