Skip to main content
. 2021 Nov 19;21(22):7704. doi: 10.3390/s21227704
Algorithm 1: Block coordinate descent algorithm for X2 and X3
Input: Initial solution X2(k),X3(k).
Output: Optimal solution X2(k+1),X3(k+1).
Step 1: m = 1, i = 0, X2, (0)=X2(k), X3, (0)=X3(k).
Step 2: Update the m-th row vector α(i)m of X2, (i) and β(i)m of X3, (i). Input it to Algorithm 2 whose output is the optimal row vector αm and βm.
Step 3:{X2, (i+1)=[α(i)1,α(i)2,,α(i)m1,αm,α(i)m+1,,α(i)M]X3, (i+1)=[β(i)1,β(i)2,,β(i)m1,βm,β(i)m+1,,β(i)M]
Step 4: i = i + 1. If m>M is true, m = 1, otherwise m = m + 1.
Step 5: Calculate the objective function using X2, (i) and X3, (i). If the value of the objective function is not decreasing, X2(k+1)=X2, (i),X3(k+1)=X3, (i) and the optimal matrix is obtained, otherwise jump to Step 2 and continue.