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Abstract: Background: For COVID-19 lung severity, segmentation of lungs on computed tomography
(CT) is the first crucial step. Current deep learning (DL)-based Artificial Intelligence (AI) models have
a bias in the training stage of segmentation because only one set of ground truth (GT) annotations
are evaluated. We propose a robust and stable inter-variability analysis of CT lung segmentation
in COVID-19 to avoid the effect of bias. Methodology: The proposed inter-variability study consists
of two GT tracers for lung segmentation on chest CT. Three AI models, PSP Net, VGG-SegNet,
and ResNet-SegNet, were trained using GT annotations. We hypothesized that if AI models are
trained on the GT tracings from multiple experience levels, and if the AI performance on the test
data between these AI models is within the 5% range, one can consider such an AI model robust
and unbiased. The K5 protocol (training to testing: 80%:20%) was adapted. Ten kinds of metrics
were used for performance evaluation. Results: The database consisted of 5000 CT chest images from
72 COVID-19-infected patients. By computing the coefficient of correlations (CC) between the output
of the two AI models trained corresponding to the two GT tracers, computing their differences in
their CC, and repeating the process for all three AI-models, we show the differences as 0%, 0.51%,
and 2.04% (all < 5%), thereby validating the hypothesis. The performance was comparable; however,
it had the following order: ResNet-SegNet > PSP Net > VGG-SegNet. Conclusions: The AI models
were clinically robust and stable during the inter-variability analysis on the CT lung segmentation on
COVID-19 patients.

Keywords: COVID-19; computed tomography; lungs; variability; segmentation; hybrid deep learning

1. Introduction

The WHO’s International Health Regulations and Emergency Committee (IHREC)
proclaimed COVID-19 a “public health emergency of international significance” or “pan-
demic” on 30 January 2020. More than 231 million people have been infected worldwide,
and nearly 4.7 million people have died due to COVID-19 [1]. Although this “severe
acute respiratory syndrome coronavirus 2” (SARS-CoV-2) virus specifically targets the
pulmonary and vascular system, it has the potential to travel through the body and lead to
complications such as pulmonary embolism [2], myocardial infarction, stroke, or mesen-
teric ischemia [3–5]. Comorbidities such as diabetes mellitus, hypertension, and obesity
substantially increase the severity and mortality of COVID-19 [6,7]. A real-time reverse
transcription-polymerase chain reaction (RT-PCR) is the recommended method for diagno-
sis [8]. Chest radiographs and computed tomography (CT) [9–11] are used to determine
disease severity in patients with moderate to severe disease or underlying comorbidities
based on the extent of pulmonary opacities such as ground-glass (GGO), consolidation,
and mixed opacities in CT scans [7,12–14].

Most radiologists provide a semantic description of the extent and type of opacities
to describe the severity of COVID-19 pneumonia. The semiquantitative evaluation of
pulmonary opacities is time-consuming, subjective, and tedious [15–18]. Thus, there is a
need for a fast and error-free early COVID-19 disease diagnosis and real-time prognosis
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solutions. Machine learning (ML) offers a solution to this problem by providing a rich set
of algorithms [19]. Previously, ML has been used for detection of cancers in breast [20],
liver [21,22], thyroid [23–25], skin [26,27], prostate [28,29], ovary [30], and lung [31]. There
are two main components in disease detection, i.e., segmentation [32–35] and classifica-
tion [36,37], where segmentation plays a crucial step. An extension of ML called deep
learning (DL) employs dense layers to automatically extract and classify all relevant imag-
ing features [38–43]. Hybrid DL (HDL), a method that combines two DL systems, helps
address some of the challenges in solo DL models [44,45]. This includes overfitting and
optimization of hyperparameters, thereby removing the bias [45].

During the AI model training, the most crucial stage is the ground truth (GT) annota-
tion of organs that need to be segmented. It is a time-consuming operation with monetary
constraints since skilled personnel such as radiologists are expensive to recruit and difficult
to find. These annotations, if conducted by one tracer, make the AI system biased. A
plurality of tracers being used to produce the GT annotated dataset makes the system more
resilient and lowers the AI bias [46–49]. This is because the AI model can grasp and adjust
to the sensitivity of the difference in the tracings of the tracers. Thus, to avoid AI bias,
one needs to have an automated AI-based system with multiple tracers. To establish the
validity of such automated AI systems, one must undergo inter-variability analysis with
two or more observers.

To validate the AI systems, we hypothesize that two conditions must be met: (a) the
two observers should perform within 5% range of each other and (b) the performance of
the AI system using the ground truth tracings from these two observers should also be
within the 5% threshold [48]. The AI performance is computed between the GT-area and
the AI model-estimated area. The focus of the proposed research is to design a reliable
AI system based on the inter-observer paradigm. Figure 1 depicts a COVID-19 CT lung
segmentation system in which the CT machine is used to acquire CT volumes. This volume
is then annotated by multiple observers (Figure 1, n denotes the number of observers),
and multiple AI models are generated, which is then used for lung segmentation. The
segmentation output is the binary mask of the lung, its boundary, and the corresponding
boundary overlays. This output can be used for evaluating the performance, analysis, and
quantification of the results.

