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Abstract: Beehives are populated by bacterial species with a protective role against honey bee
pathogens thanks to the production of bioactive metabolites. These compounds are largely unex-
ploited despite their high potential interest for pest management. This study evaluated the capability
of bacterial species associated with honey bees to produce 2-heptanone, a volatile organic compound
with anesthetic properties of the parasitic mite Varroa destructor. The production of this compound
was quantified by SPME-GC-MS in a culture filtrate of nine bacterial strains isolated from the surface
of honey bees, and the biosynthetic potential was evaluated in bacterial species associated with
apiaries by searching for protein homologs putatively involved in its biosynthesis by using biocompu-
tational tools. The findings pointed out that 2-heptanone was produced by Acetobacteraceae bacterium,
Bacillus thuringiensis and Apilactobacillus kunkeei isolates in concentrations between 1.5 and 2.6 ng/mL
and that its production was strain-specific. Putative methylketone synthase homologs were found in
Bacillus, Gilliamella, Acetobacteraceae, Bartonella and Lactobacillaceae, and the protein sequence results
were distributed in nine Sequence Similarity Network (SSN) clusters. These preliminary results
support the hypothesis that 2-heptanone may act as a mediator of microbial relationships in hives
and provide contributions to assess the role and biosynthetic potential of 2-heptanone in apiaries.

Keywords: natural compounds; chemical signal; microbial communication; biosynthetic potential;
honey bee microbiota; Varroa destructor

1. Introduction

Honey bees (Apis mellifera L., Insecta: Hymenoptera) are managed insects of economic
and environmental importance for their role in pollination and for hive products. Over
the past few decades in Europe and North America, their health has been threatened
by multiple issues, including diseases, parasites, pesticides and environmental and so-
cioeconomic factors [1]. Pests and pathogens, among which the mite Varroa destructor
is one of the main causes of colony loss [2], have been controlled in the past years with
the use of synthetic chemicals, but nowadays, the search for alternative strategies is of
extreme interest to reduce the side effects and the development of resistance [3]. Natural
products synthetized by living organisms are valuable resources that can be sustainable
alternatives to chemicals [4]. Hundreds of signaling chemicals used by plants, insects and
microorganisms for transmitting information between individuals of the same species or of
different species (semiochemicals) have been discovered, but their use in pest management
is still largely unexploited, despite the high potential interest [5,6]. In the hive environment,
chemical signals from multiple biological interactions are countless [6–8]. Hundreds of
VOCs have been identified in hive products, but studies have focused mainly on their
involvement in the aroma of honey and on their use to obtain information on the botanical
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and geographical origins of honey [9]. Few studies have investigated the functional role of
specific volatile compounds in plant–pollinator–predator–microorganism interactions. In
this study, we focused on a semiochemical of honey bees, 2-heptanone (heptan-2-one or
methyl n-amyl ketone). This methylketone secreted by the mandibular glands of worker
honey bees has a debated role; it is thought to signal aversive situations by inducing
defensive responses [10], to act as a chemical marker on visited flowers [11] or even as
an adaptative modulator of learning and memory [12]. It has been recently discovered
that honey bees use their mandibles to bite and remove Varroa mites from the bodies
of their nest mates and that the released 2-heptanone acts as a local anesthetic, causing
paralysis and death of this parasite [13]. The use of 2-heptanone as a mite repellent has
been proposed, taking into consideration that this compound would not be toxic towards
bees or contaminate hive products, since it already exists in hives [14,15].

Methylketones can be synthetized by bacteria, fungi, plants, insects and mammals and
have been found in numerous natural environments, having various biological roles [16]. In
plants, for example, these compounds are highly effective for protection against pests [17].
2-heptanone produced by lactic acid bacteria (i.e., Lactobacillus casei and Lactobacillus paraca-
sei) is known to contribute to aroma development in many dairy products [18]. Further-
more, this volatile compound was found to be synthetized by species of Bacillus during
host–pathogen interactions [16] and by Bacillus amyloliquefaciens with antifungal properties
against Fusarium oxysporum [19]. Even though this volatile compound has various bioactive
roles of potential practical interest, its biosynthetic pathway has been scarcely investi-
gated. In 2005, two methylketone synthetases from wild tomatoes (Lycopersicon hirsutum)
were reported to use intermediates of the fatty acids biosynthetic pathway to synthesize
methylketones [17]. In bacteria, a methylketone synthase involved in the production of
2-heptanone was identified in Bacillus nematocida [16].

