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Abstract: Epilepsy is a brain disorder disease that affects people’s quality of life. Electroencephalog-
raphy (EEG) signals are used to diagnose epileptic seizures. This paper provides a computer-aided
diagnosis system (CADS) for the automatic diagnosis of epileptic seizures in EEG signals. The pro-
posed method consists of three steps, including preprocessing, feature extraction, and classification.
In order to perform the simulations, the Bonn and Freiburg datasets are used. Firstly, we used a
band-pass filter with 0.5–40 Hz cut-off frequency for removal artifacts of the EEG datasets. Tunable-Q
Wavelet Transform (TQWT) is used for EEG signal decomposition. In the second step, various linear
and nonlinear features are extracted from TQWT sub-bands. In this step, various statistical, frequency,
and nonlinear features are extracted from the sub-bands. The nonlinear features used are based
on fractal dimensions (FDs) and entropy theories. In the classification step, different approaches
based on conventional machine learning (ML) and deep learning (DL) are discussed. In this step, a
CNN–RNN-based DL method with the number of layers proposed is applied. The extracted features
have been fed to the input of the proposed CNN–RNN model, and satisfactory results have been
reported. In the classification step, the K-fold cross-validation with k = 10 is employed to demonstrate
the effectiveness of the proposed CNN–RNN classification procedure. The results revealed that the
proposed CNN–RNN method for Bonn and Freiburg datasets achieved an accuracy of 99.71% and
99.13%, respectively.

Keywords: epileptic seizures; EEG; diagnosis; TQWT; nonlinear features; CNN–RNN

1. Introduction

Epilepsy is a noncontagious disease and one of the most prominent brain disorders.
About 1% of the world’s population has been diagnosed with epilepsy [1]. Patients with
epileptic seizures suffer from some temporary electric disorders [1–3]. About 20–30 percent
of the patients diagnosed with epilepsy experience one or more strokes in a month [4–6]. In
the epileptic seizures period, physical damages might even cause the death of the patient.
The patients also suffer from lack of a good social position and experience some severe
mental disorders [4–6].

In 2017, the International League Against Epilepsy (ILAE) presented a new classifica-
tion of the epileptic seizure types: focal epilepsy, generalized epilepsy, and epilepsy with
unknown symptoms [7]. In this classification, some detailed and precise information about
each of the epileptic seizure types, including the types and the brain areas experiencing
convulsion, are presented [7]. The early diagnosis of epileptic seizures has enormous
importance and will prevent the disease progression significantly.

Many screening methods to diagnose epilepsy have been proposed until now, and
the neuroimaging modalities have gained much attention from the specialized Specialist
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doctors [8]. Basically, the neuroimaging modalities in the diagnosis process of epileptic
seizures include structural and functional methods. In the neuroimaging modalities, an
epileptic seizure diagnosis based on EEG signals has remarkable popularity. EEG signal
recording includes scalp EEG (sEEG) and intracranial EEG (IEEG) modalities [9]. EEG
modalities include essential information from the functions of the brain in the epileptic
seizures period. In comparison with other neuroimaging modalities, some benefits of EEG
are a lower cost, the easiness of carrying, and suitable performance in epileptic seizure
detection [9]. To diagnose epileptic seizures, doctors need to have a long record of the
patient’s EEG signals. The EEG signals also usually have many various channels and
artifacts, which cause some difficulties and challenges for doctors in the epileptic seizures
diagnosis process [9,10].

To address these challenges, using CADS based on artificial intelligence (AI) can help
to improve the speed and accuracy of the epilepsy diagnosis process [11–13]. AI-based
CADS include ML and DL methods [14–17]. The most significant difference between CADS
based on ML and DL is in the feature extraction step [9]. In CDAS based on ML, the most
important feature extraction techniques include the time domain, frequency, and nonlinear
features [18]. Choosing different feature extraction algorithms together to reach a high
diagnosis accuracy demands a fair amount of knowledge in the field of ML [19,20].

On the other hand, the feature extraction and selection steps in CADS based on DL will
be implemented on the deep layers. Many research projects are being conducted in the field
of epileptic seizures diagnosis using DL and ML techniques [21–76]. The purpose of these
papers is to reach an authentic and accurate epileptic seizures diagnosis using EEG signals.

One recently developed AI field in epileptic seizures detection uses feature fusion
techniques [77,78]. In these methods, a combination of features from different domains
will improve the functionality and accuracy of the disease diagnosis process [77,78]. In
this work, a novel epileptic seizure diagnosis method using a combination of handcrafted
features and DL has been proposed; the summary of its steps is shown in Figure 1.

Figure 1. Proposed method for epileptic seizure detection.

The proposed method includes the dataset, preprocessing, feature extraction, and
classification steps. The two different datasets of Bonn [79] and Freiburg [80] were used to
implement the proposed method. In the preprocessing step, the TQWT was used in EEG
signal decomposition of different sub-bands.

Three variables are used for adjusting and reducing the search space of filter banks.
The three important parameters of TQWT are the Q-factor, redundancy (r), and the number
of sub-bands (J) [81]. The parameters Q = 1, r = 3, and J = 8 were chosen in this paper,
similar to Reference [82]. After EEG signal decomposition using TQWT, various statistical,
frequency, and nonlinear features are extracted. The EEG signals have a chaotic and
nonlinear nature. Related works showed that nonlinear feature extraction methods play
a significant role in improving the functionality and accuracy of the epileptic seizure
diagnosis using EEG signals [23–40]. The most important nonlinear feature extraction
methods from EEG signals include various types of entropies [83], FDs [84], graphs [85],
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the largest Lyapunov exponent (LLE) [86], and correlation coefficients (CC) [87]. In this step,
various statistical, frequency, and nonlinear features are extracted in the TQWT sub-bands.

In this paper, a novel class of entropy and fractal theory-based features was used.
The combination of this class of handcrafted features was used in this paper for the first
time as the first innovation. In this section, feature extraction algorithms were chosen
and combined based on exploring other research papers and, also, their epileptic seizure
diagnosis functionality. Fractal-based nonlinear features include Higuchi [88], Katz [88],
Petrosian [88], and the detrended fluctuation analysis (DFA) [89,90]. Entropy-based feature
extraction techniques also include Shannon [91–93], Log-Energy [93], spectral [94], Sam-
ple [95], permutation [96], Fuzzy [97], refined composite multiscale fuzzy [98], graph [99],
Permutation Rényi [100], average Shannon wavelet [101], average Rényi wavelet [101],
average Tsallis wavelet [101], inherent [102], fractional fuzzy [103], and average fuzzy [104];
all of these methods will be covered and fully explained in the third section.