Diagnostics 2021, 11, x FOR PEER REVIEW 4 of 40 
 

 

 
Figure 1. COVLIAS 1.0: Inter-variability analysis of CT-based lung segmentation and quantification system for COVID-19 
patients. ROC: Receiver operating characteristic; AUC: Area-under-the-curve. 

The layout of this inter-variability study is as follows: Section 2 presents the method-
ology with the demographics, COVLIAS 1.0 pipeline, AI architectures, and loss functions. 
The experimental protocol is shown in Section 3, while results and performance evalua-
tion are presented in Section 4. The discussions and conclusions are presented in Sections 
5 and 6, respectively. 

2. Methodology 
2.1. Patient Demographics, Image Acquisition, and Data Preparation 
2.1.1. Demographics 

The dataset consists of 72 adult Italian patients with 46 being male and the remaining 
being female. The mean height and weight were 173 cm and 79 kg, respectively. A total of 
60 patients tested positive for RT-PCR, while 12 patients were confirmed using broncho-
alveolar lavage [50]. Overall, the cohort had an average of 4.1 GGO, which was considered 
low. 

2.1.2. Image Acquisition 
All chest CT scans were performed in a supine posture during a single full inspira-

tory breath-hold using a 128-slice multidetector-row Philips Healthcare’s “Philips Inge-
nuity Core” CT scanner. There were no intravenous or oral contrast media administra-
tions. The CT exams were performed using a 120 kV, 226 mAs/slice (utilizing an automatic 
tube current modulation—Z-DOM by Philips), a 1.08 spiral pitch factor, 0.5-s gantry rota-
tion time, and 64 × 0.625 detector setup. Soft tissue kernel with 512 × 512 matrix (medias-
tinal window) and lung kernel with 768 × 768 matrix (lung window) was used to recon-
struct 1 mm-thick images. The Picture Archiving and Communication System (PACS) 
workstation that was utilized to review the CT images was outfitted with two Eizo 35 × 
43 cm displays with a 2048 × 1536 matrix. Figure 2 shows the raw sample CT scans of 
COVID-19 patients with varying lung sizes and variable intensity patterns, posing a chal-
lenge. 

Figure 1. COVLIAS 1.0: Inter-variability analysis of CT-based lung segmentation and quantification system for COVID-19
patients. ROC: Receiver operating characteristic; AUC: Area-under-the-curve.

The layout of this inter-variability study is as follows: Section 2 presents the methodology
with the demographics, COVLIAS 1.0 pipeline, AI architectures, and loss functions. The experi-
mental protocol is shown in Section 3, while results and performance evaluation are presented
in Section 4. The discussions and conclusions are presented in Sections 5 and 6, respectively.
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2. Methodology
2.1. Patient Demographics, Image Acquisition, and Data Preparation
2.1.1. Demographics

The dataset consists of 72 adult Italian patients with 46 being male and the remaining
being female. The mean height and weight were 173 cm and 79 kg, respectively. A total of
60 patients tested positive for RT-PCR, while 12 patients were confirmed using broncho-alveolar
lavage [50]. Overall, the cohort had an average of 4.1 GGO, which was considered low.

2.1.2. Image Acquisition

All chest CT scans were performed in a supine posture during a single full inspiratory
breath-hold using a 128-slice multidetector-row Philips Healthcare’s “Philips Ingenuity
Core” CT scanner. There were no intravenous or oral contrast media administrations.
The CT exams were performed using a 120 kV, 226 mAs/slice (utilizing an automatic
tube current modulation—Z-DOM by Philips), a 1.08 spiral pitch factor, 0.5-s gantry
rotation time, and 64 × 0.625 detector setup. Soft tissue kernel with 512 × 512 matrix
(mediastinal window) and lung kernel with 768 × 768 matrix (lung window) was used
to reconstruct 1 mm-thick images. The Picture Archiving and Communication System
(PACS) workstation that was utilized to review the CT images was outfitted with two
Eizo 35 × 43 cm displays with a 2048 × 1536 matrix. Figure 2 shows the raw sample CT
scans of COVID-19 patients with varying lung sizes and variable intensity patterns, posing
a challenge.

2.1.3. Data Preparation

The proposed study makes use of the CT data of 72 COVID-positive individuals. Each
patient had 200 slices, out of which the radiologist [LS] chose 65–70 slices from the visible
lung region, resulting in 5000 images in total. The AI-based segmentation models were
trained and tested using these 5000 images. To prepare the data for segmentation, a binary
mask was created manually in a selected slice with the help of ImgTracer™ under the
supervision of a qualified radiologist [LS] (Global Biomedical Technologies, Inc., Roseville,
CA, USA) [47,48,51]. Figure 3 shows the white binary mask of the lung region computed
using ImgTracer™ during manual tracings by Observer 1 and 2 (both were postgraduate
researchers trained by our radiological team).

2.2. Architecture

COVLIAS 1.0 system incorporates three models: one solo DL (SDL) and two hybrid
DL (HDL). The proposed study incorporates three AI models: (a) PSP Net, (b) VGG-SegNet,
and (c) ResNet-SegNet.