The mediation of extracellular bacterial metabolites in beneficial interactions with
honey bees has been reported [20,21], but little is known on VOCs produced by bacterial
populations inhabiting hives. The microbiota associated with honey bees has lately been
the subject of an increasing number of studies, and the most frequently reported taxa
include Lactobacillaceae, Bacillaceae, Acetobacteraceae, Bifidobacteriaceae, Gilliamella and
Fructobacillus [22–28].

Hence, the aims of this study were to (i) establish and quantify the production of
2-heptanone in the culture filtrate by bacterial species isolated from honey bees and (ii)
investigate the potential of honey bee-associated bacteria to produce this natural compound
with a protective role against hive pathogens by using biocomputational tools.

2. Materials and Methods
2.1. Bacterial Cultures

Nine bacterial strains isolated from the surfaces of healthy honey bees in a previous
study [27] were selected based on their abundance in the microbiota of bees for testing
their capability to produce 2-heptanone in a liquid culture. The selected isolates from
the CREA-AA bacterial collection were the following: two strains of Acetobacteraceae bac-
terium (BO_L(L)1 and IM_G(L)3); three strains of Bacillus thuringiensis (BI_G1, PD_L1 and
RN_G(L)2); one of Bifidobacterium asteroides (LE_V(L)2) and three Apilactobacillus kunkeei
(BO_G1, LE_L(L)2 and LG_V1). They were stored in FGYP broth [29] with 20% (v/v) glyc-
erol at −80 ◦C, and prior to use, bacterial colonies were regenerated in the same medium
containing 10 g of D-fructose, 10 g of D-glucose, 10 g of yeast extract, 5 g of polypeptone,
2 g of sodium acetate, 0.5 g of Tween 80, 0.2 g of MgSO4∗7H2O, 0.01 g of MnSO4∗4H2O,
0.01 g of FeSO4∗7H2O and 0.01 g of NaCl per liter, pH 6.8. This medium was the same
selective medium used for isolating bacterial strains from honey bees; the use of fructose
and glucose as growth substrates supported the optimal growth, considering that these
isolates originated from a sugar-rich environment such as an apiary [27]. Liquid cultures
for the analysis of 2-heptanone were obtained by growing bacterial isolates in FGYP broth
(50 mL) at 30 ◦C under aerobic conditions and shaking at 125 rpm for three days to permit
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the fermentation of carbohydrates and accumulation of byproducts. After incubation, the
concentration of the cells in the stationary phase was around 107 cell/mL (OD 0.8). The
cell-free supernatants (CFS) were recovered from the fermentation broth by centrifuging
(14,000× g, 10 min), filter-sterilizing (using cellulose acetate syringe filters, 0.22-µm pore
size, GVS Life Sciences, Bologna, Italy) and keeping them at −80 ◦C until analysis.

2.2. GC-MS Analysis of 2-Heptanone

The analysis was performed following the method of Reference [16], with modifica-
tions. Each sample was composed of 10 mL of CFS in a 20-mL glass vial, with 2 g of NaCl
added and closed with an aluminum–silicone/PTFE septum. The extraction was carried
out using a DVB/CAR/PDMS solid-phase micro extraction (SPME) fiber (Supelco, Milan,
Italy) exposed to the sample headspace at 60 ◦C for 30 min. Volatile compound desorption
was obtained by exposing the fiber in the GC injector at 200 ◦C for 5 min. GC-MS analyses
were carried out with an Agilent 6890 N GC connected to an Agilent 5973 mass spectrome-
ter (Agilent Technologies, Cernusco sul Naviglio, Italy) and equipped with a DB-1 column
(60 m × 0.25 mm I.D., film thickness 0.25 µm) in splitless mode using He as the carrier gas
(flow 1 mL/min). The column temperature program was: 40 ◦C for 5 min, 3 ◦C/min to
180 ◦C and 8 ◦C/min to 220 ◦C for 5 min. The injector and detector temperatures were 200
and 230 ◦C, respectively, interconnecting the line temperature at 200 ◦C. The MS settings
were as follows: filament voltage, 70 eV; scan range, 39–450 amu and scan speed, 1.4 scan/s.
Uninoculated growth medium was used as the control. 2-Heptanone was identified by
comparing its mass spectra with that stored in the Wiley 7n library and analyzing the
authentic standard. Quantification was performed by the interpolation of a calibration
curve made with known concentrations of 2-heptanone (Sigma-Aldrich, Italy), and the
values were expressed as ng/mL; the detection limit was below 0.2 ng/mL.