In the classification step, a variety of classification methods based on ML methods and
DL are used. Classification techniques based on ML involve the support vector machine
(SVM) [105] and k-nearest neighbors (KNN) [106] methods. The DL method is a CNN–RNN
with the proposed number of layers and is another the novelty of the paper.

The proposed CNN–RNN model has two inputs. In the first input, handcrafted
features will be fed into the network. In the second input, raw EEG signals of each dataset
will be fed into the network differently, and various features will be extracted after passing
the convolutional and long short-term memory (LSTM) layers. These features will be
combined afterward and will pass into the classification algorithm.

This paper is organized as follows: the proposed method for epileptic seizure detection
in EEG signals is introduced in Section 2. In Section 3, the statistical metrics for the proposed
method are presented. The results of the proposed method are shown in Section 4. The
limitations of the study are presented in Section 5. Finally, the discussions, conclusions,
and future works are introduced in Section 6.

2. Materials and Methods
2.1. Dataset
2.1.1. Bonn Dataset

The Bonn dataset was recorded at the University of Bonn by a group of researchers,
and it has been extensively used in the area of epileptic seizure analysis and detection [48].
The Bonn dataset is publicly available as 500-EEG single-channel data. It was sampled at
173.6 Hz with a 23.6 s duration. They consisted of five classes, viz., S, F, N, O, and Z, with
100 channel recordings in each class [79]. Five healthy controls in the relaxed and awake
state with 10–20 standard electrode placement schemes contributed to the classes O and
Z EEG surface data. Intracranial electrodes were used with five patients suffering from
epilepsy to collect data of the S, F, and N classes. The hemisphere of the epileptogenic
zone and the opposite hemisphere were used, respectively, for the recording of the F and S
classes’ signals during the interictal (seizure-free) period. The ictal (seizure) period was
taken into account in case of the recording of class S [79]. Samples of EEG signals of the
dataset for each class are shown in Figure 2.

Other details about the Bonn dataset are shown in Table 1.

Table 1. A thorough explanation of the five subsets of the dataset.

Sets
Subjects

Patient Stage Electrode Type Num. of Cases Num. of Data Length of Segments

Set A Eye Open Surface 5 100 4097
Set B Eye Close Surface 5 100 4097
Set C Seizure Free Intracranial 5 100 4097
Set D Seizure Free Intracranial 5 100 4097
Set E Seizure Activity Intracranial 5 100 4097
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Figure 2. Exemplary EEGs from five datasets.

To perform the experiments, 6 different classification problems are used, which are
shown in Table 2.

Table 2. More details about the six problem classifications.

Subjects Problem Classifications Description

Subject 1 A–E Healthy—Ictal
Subject 2 B–E Healthy—Ictal
Subject 3 C–E Interictal—Ictal
Subject 4 D and E Interictal—Ictal
Subject 5 ABCD and E Normal—Seizure
Subject 6 AB and CD and E Healthy—Interictal—Seizure

2.1.2. Freiburg Dataset

The Freiburg dataset is another most frequently used resource for epileptic seizure
detection [80]. It is also a freely accessible and downloadable EEG recording dataset.
Twenty-one epileptic patients were considered for 24 h invasive presurgical continuous
EEG signal recordings. During the time period, many seizures were recorded and occurred.
This dataset includes epileptic seizure types of tonic–clonic (GTC), complex partial (CP),
and simple partial (SP). Each of the cases has at least two types of epileptic seizures. The
patients were from different age groups. They also differed in type and locality of seizures.
The patients came to the University Hospital of Freiburg, Germany for a presurgical
diagnosis. A Neurofile NT digital video EEG was used with a 256-Hz sampling rate and
128 channels [80]. The channels were numbers from 1 to 6, where the 1–3 channels were for
focal recoding and 4–6 channels corresponded to extra focal ones. Interictal and ictal were
the two types of signal files. The duration of the EEG signals for each patient in the ictal
files was one hour. The format of the data files was ASCII. More details about this dataset
is described in Table 3.

Table 3. More details about the Fribourg dataset.

Patient Age Gender Seizure Origin Seizure Type Number of Seizures

1 15 Female Temporal SP, CP 4
2 38 Male Frontal SP, CP, GTC 3
3 14 Male Temporal SP, CP 5
4 26 Female Temporal SP, CP, GTC 5
5 16 Female Frontal SP, CP, GTC 5



Sensors 2021, 21, 7710 5 of 28

Table 3. Cont.

Patient Age Gender Seizure Origin Seizure Type Number of Seizures

6 31 Female Temporal CP, GTC 3
7 42 Female Temporal SP, CP, GTC 3
8 32 Female Temporal SP, CP 2
9 44 Male Frontal CP, GTC 5

10 47 Male Frontal SP, CP, GTC 5
11 10 Female Frontal SP, CP, GTC 4
12 42 Female Frontal SP, CP, GTC 4
13 22 Female Temporal SP, CP, GTC 2
14 41 Female Temporal CP, GTC 4
15 31 Male Frontal SP, CP, GTC 4
16 50 Female Temporal SP, CP, GTC 5
17 28 Male Temporal SP, CP, GTC 5
18 25 Female Temporal SP, CP 5
19 28 Female Frontal SP, CP, GTC 4
20 33 Male Temporal SP, CP, GTC 5
21 13 Male Temporal SP, CP 5

2.2. Preprocessing
Tunable-Q Wavelet Transform

The TQWT method is described in this section. TQWT is one of the newest wavelets
transforms that is widely used in the processing of biological signals such as EEG signals.
In TQWT, the redundancy (r), number of frequency sub-bands (J), and Q-factor (Q) can be
tuned. The TQWT method consists of two low-pass and high-pass filter banks and is used
to decompose EEG signals into different sub-bands. In this section, the low- and high-pass
scale factors for filter banks with two channels are represented by α and β. The low-pass
filter frequency response can be described as follows [81]:

T0(ω) =


1 i f |ω| < (1 –α)π

θ
(

ω+(α−1)π
β+α−1

)
i f (1− α)π ≤ |ω| < βπ

0 i f βπ ≤ |ω| < π

(1)

The mathematical expression for the high-pass filter frequency response is as follows:

T1(ω) =


0 i f |ω| < (1 –α)π

θ
(

βπ−ω
β+α−1

)
i f (1− α)π ≤ |ω| < βπ

1 i f βπ ≤ |ω| < π

(2)

In this paper, the TQWT parameters for the two datasets are r = 3, Q = 1, and
J = 8, respectively. Figures 3 and 4 show the TQWT sub-bands for the Bonn and Freiburg
datasets. In Figures 3 and 4, EEG signals with different sub-band frequencies are shown.
The selection of the EEG signal decomposition level was made similar Reference [81].
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Figure 3. EEG signal decomposition using TQWT for the Bonn dataset.