2.2.1. Three AI Models: PSP Net, VGG-SegNet, and ResNet-SegNet

The Pyramid Scene Parsing Network (PSP Net) [52] is a semantic segmentation net-
work with the ability to consider the global context of the image. The architecture of PSP
Net (Figure 4) has four parts: (i) input, (ii) feature map, (iii) pyramid pooling module,
and (iv) output. The input to the network is the image to be segmented, which undergoes
extraction of the feature map using a set of dilated convolution and pooling blocks. The
dilated convolution layer is added at the last two blocks of the network to keep more
prominent features at the end. The next stage is the pyramid pooling module; it is the
heart of the network, as it helps capture the global context of the image/feature map
generated in the previous step. This section consists of four parts, each with a different
scaling ability. The scaling of this module includes 1, 2, 3, and 6, where 1 × 1 scaling helps
capture the spatial features and thereby increases the resolution of the features captured.
The 6 × 6 scaling captures the higher-resolution features. At the end of this module, all
the output from these four parts is pooled using global average pooling. For the last part,
the global average pooling output is fed to a set of convolutional layers. Finally, the set of
prediction classes are generated as the output binary mask.
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Figure 4. PSP Net architecture.

The VGGNet architecture (Figure 5) was designed to reduce the training time by
replacing the kernel filter in the initial layer with an 11 and 5 sized filter, thereby reducing
the # of parameters in the two-dimension convolution (Conv) layers [53]. The VGG-SegNet
architecture used in this study is composed of three parts (i) encoder, (ii) decoder part, and
(iii) a pixel-wise SoftMax classifier at the end. It consists of 16 Conv layers compared to
the SegNet architecture, where only 13 Conv layers are used [54] in the encoder part. This
increase in #layers helps the model extract more features from the image. The final output
of the model is a binary mask with the lung region annotated as 1 (white) and the rest of
the image as 0 (black).
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Although VGGNet was very efficient and fast, it suffered from the problem of vanish-
ing gradients. It results in significantly less or no weight training during backpropagation;
at each epoch, it keeps getting multiplied with the gradient, and the update to the initial
layers is very small. To overcome this problem, Residual Network or ResNet [55] came
into existence (Figure 6). In this architecture, a new connection was introduced known as
skip connection which allowed the gradients to bypass a certain number of layers, solving
the vanishing gradient problem. Moreover, with the help of one more additions to the
network, i.e., an identity function, the local gradient value was kept to one during the
backpropagation step.

2.2.2. Loss Functions for AI Models

The proposed system uses cross-entropy (CE)-loss during the training of the AI models.
Equation (1) below represents the CE-loss, symbolized as lCE, for the three AI models:

lCE = −[( xi × log pi) + (1 − xi) × log(1 − p i)] (1)

where xi represents the input GT label 1, (1 − xi) represents the GT label 0, pi represents
the probability of the classifier (SoftMax) used at the last layer of the AI model, and ×
represents the product of the two terms. Figures 4–6 presents the three AI architectures
that have been trained using the CE-loss function.
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3. Experimental Protocol
3.1. Accuracy Estimation of AI Models Using Cross-Validation

A standardized cross-validation (CV) protocol was adapted for determining the accu-
racy of the AI models. Our group has published several CV-based protocols of different
kinds using AI framework [27,30,37,56,57]. Since the data were moderate, the K5 protocol
was used, which consisted of 80% training data (4000 CT images) and 20% testing (1000 CT
images). Five folds were designed in such a way that each fold got a chance to have a
unique test set. An internal validation mechanism was part of the K5 protocol where
10% data was considered for validation.

3.2. Lung Quantification

There were two methods used for quantification of the segmented lungs using AI
models. The spirit of these two methods originates from the shape analysis concept. In the
first method, lung area (LA) is computed since the region is balloon-shaped, thus the area
parameter is well suited for the measurement [58,59]. In the second method, we compute
the long-axis of the lung (LLA) since the shape of the lung is more longitudinal than
circular. A similar approach was taken for the long-axis view in heart computation [60].
The lung area (LA) was calculated by counting the number of white pixels in the binary
mask segmented lungs, and the lung long axis (LLA) was calculated by the most distant
distance segment joining anterior to posterior of the lungs. A resolution factor of 0.52 was
used to convert (i) pixel to mm2 for the LA and (ii) pixel to mm for the LLA computation
and quantification.

If the total number of the image is represented by N in the database, Aai(m, n) rep-
resents lung area for in the image “n” using the AI model “m”, Aai(m) represents the
mean lung area corresponding to the AI model “m,” and mean area of the GT binary mask
is represented by Agt, then mathematically Aai(m) and Agt can be computed as shown
in Equation (2).

Aai(m) = ∑N
n = 1 Aai(m,n)

N

Agt =
∑N

n = 1 Agt(n)
N

 (2)

Similarly, LAai(m, n) represents LLA for in the image “n” using the AI model “m”,
LAai(m) represents the mean LLA corresponding to the AI model “m,”LAgt represents the
corresponding mean LLA of the GT binary lung mask, then mathematically LAai(m) and
LAgt can be computed as shown in Equation (3).

LAai(m) = ∑N
n = 1 LAai(m,n)

N

LAgt =
∑N

n = 1 LAgt(n)
N

 (3)
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3.3. AI Model Accuracy Computation

The accuracy of the AI system was measured by comparing the predicted output and
the ground truth pixel values. These values were interpreted as binary (0 or 1) numbers as
the output lung mask was only black and white, respectively. Finally, these binary numbers
were summed up and divided by the total number of pixels in the image. If TP, TN, FN,
and FP represent true positive, true negative, false negative, and false positive, then the
accuracy of the AI system can be computed as shown in Equation (4) [61].