2.3. Sequence Analysis

A protein sequence BLAST was performed against the nonredundant protein database
using acyl-CoA thioester hydrolase QBO55937 as the input to search for potential ho-
mologs in bacterial species populating apiaries. The search was oriented towards species
reported to be associated with honey bees [25–27]. The following organisms were included
in the search: Acetobacteraceae (taxid:433), Bacillus (taxid:1386), Bartonella (taxid:773),
Bifidobacteriaceae (taxid:31953), Bombella (taxid:1654741), Fructobacillus (taxid:559173),
Gilliamella (taxid:1193503), Lactobacillus (taxid:1578), Lactobacillus kunkeei (taxid:148814),
Leuconostoc (taxid:1243), Parasaccharibacter (taxid:1602345) and Snodgrassella (taxid:1193515).
The sequence of a thioesterase-like protein reported to synthesize methylketone using
intermediates of the fatty acids biosynthetic pathway from L. hirsutum was also included in
the dataset.

The GenBank protein accession IDs of 72 sequences, with a minimum 23.5% identity,
3×10−8 E-values and 52% query coverage, were then submitted to the Enzyme Similarity
Tool for generating Sequence Similarity Networks (SSNs) for visualization of the relation-
ships among the protein sequences by grouping together the most related proteins in
the clusters [30]. An alignment score threshold of 35 and a minimum length of 100 and
maximum length 280 were set up for the analysis, and the networks were visualized in
Cytoscape (v3.80). The obtained SSN was then used as the input for generating the Genome
Neighborhood Diagrams (GNDs).

The evolutionary distances of the amino acid sequences were computed in MEGA7 [31]
using the Poisson correction model with 1000 bootstrap replications [32].

3. Results and Discussion
3.1. 2-Heptanone Production in Bacterial Cultures

This study aimed at the identification and quantification, in bacterial culture fil-
trates, of 2-heptanone, whose protective role against honey bee pathogens has been pre-
viously reported [13]. The GC-MS analysis of CFS from the selected bacterial strains
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revealed a complex mixture of volatile compounds; among them, 2-heptanone was found
at the retention time of 19.10 min (Figure 1). The gas chromatographic profile comprised
many other compounds potentially interesting for their bioactivity; among which were
2,5-dimethylpyrazine at a retention time of 20.46 min, phenyl methanol (retention time of
26.90 min) and phenyl ethanol (retention time of 31.13 min). Interestingly, ant-associated
bacteria have been reported to produce volatile pyrazines, including 2,5-dimethylpyrazine,
previously identified as ant trail and alarm pheromones [33]. These compounds will be
the object of further investigations on bioactive volatiles produced by hive-associated
bacteria. Most of the other identified peaks are referred to as volatile fatty acids produced
by microbial fermentation.
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Figure 1. GC-MS chromatogram of the Acetobacteraceae bacterium strain IM_G(L)3 culture filtrate.

The mass spectra of 2-heptanone from the extract of bacterial culture filtrates corre-
sponded to that from the synthetic standard and to the spectrum in the Wiley 7n library,
thus confirming the specificity of the results (Figure 2).

2-heptanone was found to be produced by both tested A. bacterium strains, by one
B. thuringiensis and by one A. kunkeei in concentrations ranging from 1.5 to 2.6 ng/mL
(Table 1). Traces were found in the culture filtrate of B. asteroides and of the other two
A. kunkeei strains. The production of this compound therefore seemed to be strain-specific
in the case of B. thuringiensis and A. kunkeei, since it was found only in one out of three
isolates in both cases.