Figure 4. EEG signal decomposition using TQWT for the Freiburg dataset.
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Additionally, Figure 5 shows the frequency response for TQWT based on the r = 3,
Q = 1, and J = 8 parameters.

Figure 5. The frequency response for TQWT with the R = 3, Q = 1, and J = 8 parameters.

2.3. Feature Extraction

In this section, various feature extraction methods are employed in epileptic seizure
detection in the EEG signals. The feature extraction methods in the EEG signals con-
tain the statistical, frequency domain, and nonlinear features. The nonlinear features
are based on fractal theory entropy techniques. In the following section, each of these
methods is discussed.

2.3.1. Statistical Features

The statistical features extract useful signal information, the most important of which
are selected as shown in Table 4 [24].

Table 4. Statistic features for epileptic seizure detection.

Formula Feature Name Equations

Xmean = 1
n

n
∑
1

xi Mean (3)

Xvar =
N
∑

n=1
(xn − AM) 2

N−1
Variance (4)

Xku =
N
∑

n=1
(xn − AM) 4

(N−1)SD4
Kurtosis (5)

XSke =
N
∑

n=1
(xn − AM) 3

(N−1)SD3
Skewness (6)

Xstd =

√
N
∑

n=1
(xn − AM) 2

n−1
Standard Deviation (7)

Max(xn) Max (8)
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2.3.2. Frequency Features

(1) Intensity Weighted Mean Frequency (IWMF)

The intensity weighted mean frequency (IWMF) or mean frequency is an average
frequency that is calculated as the sum of the product of the normalized power spectral
density (PSD) and the frequency. Consider x[k] as the normalized PSD of the signal epoch
at the frequency of f [k], and the IWMF is calculated by [107]

IWMF(x) = ∑
k

x[k] f [k] (9)

(2) Intensity Weighted Bandwidth (IWBW)

The weighted standard deviation of the frequency and a measure of the PSD width
can be obtained from [107].

IWBW(x) =
√

∑
k

x[k]( f [k]− IMWF(x))2 (10)

where x[k] is the normalized PSD, and IMWF is the mean frequency of the input signal
epoch. Whenever the PSD changes sharply, it results in a lower IWBW [107].

2.3.3. Fractal Features

The fractal dimensions (FDs) are an important class of nonlinear features and play a
crucial role in the processing of EEG signals. FD-based feature extraction techniques, due
to their properties, increase the accuracy of epileptic seizures detection in EEG signals. In
this paper, the most important FDs, including Higuchi, Katz, Petrosian, and DFA are used
to epileptic seizures detection in EEG signals. In the following, each of the FDs methods is
presented along with their mathematical equations.

(1) Higuchi Fractal

In this section, the theory of the Higuchi method is presented. Higuchi proposed this
method in 1988, after which it has become a widely used technique for analyzing time
series [88]. The Higuchi method is one of the most important FDs techniques that work
well on nonlinear time series such as EEG signals. In the following, the steps of the Higuchi
algorithm are proposed [88].

Consider x(1), x(2), . . . , x(N) the time sequence to be examined. The new time series
xk

m is as follows [88].

xk
m =

{
x(m), x(m + k), x(m + 2k), . . . . . . .x

(
m +

N −m
k

k
)}

, f or m = 1, 2, . . . k (11)

In Equation (11), k is means the discrete time interval between points, and m is means
the initial time value. For each time series xk

m, the average length Lm(k) is as follows [88].

Lm(k) =
(N − 1)⌊

N−m
k

⌋
k

b(N−m)/kc

∑
i=1

|x(m + ik)− x(m + (i− 1)k| (12)

In Equation (12), (N−1)
b N−m

k ck
is a normalization factor, and N is the total length of the

sequence of the data x. The delay k is computed for all EEG data with an average length k
as the mean of the k lengths Lm(k) for m = 1, 2, . . . , k. For each k ranging from 1 to kmax ,
the procedure is repeated, producing the sum of the average lengths L(k) for each k as
indicated below [88].

L(k) =
k

∑
m=1

Lm(k) (13)

(2) Katz Fractal
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The FD of a curve can be termed as [88].

D =
log10(L)
log10(d)

(14)

In Equation (14), d is the estimated diameter as the distance between the points of the
sequence. Also, L parameter is the total length of the curve. The equation of the d is as
follows [88]:

d = max(distance(1, i)) (15)

In Equation (15), Point i is the one that maximizes the first point. The measurement
units used depends on the computed FDs. The FDs are different if the units are different.
Katz’s approach tries to resolve the issue by creating a general unit. The average step
between successive points, a normalizes the distance [88]:

D =
log10(L/a)
log10(d/a)

(16)

where n is the number of steps in the curve. Finally, Katz’s approach for feature extraction
in EEG signals is defined as follows [88]:

D =
log10(n)

log10(
d
L ) + log10(n)

(17)

(3) Petrosian Fractal

This section presents the theory of the Petrosian method. In the Petrosian method,
rapid FD estimation is performed, and the results show that this method has satisfactory
results. The mathematical theory of the Petrosian method is shown in (18) [88]:

D =
log10n

log10n + log10
( n

n+0.4 N∆
) (18)

(4) Detrended Fluctuation Analysis

The Reference [89] introduced DFA, which can be used in feature extraction from
time series such as EEG signals. The RR interval of the time series is incorporated y(k)
and divided into nonoverlapping and equal segments of length n for conducting such an
analysis. Least squares fitting is applied to obtain the local trend yn(k) in each segment
and subtracted from y(k). F(n), the root mean square fluctuation estimates, are calculated
at last, and the scaling exponents are measured as the slope of the double-log plot of F(n)
against n [89,90]:

F(n) =

√√√√ 1
N

N

∑
k=1

[y(k)− yn(k)]
2 (19)

2.3.4. Entropy Features

In this paper, different entropies are exploited to extract the characteristics of EEG
signals. The entropy-based features indicate the presence of signal irregularities and are also
more resistant to noise than other methods. The entropy relationships used are shown below.