ACC (ai) (%) =

(
TP + TN

TP + FN + TN + FP

)
× 100 (4)

4. Results and Performance Evaluation
4.1. Results

Previously, COVLIAS 1.0 [54] was designed to run on a training: testing ratio of 2:3
dataset from 5000 images. However, this study proposes an inter-observer variability study
with K5 in a CV framework. The training was performed on two sets of annotations, i.e.,
Observer 1 and Observer 2. The output results are similar to the previously published
study, i.e., a binary mask of the segmented lungs. Figures 7–9 show the AI-generated binary
mask, segmented lung, and color segmented lung with grayscale background as an overlay
for the three AI models.
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4.2. Performance Evaluation

This section deals with the performance evaluation (PE) of the three AI models for
Observer 1 vs. Observer 2. Section 4.2.1 presents the visual comparison of the results, which
includes (i) boundary overlays against the ground truth boundary and (ii) lung long axis
against the ground truth axis. Section 4.2.2 shows the PE for lung area error, which consists
of (i) cumulative frequency (CF) plot, (ii) Bland-Altman plot, (iii) Jaccard Index (JI) and Dice
Similarity (DS), and (iv) ROC and AUC curves for the three AI-based models’ performance
for Observer 1 vs. Observer 2. Similarly, lung long axis error (LLAE) presents PE using
(i) cumulative plot, (ii) correlation coefficient (CC), and (iii) Bland-Altman plot. Finally,
statistical analyses of the LA and LLA are presented using paired t-test, Wilcoxon, Mann-
Whitney, and CC values for all 12 possible combinations for three AI models between
Observer 1 and Observer 2.
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4.2.1. Lung Boundary and Long Axis Visualization

The overlay for the three AI model boundaries (green) and GT-boundary (red) cor-
responding to Observer 1 (left) and Observer 2 (right) with a grayscale COVID-19 CT
slice in the background is shown in Figure 10, while Figure 11 shows the AI-long axis
(green) and GT-long axis (red) between Observer 1 and Observer 2 for three AI models.
It shows the reach of anterior to posterior of the left and right lungs, with the GT bound-
ary (white) corresponding to Observer 1 (left) and Observer 2 (right) of the lungs by the
tracer using ImgTracer™. The three AI models follow the order: PSP Net, VGG-SegNet,
and ResNet-SegNet.

4.2.2. Performance Metrics for the Lung Area Error
Cumulative Frequency Plot for Lung Area Error

The frequency of occurrence of the LAE is compared to a reference value in the
cumulative frequency analysis and shown in Figure 12 (left lung) and Figure 13 (right lung)
for three AI models between Observer 1 and Observer 2. A cutoff-score of 80% was chosen
to show the difference between the three AI models. The LAE with the selected cutoff for
the left lung was 1123.36 mm2, 725.90 mm2, and 571.65 mm2 for the three AI models using
Observer 1, and 834.08 mm2, 1730.58 mm2, and 683.42 mm2, respectively, for the three AI
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models using Observer 2. A similar trend was followed by the right lung with 1158.93 mm2,
612.47 mm2, and 532.44 mm2 for the three AI models using Observer 1, and 809.77 mm2,
1610.15 mm2, and 572.56 mm2, respectively, for the three AI models using Observer 2. The
three AI models follow the order: PSP Net, VGG-SegNet, and ResNet-SegNet.
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Figure 13. Cumulative frequency plot of right LAE using three AI models: Observer 1 vs. Observer 2.

Correlation Plot for Lung Area Error

Coefficient of correlations (CC) plots for the three AI models’ LA vs. GT, area corre-
sponding to the left and right between Observers 1 and 2, are shown in Figures 14 and 15.
The CC values are summarized in Table 1 with a percentage difference between Observers 1
and 2. The percentage difference for the CC value (p < 0.001) ranges from 0% to 2.04%, which
is <5% as part of the error threshold chosen as the hypothesis. This clearly shows that the AI
models are clinically valid for the proposed setting of the inter-observer variability study.
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Figure 15. CC of right lung area using three AI models: Observer 1 vs. Observer 2.

Jaccard Index and Dice Similarity

Figure 16 depicts a cumulative frequency plot for dice similarity (DS) for three AI
models between Observers 1 and Observer 2. It shows that 80% of the CT images had a
DS > 0.95. A cumulative frequency plot for the Jaccard Index (JI) is presented in Figure 17
and shows that 80% of the CT scans had a JI > 0.90 between Observer 1 and Observer 2.
The three AI models follow the order: PSP Net, VGG-SegNet, and ResNet-SegNet.
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Table 1. Comparison of the CC values obtained between AI model area and the GT area corresponding to Observer 1 and
Observer 2.