Aliphatic ketones are historically known as insect alarm pheromones. Previous quan-
titative data, measured on insects, gave higher concentrations of these ketones than the
present ones. In extracts of heads of Atta texana and Atta cephalotes ants, 2-heptanone was
determined at around 160 ppb and in trace amounts, respectively [34]. In hives, the role
of 2-heptanone appears to depend on its concentration; it is thought to be attractive in
low concentrations and repulsive in higher concentrations, but contrasting results have
been reported so far. It was originally hypothesized that this compound, secreted from
the glands in honey bee mandibles, acted as an alarm pheromone stimulating defensive
reactions against a potential threat [35,36]. Nevertheless, Papachristoforou and colleagues
(2012) [13] demonstrated that it triggered no defensive responses when applied at colony
entrances in doses of 0.001, 10 and 1000 µL, whilst it acted as a local anesthetic of Varroa
mites when 0.061 µL of pure compound were applied topically on mites. In hive appli-
cations of up to 500 µL of pure 2-heptanone, it resulted that at no time did all bees fully
or permanently exit the observation hive [14]. The low concentrations of 2-heptanone
produced by the bacterial strains investigated in this study (<3 ng/mL), together with the
high volatility of this compound, imply no side effects on the bees. Furthermore, in hives,
its evaporation due to high temperature and humidity would be so quick that an inves-
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tigation was specifically performed to maintain the compound longer to use it as a mite
repellent [15]. The results of this study rather suggest that 2-heptanone may have a role in
microbial chemical communication, and further studies are needed for the exploitation of
2-heptanone-producing bacteria for the control of honey bee pests and pathogens.

In this study, 2-heptanone production by A. bacterium was reported for the first time.
This result is particularly interesting, since this species has been found to be associated
with honey bees in different environments and suggested to have a beneficial role towards
these insects [26]. Within Lactobacillaceae, 2-heptanone has been previously found to
be produced by a honey bee bacterial symbiont Apilactobacillus apinorum, which showed
antimicrobial properties against clinical isolates of pathogenic wound bacteria [37]; this is
the first report of 2-heptanone production by A. kunkeei.
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Figure 2. Comparison of the mass spectra of 2-heptanone from the SPME extract of the Acetobacteraceae
bacterium strain IM_G(L)3 culture filtrate (a) and from the synthetic standard (b) to the spectrum
stored in the Wiley 7n library (c). m/z = mass/charge.

Table 1. Concentration of 2-heptanone in the bacterial culture filtrates (average of
2 replicates ± standard deviation). Tr = traces and n.d. = not detected.

Bacterial Strain ng/mL

Acetobacteraceae bacterium BO_L(L)1 2.6 ± 0.7
Acetobacteraceae bacterium IM_G(L)3 1.9 ± 0.1

Bacillus thuringiensis BI_G1 n.d.
Bacillus thuringiensis PD_L1 2.2 ± 0.1

Bacillus thuringiensis RN_G(L)2 n.d.
Bifidobacterium asteroides LE_V(L)2 tr

Apilactobacillus kunkeei BO_G1 tr
Apilactobacillus kunkeei LE_L(L)2 tr

Apilactobacillus kunkeei LG_V1 1.5 ± 0.3
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3.2. Biosynthetic Genes

The investigation of methylketone synthase proteins showed that putative homologs
are encoded in the genomes of the bacterial taxa populating apiaries, such as Acetobacter-
aceae, Bacillus, Bartonella, Bombella, Gilliamella and Parasaccharibacter and that no significant
similarities were found by restricting the search to A. kunkeei, Bifidobacterium, Fructobacil-
lus, Leuconostoc and Snodgrassella. The presence of 2-heptanone in the culture filtrates
of A. kunkeei and of B. asteroides in traces suggests that these species may use a different
biosynthetic pathway to synthetize this compound yet to be described. After length filter-
ing, 68 sequences were submitted to SSN analysis and resulted distributed in nine SSN
clusters and one singleton (Figure 3 and Table 2). The only protein that did not cluster with
the others was that of the wild tomato L. hirsutum, suggesting that putative methylketone
synthase homologs evolved within the bacterial phylum, and a coevolutionary relation
between honey bees and its associated microbiota may be hypothesized.
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Table 2. List of potential methylketone homologs and their distribution in clusters, as calculated by the Sequence Similarity
Network (SSN).