(1) Shannon Feature

This entropy was proposed by Reference [94] and defined as

ESh = −
x

∑
n=1

Snlog2Sn (20)

In Equation (20), Sn is the probability of the feature’s value.
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(2) Log-Energy Entropy

The log-energy entropy estimates the complex intensity of the signals. The log-energy
entropy can be termed as [91,93]

ELog =
K

∑
i=0

log
(

E2
i

)
(21)

(3) Average Shannon Wavelet Entropy

In this section, the average entropy of wavelet Shannon is presented. If Et represents
the energy of the 1st sub-band signal calculated from the wavelet coefficients, we can write
the total energy of the signal as follows [101]:

Et =
K

∑
i=1

Ei (22)

where K represents the total number of EEG signals obtained from the wavelet sub-bands.
The wavelet energy can be calculated as follows [101]:

qi =
Ei
Et

(23)

The Shannon-based wavelet entropy relationship is defined as follows [101]:

Swn = −
K

∑
i=1

qilog(qi) (24)

Finally, the average wavelet Shannon entropy is defined based on swnx and swny,
which represent the Swn of the time series x and y of the EEG signal, as follows [101]:

swnavg =
swnx + swny

2
(25)

(4) Average Rényi Wavelet Entropy

The entropy of wavelet Rényi is defined in Relation (26) [101]:

Rwnα =
1

1− α
log

(
K

∑
i=1

qα
i

)
, α 6= 1 (26)

Here, the parameter α is considered equal to 2. In another definition, Rényi entropy is
expressed by Relation (27) [101]:

Rwn2 = −log

(
K

∑
i=1

q2
i

)
(27)

Similar to Equation (25), the average wavelet Rényi entropy is defined as follows [35]:

RwnAvg =
Rwnx + Rwny

2
(28)

(5) Average Tsallis Wavelet Entropy

In Reference [101], the entropy of wavelet Tsallis is studied in detail. Wavelet Tsallis
entropy is defined as follows:

Twnα =
1

1− α

(
1−

K

∑
i=1

qα
i

)
, α 6= 1 (29)
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where parameter a is called the nonextensivity index. The average wavelet Tsallis entropy
is calculated as follows [101]:

TwnAvg =
Twnx + Twny

2
(30)

(6) Permutation Rényi Entropy

Consider the following time series. The Xt vectors are constructed by selecting samples
with identical distances from x, starting from the time point t [100]:

Xt = [x(t), x(t + L), . . . , x(t + (m− 1)L]T (31)

The values of Xt are transformed in ascending order and, by generating Xrt , the
modified version of Xt, the time points are renamed [100]:

Xrt = [x(t + (t1 − 1)L), x(t + (t2 − 1)L), . . . , x(t + (tm − 1)L)]T (32)

Therefore, each Xt vector can be considered uniquely mapped on a symbol vector
π = [t1, t2, . . . , tm]. PE can be calculated as follows [100]:

H(m) = −
m!

∑
i=1

p(πi)log(p(πi)) (33)

where log is a natural logarithm, and m! is the number of possible permutations. Since
H(m) can reach ln (m!), PE is normalized. Then, the normalized PE relationship is defined
by [100].

Hn(m) = −∑m!
i=1 p(πi)log(p(πi))

ln(m!)
(34)

Here is a new definition of PE based on Rényi’s theory as follows [100]:

HR(m) = − 1
1− α

log
m!

∑
i=1

p(πi)
α (35)

(7) Graph Entropy

A new entropy method based on graph theory was proposed by Reference [99]. The
relation of the graph entropy is described as [99].

Hn(m) = −∑m!
i=1 p(πi)log(p(πi))

ln(m!)
(36)

Hn(m) = −∑m!
i=1 p(πi)log(p(πi))

ln(m!)
(37)

where Wij is the weight of the link between the ith node and the jth node, and m is the
number of nodes connected to the ith node [99].

(8) Fuzzy Entropy

For a time series x(i), fuzzy entropy (FuEn) establishes vector sequences xm
i , i =

{1, 2, . . . , N −m + 1} as given below [97]:

Xm
i = {x(i), x(i + 1), . . . , x(i + m− 1)} − x0(i) (38)

where m is the length of the sequences.
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Dm
ij is the maximum absolute difference between Xm

i and Xm
j [97].

Dm
ij (n, r) = µ

(
dm

ij , n, r
)

(39)

µ
(

dm
ij , n, r

)
= e−

(dm
ij )

n

r (40)

In Equations (40) and (41), r parameter is the predefined gradient, and n is the width
of the exponential function. The Φm function shows in the Eqation (41) [97]:

Φm(n, r) =
1

N −m

N−m

∑
i=1

(
1

N −m− 1

N−m

∑
j=1,j 6=i

Dm
ij

)
(41)

Finally, the FuEn is introduced as Equation (42) [97]:

FuEn(m, n, r, N) = −ln
Φm+1(r)

Φm(r)
(42)

(9) Refined Composite Multiscale Fuzzy Entropy (RCMFE)

The RCMFEσ is computed as follows [98]:

RCMFEσ (x, m, n, r) = −ln
(

Φr
m+1

/
Φr

m
)

(43)

RCMFEσ and RCMFEµ have differences that both use different equations in the first
steps of their algorithms. The tolerance (r), Fuzzy entropy power (n), and the embedding
dimension (m) [98].

(10) Inherent Fuzzy Entropy

This section expresses inherent fuzzy entropy (IFuEn). The steps of IFuEn are as
follows [102]:

Step 1. Multiple IMFs are made by breaking down the original x(t) signal and recon-
structing the x̂(t) signal using EMD techniques, which are done as follows [102]:

1. Calculating the extremes to cover emin(t) and emax(t) [102].
2. Calculating the average [102]:

m(t) =
(

emin(t) + emax(t)
2

)
(44)

3. Candidates of inherent functions are derived intrinsic mode functions (IMFs) [102]:

d(t) = x(t)−m(t) (45)

4. Calculating the value of r(t) as follows [102]:

r(t) = x(t)−
t

∑
i=1

d(t) (46)

5. Given t = t + 1, consider d(t + 1) as the input EEG data; while iterating on the residual
m(t), which continues until the final residue r that becomes a monotonic function from
which no more IMF can be extracted [102].