PSP Net VGG-SegNet ResNet-SegNet

Left Right Mean Left Right Mean Left Right Mean

Observer 1 0.98 0.98 0.98 0.98 0.99 0.99 0.98 0.98 0.98

Observer 2 0.98 0.98 0.98 0.98 0.98 0.98 1.00 1.00 1.00

% Difference 0.00 0.00 0.00 0.00 1.01 0.51 2.04 2.04 2.04Diagnostics 2021, 11, x FOR PEER REVIEW 21 of 40 
 

 

 
Figure 16. DS for combined lung using the three AI models: Observer 1 vs. Observer 2. Figure 16. DS for combined lung using the three AI models: Observer 1 vs. Observer 2.
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Figure 17. JI for combined lung using three AI models: Observer 1 vs. Observer 2.

Bland-Altman Plot for Lung Area

A Bland-Altman plot is used to demonstrate the consistency of two methods that em-
ploy the same variable. Based on our prior paradigms [48,62], we follow the Bland-Altman
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computing procedure. Figures 18 and 19 show the (i) mean and (ii) standard deviation of the
lung area between the AI model and GT area corresponding to Observers 1 and Observer 2.
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Figure 19. BA for right LA using three AI models: Observer 1 vs. Observer 2.

ROC Plots for Lung Area

An ROC curve represents how an AI system’s diagnostic performance changes as the
discrimination threshold changes. Figure 20 shows the ROC curve and corresponding AUC
value for the three AI models between Observer 1 and Observer 2. The three AI models
follow the order: PSP Net, VGG-SegNet, and ResNet-SegNet.
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4.2.3. Performance Evaluation Using Lung Long Axis Error
Cumulative Frequency Plot for Lung Long Axis Error

Figures 21 and 22 show the cumulative frequency plot LLAE for left and right lung,
respectively, corresponding to Observer 1 and Observer 2 for the three AI models. Based
on the 80% threshold, the LLAE for the left lung (Figure 21) using the three AI models for
Observer 1 and Observer 2 were 6.12 mm (for PSP Net), 4.77 mm (for VGG-SegNet), and
5.01 mm (for ResNet-SegNet) and 10.88 mm (for PSP Net), 13.30 mm (for VGG-SegNet), and
9.18 mm (for ResNet-SegNet), respectively. Similarly, for the right lung (Figure 22), the error
was 7.81 mm (for PSP Net), 5.47 mm (for VGG-SegNet), and 3.10 mm (for ResNet-SegNet)
and 9.14 mm (for PSP Net), 11.33 mm (for VGG-SegNet), and 6.88 mm (for ResNet-SegNet),
respectively, for Observer 1 and Observer 2. The three AI models follow the order: PSP
Net, VGG-SegNet, and ResNet-SegNet.
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Figure 21. Cumulative frequency plot for left LLAE using three AI models: Observer 1 vs. Observer 2.
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Figure 22. Cumulative frequency plot for right LLAE using three AI models: Observer 1 vs. Observer 2.

Correlation Plot for Lung Long Axis Error

Figures 23 and 24 show the CC plot for the three AI models considered in the proposed
inter-observer variability study for Observers 1 and 2. Table 2 summarizes the CC values
for the left, right, and mean errors of the LLA. It proves the hypothesis that the percentage
difference between the results using the two observers has a difference of <5%. This demon-
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strates that the proposed system is clinically valid in the suggested inter-observer variability
study context.
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Figure 24. CC of right LLA using three AI models: Observer 1 vs. Observer 2. 

  

Figure 24. CC of right LLA using three AI models: Observer 1 vs. Observer 2.

Bland-Altman Plots for Lung Long Axis Error

The (i) mean and (ii) standard deviation of the lung long axis corresponding to
Observer 1 and Observer 2 for the three AI models is shown in Figure 25 for the left lung
and Figure 26 for the right lung.
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Table 2. Comparison of the CC values obtained between AI model lung long axis and the GT lung long axis corresponding
to Observer 1 and Observer 2.

PSP Net VGG-SegNet ResNet-SegNet

Left Right Mean Left Right Mean Left Right Mean

Observer 1 0.97 0.99 0.98 0.96 0.97 0.97 0.98 0.99 0.99

Observer 2 0.96 0.98 0.97 0.96 0.97 0.97 0.98 0.98 0.98

% Difference 1.03 1.01 1.02 0.00 0.00 0.00 0.00 1.01 0.51
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Figure 26. BA for the right LLA using the three AI models: Observer 1 vs. Observer 2.

Statistical Tests

The system’s dependability and stability were assessed using a standard paired t-test,
ANOVA, and Wilcoxon test. The paired t-test can be used to see if there is enough data
to support a hypothesis; the Wilcoxon test is its alternative when the distribution is not
normal. ANOVA helps in the analysis of the difference between the means of groups of
the input data. MedCalc software (Osteen, Belgium) was used to perform the statistical
analysis. To validate the system presented in this study, we have presented all the possible
combinations (twelve in total) for the three AI models between Observer 1 and Observer 2.
Table 3 shows the paired t-test, ANOVA, and Wilcoxon test results for the 12 combinations.
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Table 3. Paired t-test, Wilcoxon, ANOVA, and CC for LA and LLA for the 12 combinations.