Cluster
N. UniProt ID Description Species

1 A0A084J093 Acyl-CoA thioester hydrolase| YbgC/YbaW family protein Bacillus mycoides
1 A0A0B5WC13 Acyl-CoA thioesterase Bacillus thuringiensis
1 A0A0D7XW04 Acyl-CoA thioester hydrolase Bacillus amyloliquefaciens
1 A0A0G8F1L1 4-hydroxybenzoyl-CoA thioesterase Bacillus cereus
1 A0A0J7ARV0 4HBT domain-containing protein Bacillus cereus
1 A0A151V143 4-hydroxybenzoyl-CoA thioesterase family active site Bacillus cereus
1 A0A162TGX7 Acyl-CoA thioesterase Bacillus cereus
1 A0A1D3PLM8 Acyl-CoA thioesterase Bacillus toyonensis
1 A0A1G4L174 YbgC/YbaW family acyl-CoA thioester hydrolase Bacillus cereus
1 A0A1S7F927 4HBT domain-containing protein Bacillus thuringiensis
1 A0A1T2PXZ8 Acyl-CoA thioesterase Bacillus cereus
1 A0A1Y0XGB6 Acyl-CoA thioesterase YneP Bacillus amyloliquefaciens

1 A0A242ZAB1 4HBT domain-containing protein Bacillus thuringiensis serovar
londrina

1 A0A243IF77 4HBT domain-containing protein Bacillus thuringiensis subsp.
konkukian

1 A0A243J5G2 4HBT domain-containing protein Bacillus thuringiensis
serovar pirenaica

1 A0A2A2P5K3 4HBT domain-containing protein Bacillus toyonensis
1 A0A2I5JZ13 YbgC/FadM family acyl-CoA thioesterase Bacillus velezensis
1 A0A2V1ZRD1 Acyl-CoA thioester hydrolase Bacillus sp.
1 A0A482G407 Putative acyl-CoA thioesterase Bacillus nematocida
1 A0A4R4B7S5 Acyl-CoA thioester hydrolase Bacillus thuringiensis
1 A0A4Y6EXE5 Acyl-CoA thioesterase Bacillus tropicus
1 A0A5B8PKI2 Acyl-CoA thioesterase Bacillus cereus
1 A0A6D1TAX7 Acyl-CoA thioesterase Bacillus sp.
1 A7Z572 YbgC/FadM family acyl-CoA thioesterase Bacillus velezensis
1 B7IRQ3 Putative 4-hydroxybenzoyl-CoA thioesterase Bacillus cereus

1 C3G682 4-hydroxybenzoyl-CoA thioesterase Bacillus thuringiensis
serovar andalousiensis

1 I2C620 4HBT domain-containing protein Bacillus amyloliquefaciens

2 A0A080KJT2 Putative thioesterase Gilliamella apicola
2 A0A1B9JPC2 4-hydroxybenzoyl-CoA thioesterase Gilliamella apicola
2 A0A1B9JYC2 4-hydroxybenzoyl-CoA thioesterase Gilliamella apicola
2 A0A1B9L9A8 4-hydroxybenzoyl-CoA thioesterase Gilliamella apicola
2 A0A1B9LT81 4-hydroxybenzoyl-CoA thioesterase Gilliamella apicola
2 A0A1B9M7F3 4-hydroxybenzoyl-CoA thioesterase Gilliamella apicola
2 A0A1B9MQ32 4-hydroxybenzoyl-CoA thioesterase Gilliamella apicola
2 A0A1B9MSC5 4-hydroxybenzoyl-CoA thioesterase Gilliamella apicola
2 A0A1B9NKB4 4-hydroxybenzoyl-CoA thioesterase Gilliamella apicola