6. The total accumulated residual IMFs are used to reconstruct the x̂(t) signal [102]:

x̂(t) =
i=m

∑
i=n

d(t) (47)
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Step 2: FuEn to evaluate the complexity, which is similar to Equation (42) [102].
Step 3: Multi-scale version [102]
y(τ)j is the coarse-grained time series, and its equation is as follows [102]:

y(τ)j =
1

τ ∑
jτ
i=(j−1)τ+1 xi

(48)

In this regard, τ is the scale factor. Also, the length of each coarse-grained time series
is N/τ [102].

(11) Averaged Fuzzy Entropy

Average fuzzy entropy (AFuEn) is an improved model of FuEn. In AFuEn method, an
improved m_ pattern Γk

[
Xm

j

]
is compared to Xm

i . At this AFuEn, Equation (49) is modified
as follows [104]:

kDm
ij (n, r) = µ

(
d
[

Xm
i , Γk

[
Xm

j

]]
, n, r

)
(49)

In the following, four different types of Γk[Xm(j)] operations with k = {T, R, I, G}
are defined as follows [104]:

• A translation of n samples, k = T corresponds to ΓT

[
Xm

j

]
= Xm

j+n.

• A reflection at the position n, k = R corresponds to ΓR

[
Xm

j

]
= Xm

−j+n.

• An inversion at the position n, k = I corresponds to ΓI

[
Xm

j

]
= −Xm

−j+n.

• A glide reflection of n samples, k = G corresponds to ΓG

[
Xm

j

]
= −Xm

j+n.

In this case, FuEnT , FuEnR, FuEnI , and FuEnG are obtained. The following FuEna is
as follows [104]:

FuEna(m, n, r, N) =
(FuEnT + FuEnR + FuEnI + FuEnG)

4
(50)

Finally, the AFuEn is shows as Equation (51) [104]:

AFuEn(m, n, r, N) = ln

(
Φm

k (n, r)

Φm+1
k (n, r)

)
(51)

(12) Fractional Fuzzy Entropy

In Reference [103], researchers introduced the fractional-order entropy of Shannon,
which is defined as

Sα = ∑
i

pi

{
−

p−α
i

Γ(α + 1)
[lnpi + ψ(1)− ψ(1− α)]

}
(52)

In Equation (52), α is the fractional-order derivation. Moreover, Γ and ψ denote the
gamma and digamma functions, respectively. The equation of fractional-order information
is defined as Equation (53):

Iα = −
p−α

i
Γ(α + 1)

[lnpi + ψ(1)− ψ(1− α)] (53)

In Equation (42), FuEn is introduced. Placing Equation (53) in Equation (42), fractional
fuzzy entropy (FFuEn) may be stated as

FFuEn
(

m, r, α, xN
)
= −

(
Φm+1(r)

Φm(r)

)−α ln Φm+1(r)
Φm(r) + ψ(1)− ψ(1− α)

Γ (1 + α)
(54)
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(13) Spectral Entropy

This method is normalized Shannon entropy, which quantitatively defines the spectral
complexity of the EEG signals as follows [94]:

Sent = ∑
f

Pf log

(
1
Pf

)
(55)

(14) Sample Entropy

In the equation below, the sample entropy formula is shown [95]:

SampEn = −log
(

A
B

)
(56)

where A refers to the total number of vector pairs of length m + 1, and B comprises the total
number of vector pairs of length m [95].

(15) Permutation Entropy

Permutation entropy estimates the complexity of biomedical signals, such as EEG
signals, by measuring the couplings between two classes. The equation of permutation
entropy is presented as follows [96]:

PE = −
n

∑
j=1

Pjlog2Pj (57)

where n defines the sequence length, and pj illustrates the likelihood of the nth occurrence [96].

2.4. Classification
2.4.1. SVM

While these methods have been around for longer than many other machine learn-
ing algorithms, in recent decades, despite many advances in machine learning and the
introduction of a wide variety of novel algorithms, support vector machines [105] have
not lost their popularity and are still considered one of the most well-known and applied
methods among researchers. These algorithms, which are generally based on finding
hyperplanes that maximize the margin, use the kernel trick to classify data in complex and
high-dimensional spaces with suitable accuracy. Linear, RBF, and polynomial are the most
popular SVM kernels [105].

2.4.2. KNN

One of the simplest and, at the same time, most practical machine learning methods
is the KNN algorithm [106], which is widely used for classification. There is no learning
phase in this method, but in the test phase, the classifier finds the K-nearest neighbor to
this data point (as the name of the method implies) and assigns the data label according
to their dominant label. Nevertheless, this method works very slowly in times when the
amount of training data is enormous [106].

2.4.3. CNN–RNN

In this section, the proposed DL architecture for the detection of epileptic seizures
based on EEG signals is discussed. The network used in this paper has a CNN–RNN
structure with the use of extracted features. Nowadays, combined deep learning models
such as CNN–RNN have achieved successful results in diagnosing and predicting diseases
from medical data.

Convolutional layers are usually used in the primary layers to combine CNN models
with RNN, which are responsible for extracting the features. The output of the convolu-
tional layers is then applied to the RNN layers to use their superiority to identify the global
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pattern [108,109]. The purpose of this work is because the convolution layers empirically
find local and spatial patterns far better than RNNs in signals [109]. Second, adding convo-
lution layers allows the RNN to see the data faster, thus finding more distance patterns.
Additionally, in this study, it has been proven that combining handcrafted features with
CNN–RNN networks helps to increase the efficiency and accuracy of the CADS detection
of epileptic seizures from EEG signals. In this study, the selection of the number of layers
of the CNN–RNN model is presented for the first time by the researchers in this paper.

In this paper, a deep CNN–RNN network with the proposed number of layers, along
with handcrafted features, is used to diagnose epileptic seizures. The proposed CNN–
RNN model is applied to the Bonn and Freiburg datasets, along with the handcrafted
features. The CNN–RNN model has the same structure for both datasets. Figure 6 shows
the proposed CNN–RNN model. Additionally, the hyper parameters of the model are
shown in Table 5.