Lung Area Lung Long Axis

SN Combinations
Paired
t-Test

(p-Value)

Wilcoxon
(p-Value)

ANOVA
(p-Value)

CC
[0–1]

Paired
t-Test

(p-Value)

Wilcoxon
(p-Value)

ANOVA
(p-Value)

CC
[0–1]

1 P1 vs. V1 <0.0001 <0.0001 <0.001 0.9726 <0.0001 <0.0001 <0.001 0.9509

2 P1 vs. R1 <0.0001 <0.0001 <0.001 0.9514 <0.0001 <0.0001 <0.001 0.9506

3 P1 vs. P2 <0.0001 <0.0001 <0.001 0.9703 <0.0001 <0.0001 <0.001 0.9686

4 P1 vs. V2 <0.0001 <0.0001 <0.001 0.9446 <0.0001 <0.0001 <0.001 0.9445

5 P1 vs. R2 <0.0001 <0.0001 <0.001 0.9764 <0.0001 <0.0001 <0.001 0.9661

6 V1 vs. R1 <0.0001 <0.0001 <0.001 0.9663 <0.0001 <0.0001 <0.001 0.9561

7 V1 vs. P2 <0.0001 <0.0001 <0.001 0.9726 <0.0001 <0.0001 <0.001 0.9671

8 V1 vs. V2 <0.0001 <0.0001 <0.001 0.9766 <0.0001 <0.0001 <0.001 0.9638

9 V1 vs. R2 <0.0001 <0.0001 <0.001 0.9943 <0.0001 <0.0001 <0.001 0.9796

10 R1 vs. P2 <0.0001 <0.0001 <0.001 0.9549 <0.0001 <0.0001 <0.001 0.9617

11 R1 vs. V2 <0.0001 <0.0001 <0.001 0.9513 <0.0001 <0.0001 <0.001 0.9499

12 R1 vs. R2 <0.0001 <0.0001 <0.001 0.9690 <0.0001 <0.0001 <0.001 0.9726

CC: Correlation coefficient; P1: PSP Net for Observer 1; V1: VGG-SegNet for Observer 1; R1: ResNet-SegNet for Observer 1; P2: PSP Net for
Observer 2; V2: VGG-SegNet for Observer 2; R2: ResNet-SegNet for Observer 2.

Figure of Merit

The likelihood of the error in the system is known as the figure of merit (FoM). We
have calculated FoM for (i) lung area and (ii) lung long axis to show the acceptability of
the hypothesis if the % difference between the two observers is <5%. Table 4 shows the
values for FoM using Equation (5) and the % difference for the three AI models against the
two observers. Similarly, Table 5 shows the values for FoM using Equation (6) and the %
difference for the three AI models against the two observers.

FoMA(m) = 100−
[(∣∣Aai(m)− Agt

∣∣
Agt

)
× 100

]
, (5)

FoMLA(m) = 100−
[(
|Lai(m)−Lgt|

Lgt

)
× 100

]
where Aai(m) = ∑N

n = 1 Aai(m,n)
N , Agt =

∑N
n = 1 Agt(n)

N ,

LAai(m) = ∑N
n = 1 LAai(m,n)

N & LAgt =
∑N

n = 1 LAgt(n)
N

(6)

Table 4. FoM for lung area.

Observer 1 Observer 2 % Difference Hypothesis (<5%)

Left Right Mean Left Right Mean Left Right Mean Left Right Mean

PSP Net 95.07 95.11 95.09 97.37 97.49 97.43 2% 3% 2% 4 4 4

VGG-SegNet 96.73 97.40 97.04 97.74 97.27 97.52 1% 0% 0% 4 4 4

ResNet-SegNet 98.33 99.98 99.11 97.88 99.20 98.50 0% 1% 1% 4 4 4
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Table 5. FoM for lung long axis.

Observer 1 Observer 2 % Difference Hypothesis (<5%)

Left Right Mean Left Right Mean Left Right Mean Left Right Mean

PSP Net 98.91 97.34 98.13 98.65 98.60 98.62 0% 1% 1% 4 4 4

VGG-SegNet 99.41 98.50 98.95 97.07 97.27 97.17 2% 1% 2% 4 4 4

ResNet-SegNet 99.73 99.37 99.83 99.51 98.75 99.13 0% 1% 1% 4 4 4

5. Discussion

The study presented the inter-observer variability analysis for the COVLIAS 1.0 using
three AI models, PSP Net, VGG-SegNet, and ResNet-SegNet. These models have con-
sidered tissue characterization approaches since they analyze the tissue data for better
feature extraction to evaluate for ground vs. background, thus are more akin to a tissue
characterization in classification framework [30,37]. Our group has strong experience in
tissue characterization approaches with different AI models and applications for classifi-
cation using ML frameworks such as plaque, liver, thyroid, breast [21,28,30,63–68], and
DL framework [1,36,69,70]. These three AI models were trained using the GT annotated
data from the two observers. The percentage difference between the outputs of the two
AI model results was less than 5%, and thus the hypothesis was confirmed. During the
training, the K5 cross-validation protocol was adapted on a set of 5000 CT images. For
the PE of the proposed inter-observer variability system, the following ten metrics were
considered: (i) visualization of the lung boundary, (ii) visualization of the lung long axis,
cumulative frequency plots for (iii) LAE, (iv) LLAE, CC plots for (v) lung area, (vi) lung
long axis, BA plots for (vii) lung area, (viii) lung long axis, (ix) ROC and AUC curve, and
(x) JI and DS for estimated AI model lung regions. These matrices showed consistent and
stable results. The training, evaluation, and quantification were implemented on the GPU
environment (DGX V100) using python. We adapted vectorization provided by python
during the implementation of the Numba library.