3 A0A1M6K1F7 Acyl-CoA thioester hydrolase Roseomonas rosea
3 A0A1Q2YQW1 Acyl-CoA thioester hydrolase YbgC Roseomonas sp.
3 A0A1V2H861 4-hydroxybenzoyl-CoA thioesterase Roseomonas deserti
3 A0A354VA44 Tol-pal system-associated acyl-CoA thioesterase Acetobacteraceae bacterium
3 A0A379N4G1 Acyl-CoA thioester hydrolase YbgC Roseomonas mucosa
3 A0A4Q4CV88 YbgC/FadM family acyl-CoA thioesterase Acetobacteraceae bacterium
3 D5RRA5 Putative tol-pal system-associated acyl-CoA thioesterase Roseomonas cervicalis

4 C2Z9V0 4-hydroxybenzoyl-CoA thioesterase Bacillus cereus
4 J8F5A1 YbgC/YbaW family acyl-CoA thioester hydrolase Bacillus cereus
4 J8LJ53 YbgC/YbaW family acyl-CoA thioester hydrolase Bacillus cereus
4 R8L9R0 YbgC/YbaW family acyl-CoA thioester hydrolase Bacillus cereus
4 R8P530 YbgC/YbaW family acyl-CoA thioester hydrolase Bacillus cereus
4 R8QEN4 YbgC/YbaW family acyl-CoA thioester hydrolase Bacillus cereus
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Table 2. Cont.

Cluster
N. UniProt ID Description Species

5 A0A1L2Z0L8 1|4-dihydroxy-2-naphthoyl-CoA hydrolase Bacillus thuringiensis subsp.
israelensis

5 A0A2A2NYU0 Thioesterase Bacillus toyonensis
5 A0A2A7HHQ3 Acyl-CoA thioesterase Bacillus cereus
5 A0A2A7W716 Thioesterase Bacillus wiedmannii
5 A0A2B8HQR2 Acyl-CoA thioesterase Bacillus thuringiensis
5 A0A4U2U5Z0 Acyl-CoA thioesterase Bacillus cereus

6 A0A1B9JQR5 Tol-pal system-associated acyl-CoA thioesterase Gilliamella apicola
6 A0A1B9M1U5 Tol-pal system-associated acyl-CoA thioesterase Gilliamella apicola
6 A0A1B9MHG5 Tol-pal system-associated acyl-CoA thioesterase Gilliamella apicola
6 A0A1B9NL25 Tol-pal system-associated acyl-CoA thioesterase Gilliamella apicola

7 A0A1R0FB95 (3S)-malyl-CoA thioesterase Bartonella apis
7 A0A1U9ME42 (3S)-malyl-CoA thioesterase Bartonella apis
7 A0A1U9MKW6 (3S)-malyl-CoA thioesterase Bartonella apis

8 A0A2C6J477 4-hydroxybenzoyl-CoA thioesterase Parasaccharibacter apium
8 A0A6N7F3K1 YbgC/FadM family acyl-CoA thioesterase Bombella apis
8 A0A7U7G6Z5 4-hydroxybenzoyl-CoA thioesterase family active site Parasaccharibacter apium

9 A0A062X6R3 Acyl-CoA thioester hydrolase| YbgC/YbaW family Ligilactobacillus animalis
9 R0ET36 Acyl-CoA thioester hydrolase| YbgC/YbaW family Pediococcus acidilactici

S1 B5B0E4 Thioesterase-like protein Lycopersicon hirsutum f
glabratum

The first biggest cluster was composed by proteins from different species of Bacillus,
including B. nematocida (Table 2), indicating that the proteins that are mostly related with
putative methylketone synthase used as starting point in this study are found within
this genus. The second cluster composed exclusively by Gilliamella apicola indicates that
this species, widely distributed in the honey bee environment [23,24], is a potential pro-
ducer of 2-heptanone. The compositions of the other minor clusters suggests that putative
methylketone synthase homologs may be found in Acetobacteraceae, as well as in Bar-
tonella apis, Parasaccharibacter apium and Bombella apis, well-known symbionts of honey
bees [23,25,38,39], and, among Lactobacillaceae, in Pediococcus acidilactici, recently shown
to have a protective effect towards honey bees [40].

Most of the bacterial thioesterases described in Table 2 have yet to be functionally
characterized. The role of these enzymes has been studied more extensively in plants,
where acyl thioesterases are reported to produce fatty acids that play roles in plant–insect
and plant–microbial interactions [41]. A similar role of these enzymes in bacteria–bacteria
and bacteria–insect interactions may be hypothesized and be the object of further studies.