Figure 6. Block diagram of the proposed CNN–RNN network.

Table 5. CNN–RNN hyper-parameters.

Parameters Layer

Kernel size = 3, activation = ‘relu’, filters = 32 Conv1d
Kernel size = 3, activation = ‘relu’, filters = 32 Conv1d_1

Pool_size = 2 Maxpooling1d
Kernel size = 3, activation = ‘relu’, filters = 32 Conv1d_2

— Flatten
Number of neurons = 64 LSTM

Number of neurons = 128, activation = ‘relu’ Dense
Number of neurons = 128, activation = ‘relu’ Dense_1

Number of neurons = 2 or 3, activation =
‘softmax’ Dense_2

In the proposed deep learning method, there are three convolutional layers in the
convolutional section to extract features and one max-pooling layer with a feature reduction
purpose. After that, there is a flatten layer to transform the extracted features into feature
vectors. Then, an LSTM block with 64 neurons was used to extract the RNN features.
Afterwards, a combination block was used to combine the CNN–RNN and handcrafted
features. Finally, three fully connected layers were implemented to classify the data. In the
proposed CNN–RNN model, each layer’s selection and its parameters were made by trial
and error.
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3. Statistical Metrics

In this paper, the classification results are evaluated using the 10-fold cross-validation
techniques. In K-fold cross-validation, the total number of observations are split into
K-folds, where the data samples are limited. Finally, the performance of the algorithm was
estimated using statistical metrics include specificity (Spec), sensitivity (Sens), accuracy
(Acc), and F1-score (F1-S), and precision (Prec). The true positive (TP), true negative (TN),
false negative (FN), and false positive (FP) parameters are extracted from the confusion
matrix [110].

Acc =
TP + TN

FP + FN + TP + TN
(58)

Sens =
TP

FN + TP
(59)

Spec =
TN

FP + TN
(60)

Prec =
TP

TP + FP
(61)

FS =
2 TP

2TP + FP + FN
(62)

4. Results

The experiments are performed on a Ryzen 1700 machine with 8-GB RAM using
MATLAB for feature extraction and TensorFlow 2 and scikit-learn for the classification
algorithms. In this part of the paper, we present the results of the proposed method. The
proposed method includes the preprocessing, feature extraction, and classification steps.
The preprocessing step includes windowing, noise removal, and decomposition of the
EEG signals into various sub-bands by the TQWT. In the first step of preprocessing, the
signals from the Bonn and Freiburg datasets are decomposed into different time windows.
For the Bonn dataset, each EEG signal is segmented into time windows of 5 s, and for the
Freiburg dataset, each EEG signal is segmented into time windows of 4 s. In the following,
a Butterworth band-pass filter is used to preprocess the signals of the datasets. In the third
preprocessing step, TQWT is used for EEG signal decomposition. As mentioned earlier,
the important TQWT parameters are selected as Q = 1, r = 3, and J = 8 for both datasets.

In the following, various statistical, frequency, and nonlinear features are extracted
from the TQWT sub-bands. The combination of these features has been done for the first
time in this paper and is considered an important novelty.

In the final part of CADS, the epileptic seizure detection based on EEG signals, ML
classifier algorithms, and deep learning was examined and tested. The ML classifier
techniques include SVM and KNN methods. On the other hand, the DL method is a
CNN–RNN model. This method of classification is another novelty of this paper. Here, the
proposed CNN–RNN method has two separate inputs. In the first input, Bonn or Freiburg
dataset signals are applied to one of the proposed CNN–RNN network inputs. After
passing the raw signals of the datasets through the one-dimensional (1D) convolutional
layers, they finally reach the flatten layer. On the other hand, handcrafted feature extraction
methods are applied to the second input of the proposed CNN–RNN architecture (Figure 6).
Then, the handcrafted features and the features extracted from the 1D convolutional layers
are merged and passed through the RNN layers to be finally classified.

In the proposed CNN–RNN implementation on the Bonn dataset, each data is broken
into 5 s windows, and after preprocessing, some features are extracted from it. At the same
time, each 5 s window, which contains 868 frames of data, is broken by 25 overlaps into
33 windows, each containing 50 frames, which are used for CNN–RNN input as the raw
data. In the proposed method, each 100-epoch network is trained using the categorical
cross-entropy error function and Adam optimizer.
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It is also important to note that the implementation and configuration of the proposed
CNN–RNN model for the Freiburg dataset are similar to the Bonn dataset. As can be seen
in Tables 6 and 7, the proposed CNN–RNN model has been successful in epileptic seizure de-
tection from the Bonn and Freiburg datasets. In Table 6, the different classifications are reviewed.

Table 6. Results for the Bonn dataset.

Methods Sets Accuracy Precision Spec Sens F1-Score

Standard SVM

A–E 97.50 97.31 97.29 97.36 97.66
B–E 98.11 98.06 98.04 98.82 98.03
C–E 98.05 98.54 98.56 98.47 97.95

D and E 98.67 99.11 98.43 98.62 98.48
ABCD and E 98.17 99.03 98.18 97.26 98.26

AB and CD and E 98.03 98.71 98.72 98.17 98.01

SVM-RBF

A–E 98.38 98.61 98.94 98.99 98.53
B–E 98.24 99.09 98.71 99.02 98.96
C–E 98.33 98.98 98.76 99.13 98.83

D and E 98.24 99.86 98.83 99.22 99.03
ABCD and E 98.14 99.17 98.31 98.72 98.97

AB and CD and E 98.17 99.03 99.03 98.66 98.69

KNN (K = 3)

A–E 96.62 96.32 96.50 94.75 94.51
B–E 96.37 96.24 96.23 96.49 96.37
C–E 96.62 95.37 95.28 98.08 96.67

D and E 97.87 98.12 98.41 98.46 98.57
ABCD and E 96.90 94.62 96.87 95.19 94.34

AB and CD and E 96.31 95.18 97.30 97.44 96.11

KNN (K = 5)

A–E 95.12 95.75 92.34 92.25 94.92
B–E 96.37 96.25 98.25 98.49 97.37
C–E 96.49 94.92 94.62 97.21 96.56

D and E 96.71 97.77 97.72 96.73 97.75
ABCD and E 95.90 93.21 96.38 93.50 92.34

AB and CD and E 94.42 94.38 96.15 95.33 96.97

CNN–RNN

A–E 99.61 99.78 99.81 99.43 99.69
B–E 99.46 99.51 99.17 99.22 99.46
C–E 99.51 99.42 99.31 99.43 99.28

D and E 99.82 99.59 99.68 99.82 99.61
ABCD and E 99.78 98.71 98.91 98.83 98.81

AB and CD and E 99.71 99.68 99.79 99.61 99.73

Table 7. Results for the Fribourg dataset.