5.1. A Special Note on Three Model Behaviors with Respect to the Two OBSERVERS

The proposed inter-observer variability study used three AI models for the analysis,
where PSP Net was implemented for the first time for COVID-19 lung segmentation. The
other models VGG-SegNet and ResNet-SegNet were used for benchmarking. The AUC for
the mean lung region for the three AI models was >0.95 for both Observer 1 and Observer 2.

Our results, shown below in Table 6, compared various metrics that included the inter-
observer variability study for the three AI models. All the models behaved consistently
while using the two different observers. Our results showed that ResNet-SegNet was the
best performing model for all the PE metrics. The percentage difference between the two
observers was 0.4%, 3.7%, and 0.4%, respectively, for the three models PSP Net, VGG-
SegNet, and ResNet-SegNet, respectively. This further validated our hypothesis for every
AI model, keeping the error threshold less than 5%. Even though all three AI models
passed the hypothesis, VGG-SegNet is the least superior. This is because the number of
the layers in the VGG-SegNet architecture (Figure 5) is 19, compared to ~50 in PSP Net
(Figure 4) and 51 (encoder part) in the ResNet-SegNet model (Figure 6). By taking the
results from both the observers into account, the order of the performance of the models
is ResNet-SegNet > PSP Net > VGG-SegNet. Further, we also conclude that HDL models
are superior to SDL (PSP Net). The aggregate score was computed as the mean for all the
models for Observer 1, Observer 2, and the mean of the two Observers. Even though the
performance of all the models was comparable, when carefully looking at the performance
of Observer 1 the order of performance was ResNet-SegNet > VGG-SegNet > PSP Net.
For Observer 2, the order of performance was ResNet-SegNet > PSP Net > VGG-SegNet.
Further, the performance of the left lung was better than the right lung for the reasons
unclear at this point, and more investigations would be needed to evaluate this.
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Table 6. Comparison of PE metrics for Observer 1 and Observer 2 and their mean.

Observer 1 Observer 2 Mean Obs. 1 & Obs. 2

Attributes PSP
Net

VGG-
SegNet

ResNet-
SegNet

PSP
Net

VGG-
SegNet

ResNet-
SegNet

PSP
Net

VGG-
SegNet

ResNet-
SegNet

DS 0.96 0.98 0.98 0.96 0.95 0.97 0.96 0.97 0.98

JI 0.93 0.96 0.97 0.92 0.9 0.94 0.93 0.93 0.96

CC Left LA 0.98 0.98 0.98 0.98 0.98 1 0.98 0.98 0.99

CC Right LA 0.98 0.99 0.98 0.98 0.98 1 0.98 0.99 0.99

CC Left LLA 0.97 0.96 0.98 0.96 0.96 0.98 0.97 0.96 0.98

CC Right LLA 0.99 0.97 0.99 0.98 0.97 0.98 0.99 0.97 0.99

CF Left LA < 10% 0.83 0.85 0.90 0.81 0.75 0.89 0.82 0.80 0.89

CF Right LA < 10% 0.78 0.85 0.90 0.80 0.75 0.88 0.79 0.80 0.89

Aggregate Score 7.42 7.54 7.67 7.39 7.24 7.64 7.40 7.39 7.66

DS: Dice similarity; JI: Jaccard index; CC: Correlation coefficient; LA: Lung area; LLA: Lung long axis; CF: Cumulative frequency; Obs: Observer.

5.2. Benchmarking

There have been several studies in the area of DL for lung segmentation, but only a
few in the region of COVID-19 [71–74], and even less that involved variability analysis.
Table 7 shows the benchmarking table having three variability studies: Saba et al. [48],
Jeremy et al. [75], and Joskowicz et al. [76], that are compared against Suri et al. in this
proposed study. Saba et al. has used a dataset of 96 patients with three observers for
tracings, and ROC curves were also not presented in the study. Jeremy et al. [60] have
demonstrated the variability analysis using five different observers that used the area
error as the metric. The boundary error, ROC, JI, and DS were not discussed. Finally,
Joskowicz et al. [76] used 480 images and 11 observers to annotate the dataset, but no area
and boundary errors were present. Moreover, they did not present the ROC curves, JI, and
DS for the tracings. All three studies [48,75,76], only performed manual annotation of the
non-COVID dataset, and there was no involvement of the AI techniques to generate the
boundaries automatically. Comparatively, the proposed study provides a first-of-its-kind
for inter-observer variability analysis alongside HDL and SDL solutions, supporting our
hypothesis that the error between the AI models trained using the two observers involved
is less than 5%.

5.3. Strengths, Weakness, and Extensions

The proposed study successfully validated the hypothesis for the inter-observer vari-
ability settings, demonstrating that the difference between the two AI models when trained
by the two observers was less than 5%. It was the first-time inter-observer variability was
presented for COVID-19 lung segmentation using HDL and SDL models.

In spite of encouraging results, the study could not include more than two observers
due to reasons such as cost, time, and availability of the radiologists. The imaging anal-
ysis component could be extended to handle more dense pulmonary opacities such as
consolidation or mixed opacities during lung segmentation.