The overall mean distance of the sequences listed in Table 2 was 1.33 ± 0.07, and the
pairwise distance of the representative sequences from each cluster highlighted that the
most diverse were those of B. apis from cluster 7 and B. cereus from cluster 4 (Figure 4).
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Figure 4. Estimates of the evolutionary divergences between a selection of representative protein sequences from each cluster.
UniProt ID, cluster number and bacterial species are reported for each sequence. The number of amino acid substitutions
per site from between sequences are shown. The values highlighted in blue indicate the most similar sequences, while those
in red the most diverse.

GNDs representing genomic regions around the genes encoded for the sequences from
the submitted SSN highlighted the presence of two main protein families in the analyzed
sequences: the 4HBT Thioesterase superfamily (PF03061), shared by clusters 1 (Bacillus),
3 (Acetobacteraceae), 6 (Gilliamella), 7 (Bartonella) and 8 (Acetobacteraceae) (Figure 5), and
the 4HBT_2 Thioesterase-like superfamily (PF13279), shared by clusters 2 (Gilliamella),
4 (Bacillus) and 5 (Bacillus). The Acyl-ACP thioesterase (PF01643) protein family was found
in Lactobacillaceae from cluster 9, suggesting that this family may have evolved separately.
The fact that those thioesterase superfamilies were shared by different taxonomic groups,
together with the high similarities of these sequences, reinforces the possibility of finding
methylketone synthase homologs in the selected bacterial taxa. From a practical point of
view, the presence of a conserved protein family putatively involved in the biosynthesis
of methylketones in different bacterial taxa suggests the possibility of using this sequence
fragment as a target when aiming at assessing the biosynthetic potential of 2-heptanone
in apiaries.
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In a previous study, putative acyl-CoA thioesterase biosynthetic genes were sequenced
from eight B. thuringiensis strains isolated from honey bees [42], among which were the
three isolates tested in this study for 2-heptanone production. Therefore, the occurrence
of this metabolite in the culture filtrate of only one out of three bacterial isolates suggests
that the targeted acyl-CoA thioesterase genes may not always function as methylketone
synthase and that the biosynthesis of 2-heptanone may be strain-specific and dependent
from environmental factors. Certainly, studies oriented towards fermentation process
optimization are needed for practical implications of 2-heptanone-producing strains in pest
management in apiaries.

Volatile compounds affecting the behavior of Varroa mites have been proposed as
control strategies, but these semiochemical-based methods have received no validation in
the field [8]. The use of 2-heptanone to control Varroa has been evaluated by the application
of the pure compound in hives at mite-attracting and at miticidal concentrations [14], but
issues have been encountered to ensure the persistence of this volatile compound at
the desired levels. The possibility of using 2-heptanone-producing bacteria in naturally
colonizing apiaries has so far never been evaluated.
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The production of 2-heptanone by two A. bacterium strains together with a high
number of putative methylketone synthase homologs found within this species, as well
as in Acetobacteraceae, suggests that active producers of this compound may be found
within this family. Since the beneficial role of these bacteria towards honey bees has been
frequently reported [26,43] but never associated with a particular mechanism, it may be
hypothesized that this compound has a role in the interactions between Acetobacteraceae
and honey bees. These results are in line with previous reports on the mediation of bee
alarm pheromones in intra- and interspecies communications [7] and support the idea that
microbially produced volatiles have an effect on honey bee physiology and behavior [44].

4. Conclusions

The production of 2-heptanone in culture filtrates of A. bacterium, B. thuringiensis
and A. kunkeei isolates indicates that this bioactive metabolite is produced by honey bee-
associated bacteria. Putative methylketone synthase homologs were found in bacterial taxa
known to inhabit apiaries that were considered in this study, such as the Bacillus genus,
Acetobacteraceae family and Gilliamella genus. The role of 2-heptanone in protecting honey
bees from pathogens and as a chemical signal in microbial communication, as well as the
optimization of the strain and fermentation process, and the biosynthetic pathway need
further investigation. These preliminary results may find applications in the evaluation of
the biosynthetic potential of the protective natural compound in apiaries.
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