Methods Accuracy Sensitivity Specificity Precision F1-Score

SVM 97.13 97.24 97.31 97.39 97.28
SVM–RBF 97.41 97.86 97.73 97.43 97.59

3NN 96.66 96.19 95.93 96.39 97.11
5NN 96.71 96.02 96.93 96.03 96.97

CNN–RNN 99.13 98.96 98.96 99.01 99.11

The classifications were chosen similar to the research papers about epileptic seizure
diagnosis based on EEG signals using the Bonn dataset [21–62]. Figure 7 and Table 6 show
the performances of different classifier methods for the Bonn dataset.
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Figure 7. Results for different methods in different classification problems of the Bonn dataset.

Additionally, the results of the Fribourg dataset are shown in Table 7.

5. Limitations of Study

In this section, the limitations of the study are discussed. As mentioned before,
epileptic seizures have various types, and their on-time diagnosis has great importance.
There has been no dataset on the types of epileptic seizures so far. Therefore, researchers
cannot do serious research in this field. In addition, the available EEG datasets for epileptic
seizure diagnosis have limited use, and achieving actual and accurate epileptic seizure
detection based on AI techniques is not possible due to this limitation. Another limitation
of epileptic seizure diagnosis from EEG signals is that there are no dataset of EEG signals
with preictal, ictal, and interictal times being highlighted in them. In the case of addressing
these limitations, it is possible to use advanced and novel DL models to diagnose various
types of epileptic seizures.

6. Discussion, Conclusions, and Future Works

Epileptic seizures are defined as a group of neurological disorders, and their early
diagnosis is of particular importance for specialist physicians and neurologists [82,111].
In order to epileptic seizures detection, several techniques have been proposed until now.
Among the neuroimaging modalities, EEG is pivotally significant to specialist physicians
compared to other modalities. EEG signals provide specialist physicians with accurate
information about brain functions, which helps to accurately diagnose epileptic seizures.
EEG signals, though very beneficial, are not bereft of disadvantages and always cause
problems for specialist physicians. Long-term recording, multiple EEG channels, various
noises in EEG signals, etc. are some of the physicians’ difficulties that pose problems for
accurately and quickly diagnosing epileptic seizures.

So far, various AI methods have been proposed to epileptic seizures detection, aiming
to aid specialist physicians in the rapid diagnosis of epileptic seizures based on EEG
signals. Researchers in the past have mostly exploited ML methods to diagnose epileptic
seizures. Inefficiency in large amounts of input data, the complexity of the methods, the
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need for great knowledge to use ML methods in diagnosing epileptic seizures, etc. are
the most important deficiencies of these methods. To address this issue, in recent years,
DL approaches have been proposed that possess appropriate efficiency and performance
for diagnosing various diseases, including epileptic seizures, by using a large amount
of input data.

The proposed method consisted of three parts: preprocessing, feature extraction, and
classification. Two datasets, Bonn and Freiburg, were exploited for the experiments. Bonn
dataset signals were selected for 5 s time windows and Freiburg dataset signals for 4 s
time windows. In the preprocessing step, first, a Butterworth band-pass filter was utilized
for the initial preprocessing of the two dataset signals. Following the preprocessing step,
the TQWT technique was adopted to decompose the EEG signal datasets into different
su-bands. The TQWT parameters were selected to be applied to the two datasets similar
to Reference [82].

In the following, a variety of statistical, frequency, and nonlinear features were ex-
tracted from TQWT sub-bands. Statistical features contain statistical moments. Nonlinear
features also involve two categories of FDs and entropies. FD-based nonlinear features
include Higuchi, Katz, Petrosian, and DFA. Entropy-based feature extraction techniques
also include Shannon, Log-Energy, spectral, Sample, permutation, Fuzzy, refined com-
posite multiscale fuzzy, graph, Permutation Rényi, average Shannon wavelet, average
Rényi wavelet, average Tsallis wavelet, inherent, fractional fuzzy, and average fuzzy. In the
feature extraction section, for the first time, a combination of these features has been used
to epileptic seizures detection based on EEG signals and is considered the first novelty of
this article.

Finally, ML methods and a CNN–RNN based on a DL model were exploited in the
classification step. Among the classification methods, the CNN–RNN was applied for
the first time in this study and was carried to account for another novelty. Here, the
proposed CNN–RNN approach entailed two separate inputs. In the first input, the EEG
signals of the Bonn or Freiburg datasets were fed to one of the proposed CNN–RNN
network inputs. After the raw signals of the datasets passing through the 1D convolu-
tional layers, they eventually attained the flatten layer. On the other hand, handcrafted
feature extraction methods were applied to the second input of the proposed CNN–RNN
architecture (Figure 6). Then, the handcrafted features and the features extracted from the
one-dimensional convolutional layers were combined and passed through the RNN layers
to finally be classified. In the classification section, K-fold cross-validation with K = 10 was
used to calculate the valid outcomes. The proposed CNN–RNN architecture is a novel
feature fusion procedure. Among the advantages of the proposed architecture, its high
accuracy and greater efficiency in practical applications can be meaningful. The results
identified that the proposed CNN–RNN scheme was able to achieve the maximum level of
accuracy among all the algorithms used.

Then, in Tables 8 and 9, the researchers conducted on the Bonn and Freiburg datasets
for the diagnosis of epileptic seizures using AI methods are presented and compared with
the proposed method.
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Table 8. Comparison of the proposed method with other related works for the Bonn dataset.