As part of the extension, the HDL models can be extended, which combines DL with
ML or two solo DL models for lung segmentation. Conventional methods [77,78] can be
used for lung segmentation embedded with denoising methods [79] and benchmarked
against the AI models. The system can be extended to unseen data where the training data
is taken from one clinical site and testing data can be from the other clinical site. It would
also be interesting to explore the segmentation of lungs in the healthy patients using the AI
model trained on COVID-19 patients. Other neural network techniques such as generative
adversarial networks (GANs) [80] or transfer learning and loss schemes [38,44,81] can also
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be adapted. A big data framework can be used to integrate comorbidity factors [82] in the
AI models.

Table 7. Benchmarking Table.

Attributes/Author Saba et al. [49] Jeremy et al. [77] Joskowicz et al. [78] Suri et al. (Proposed)

# of patients 96 33 18 72

# of Images NA NA 490 5000

# of Observers 3 5 11 2

Dataset Non-COVID Non-COVID Non-COVID COVID

Image Size 512 NA 512 768

# of tests/PE 5 0 2 13

CC 0.98 NA NA 0.98

Boundary estimation Manual Manual Manual Manual & automatic

AI Models NA NA NA 3

Modality CT CT CT CT

Area Error 4 4 7 4

Boundary Error 4 7 7 4

ROC 7 7 7 4

JI 4 7 7 4

DS 4 7 7 4

CC: Correlation coefficient; ROC: Receiver-Operating Characteristics; DS: Dice similarity; JI: Jaccard index.

6. Conclusions

The proposed study is the first of its kind to evaluate the effect of ground-truth tracings
on the AI models for COVID-19 CT lung segmentation. Three kinds of AI models, PSP
Net, VGG-SegNet, and ResNet-SegNet, were adapted for lung segmentation. Two different
Observers were used to annotate 5000 CT lung slices taken from 72 COVID-19 patients.
Thus, six AI training models (three AI models times two Observers) were generated and
evaluated using the K5 cross-validation protocol. Ten different kinds of metrics were used
for the evaluation of the six AI models. The two Observers’ error metrics were compared
to validate the hypothesis for every AI model, keeping below the error threshold of 5%.
Our results showed that the difference in these errors were 0%, 0.51%, and 2.04% (all < 5%),
respectively, for the three AI models, validating the hypothesis. Statistical analysis was
conducted using a standard paired t-test, ANOVA, and Wilcoxon test to prove the system’s
hypothesis. The inter-variability COVLIAS 1.0 showed clinically robust and statistically
stable outcomes for this pilot study and, thus, can be adapted in clinical settings.
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Abbreviations

SN Symbol Description of the Symbols
1 ACC (ai) Accuracy
2 AE Area Error
3 AI Artificial Intelligence
4 ARDS Acute Respiratory Distress Syndrome
5 AUC Area Under the Curve
6 BA Bland-Altman
7 BE Boundary Error
8 CC Correlation coefficient
9 CE Cross Entropy
10 COVID Coronavirus disease
11 COVLIAS COVID Lung Image Analysis System
12 CT Computed Tomography
13 DL Deep Learning
14 DS Dice Similarity
15 FoM Figure of merit
16 GT Ground Truth
17 HDL Hybrid Deep Learning
18 IS Image Size
19 JI Jaccard Index
20 LAE Lung Area Error
21 LLAE Lung Long Axis Error
22 NIH National Institute of Health
23 PC Pixel Counting
24 RF Resolution Factor
25 ROC Receiver operating characteristic
26 SDL Solo Deep Learning
27 VGG Visual Geometric Group
28 VS Variability studies
29 WHO World Health Organization

Symbols

SN Symbol Description of the Symbols
1 lCE Cross Entropy-loss
2 m Model used for segmentation in the total number of models M
3 n Image scan number in total number N
4 Aai(m) Mean estimated lung area for all images using AI model ‘m’
5 Aai(m, n) Estimated Lung Area using AI model ‘m’ and image ‘n’
6 Agt(n) GT lung area for image ‘n’
7 Agt Mean ground truth area for all images N in the database
8 LAai(m) Mean estimated lung long axis for all images using AI model ‘m’
9 LAai(m, n) Estimated lung long axis using AI model ‘m’ and image ‘n’
10 LAgt(n) GT lung long axis for image ‘n’
11 LAgt Mean ground truth long axis for all images N in the database
12 FoMA(m) Figure-of-Merit for segmentation model ‘m’
14 FoMLA(m) Figure-of-Merit for long axis for model ‘m’
15 JI Jaccard Index for a specific segmentation model
16 DSC Dice Similarity Coefficient for a specific segmentation model
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17 TP, TN True Positive and True Negative
18 FP, FN False Positive and False Negative
19 xi GT label
20 pi SoftMax classifier probability
21 Yp Ground truth image
22 Ŷp Estimated image
23 P Total no of pixels in an image in x, y-direction
24 K5 Cross-validation protocol with 80% training and 20% testing (5 folds)
Deep Learning Segmentation Architectures
25 PSP Net SDL model for lung segmentation with pyramidal feature extraction
26 VGG-SegNet HDL model designed by fusion of VGG-19 and SegNet architecture
27 ResNet-SegNet HDL model designed by fusion of ResNet-50 and SegNet architecture
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