Work Preprocessing Feature Extraction Feature Selection Classifiers Accuracy

[21] TQWT CCEnt PCA LS-SVM 97.02%
[22] TQWT Hybrid Features Firefly RF 97%
[23] TQWT AVP, STD No K-NN 98.80%
[24] TQWT Statistic Features No K-NN 100%
[25] TQWT KNN Entropy Wrapper SVM 100%
[26] TQWT CTM, 2D-RPS plots N/A NA N/A
[27] TQWT MvFE No LS-SVM 84.67%
[28] EMD–TQWT IP Different Methods LS-SVM 99%
[29] TQWT SC, SS, SF, SSl No bootstrap 100%
[30] TQWT Correntropies N/A RF 92.78%
[31] TQWT KnnEnt, CCorrEnt, FzEnt No LS-SVM 95%
[32] TQWT Centered correntropy No RF 98.30%
[33] TQWTRF FDs, AppEnt No SVMRF 100%
[34] TQWT Mixture Correntropy Various Methods LS-SVM 90.10%
[35] IEVDHM–HT Various Features Student’s t-test LS-SVM 100%

[36] FAWT CVDistEnt, logarithmic
energy N/A FKNN 100%

[37]
Multi-Classes = 99.46% VMD, HT BLIMFs No EMRVFLN Two-Classes = 100%

Multi-Classes = 99.46%
[38]

Multi-Classes = 96.50% Filtering LSP NCA SVM Two-Classes = 99.10%

[39]
Multi-Classes = 99.70% Filtering, DWT Different Features N/A SVM Two-Classes = 99.50%

Multi-Classes = 99.70%

[40] DWT Linear and Non-Linear
Features No SVM 99.50%

[41] DWT Statistic Features, Entropy,
RWE WOA SVM 99.80%

[42] SSA 1D-LBP No SVM N/A
[43] DWT Entropy Features ANOVA-FSFS SVM 99.50%
[44]

Multi-Classes = 99.07% WPT FDE Kruskal Wallis KNN Two-Classes = 99.69%
Multi-Classes = 99.07%

[45] MODWPT Statistic Parameters Different Methods LS-SVM 99.60%
[46] FSST GLCM N/A KNN 99.59%
[47] ECT Graph Theory, FD No RF 98.50%
[48] MRBF–MPSO PSD PCA SVM 98.73%
[49] Z-Score Normalization 1D-CNN No Softmax 86.67%
[50] DWT PSR SVCM LS-SVM 98.55%
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Table 8. Cont.

Work Preprocessing Feature Extraction Feature Selection Classifiers Accuracy

[51] EMD Spectral and Temporal
Features No SVM N/A

[52] ATFFWT FD Different Methods LS-SVM Two-Classes = 100%
[53]

Multi-Classes = 100% TWD Statistical Features No KNN Multi-Classes = 100%
99.33%

[54] DWT Statistical Features N/A SVM Two-Classes = 97.97%
[55]

Multi-Classes = 98% IMFs AmE DESA RF Multi-Classes = 98%
Two-Classes = 99.41%

[56] DoG LBP and Histogram Features No SVM Multi-Classes = 98.80%
99.12%

[57] GST SVD Feature No RF 97.78%
[58] DCT HE and ARMA Model No LSTM 96%
[59] DWT Feature Extraction No N/A 99.26%
[60] – ApEn and RQA No N/A 95%

[61] WT Approximate Entropy, LLE,
Correlation Dimension FRBS N/A 99%

[62] Clustering, Covariance
Matrix Statistical Features Non-Parametric Tests AB-LS-SVM Two-Classes = 99.64%

Proposed Method TQWT Statistical + Frequency +
Fractal and Entropy Features Proposed Convolutional RNN (CNN–RNN) Multi-Classes = 99.71%
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Table 9. Comparison of the proposed method with other related works on the Fribourg dataset.

Works Preprocessing Feature Extraction Feature Selection Classification Accuracy

[63] Filtering ApEn, SampEn, PE, PFuzzy – SVM 95.3%
[64] DWT Energy, Entropy, STD, Mean – SVM 99.26%
[65] FFT – – CNN 92%

[66] NA DWT, DESA, Temporal and
Spatial Averaging Feature Aggregation RF, Logistic, SVM 95%

[67] WPT Relative Amplitude, PSD,
PMRS – weighted ELM –

[68] Time and Frequency Domain – – CNN –

[69] Filtering, CSA Linear and Non-Linear
Features – SVM 96.8%

[70] WT Maximum, Minimum, Mean,
STD Bag-of-Words SVM –

[71] Filtering – – LSTM 97.75%
[72] FFT, Filtering – – Integer-Net 93.2%
[73] Filtering Different Features – SVM 97.5%

[74] Filtering, HADTFD TF-Flux, TF-Entropy,
TF-Flatness Spatial Averaging Linear 98.56%

[75] DWT Uniform 1 D-LBP – Different Methods 95.33%

[76] – Linear and Non-Linear
Features Krill Herd Algorithm Proposed Method 98.9%

Proposed Method TQWT Statistical + Frequency +
Fractal and Entropy Features Proposed Convolutional RNN (CNN–RNN) 99.13
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According to Tables 8 and 9, it can be perceived that the proposed CADS for the
diagnosis of epileptic seizures using the handcrafted features and the proposed CNN–RNN
model have achieved successful results.

As shown in Tables 8 and 9, the proposed method could improve the performance and
accuracy of an epileptic seizure diagnosis in the Bonn and Freiburg datasets. The proposed
method has higher performance in comparison with other research projects. Tables 8 and 9
shows that the results are reliable, and it is possible to use this proposed method in clinical
applications to diagnose epileptic seizures. The proposed method in this paper has high
efficacy in the diagnosis of epileptic seizures. In this method, different handcrafted features
are used in combination with DL that improved the accuracy of diagnosing epileptic
seizures based on EEG signals. The proposed method can help specialists rapidly diagnose
epileptic seizures. This study shows that the proposed method can be implemented on a
software platform and used in hospitals.

In future works, graph theory methods will be utilized, coupled with novel hand-
crafted features [112,113]. Additionally, applying new fuzzy entropies as feature extraction
methods can be a future work. Additionally, another future work is to use fuzzy meth-
ods [114,115] in epileptic seizure detection. In other future works, effective connectivity
techniques may be used to diagnose epileptic seizures [116–118]; first, EEG signals are
transformed into 2D images using effective connectivity methods. Then, these 2 D images
are applied to different 2D deep learning networks. Another future work is using novel
DL techniques such as attention learning [119–122], transformers [123,124], and other ad-
vanced deep learning techniques [125–134] for epileptic seizure detection. Finally, adopting
novel deep feature fusion techniques to epileptic seizures detection based on EEG signals
can be noteworthy as one of the future works [135].
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