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Abstract: The anterior cruciate ligament (ACL) is one of the most prone to injury in the human
body. Due to its insufficient vascularization and low regenerative capacity, surgery is often required
when it is ruptured. Most of the current tissue engineering (TE) strategies are based on scaffolds
produced with fibers due to the natural ligament’s fibrous structure. In the present work, composite
filaments based on poly(L-lactic acid) (PLA) reinforced with graphite nanoplatelets (PLA+EG)
as received, chemically functionalized (PLA+f-EG), or functionalized and decorated with silver
nanoparticles [PLA+((f-EG)+Ag)] were produced by melt mixing, ensuring good filler dispersion.
These filaments were produced with diameters of 0.25 mm and 1.75 mm for textile-engineered and
3D-printed ligament scaffolds, respectively. The resulting composite filaments are thermally stable,
and the incorporation of graphite increases the stiffness of the composites and decreases the electrical
resistivity, as compared to PLA. None of the filaments suffered significant degradation after 27 days.
The composite filaments were processed into 3D scaffolds with finely controlled dimensions and
porosity by textile-engineered and additive fabrication techniques, demonstrating their potential for
ligament TE applications.

Keywords: ligament; biomedical applications; composites; 3D-printed scaffold; textile-engineered
scaffold; functionalized graphene; PLA

1. Introduction

Ligaments are formed by dense collagenous tissues that connect bones, allowing
body motion and assuring joint stability, and are constantly exposed to mechanical load-
ings [1,2]. Adult ligaments exhibit poor healing capacity and limited vascularization [2]. In
particular, injuries of the anterior cruciate ligament (ACL) are common and particularly
frequent in the young and physically active population [1,3], and often require surgical
intervention [3]. The recurring complications of current grafts have prompted a growing
interest in the development of novel materials and tissue-engineered (TE) solutions for
ACL reconstruction [4].

Most current scaffolds are essentially composed of fibers [1], mimicking the architec-
ture and the biomechanical properties of native ligament tissue [5]. The major variations
between scaffolds relate to the geometrical fiber organization [6], most of them being
produced by textile techniques such as braiding, twisting, or knitting [6–8]. The current
demands for easier, faster, and customizable solutions stimulated the search for 3D printing
approaches [9,10].
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PLA and its derivatives are accepted as safe for humans, with several PLA-based
formulations being already approved by the FDA for clinical applications such as sutures,
scaffolds, cell carriers, and drug delivery systems [11]. PLA has low immunogenicity
and may cause only a slight or mild reaction to the foreign body [12–14]. However, its
mechanical response is poor, making it difficult to mimic the ligament’s properties. Thus,
PLA-based hybrid composites have been widely adopted to produce fibers and fibrous
scaffolds with enhanced properties [15,16].

Graphene presents outstanding mechanical, thermal, and electrical properties [17].
The use of graphene-based materials such as graphene nanoplatelets (GNPs), carbon
nanotubes (CNTs), or graphite nanoflakes has been effective to reinforce PLA and other
polymer matrices [18,19]. The resulting composites are expected to exhibit enhanced me-
chanical, electrical, and thermal properties [17,20], increasing their potential use in different
biomedical applications, such as biosensing, drug delivery, and tissue engineering [21,22].
For example, Pinto et al. [18] produced nanocomposites containing PLA/COOH function-
alized carbon nanotubes (CNTs-COOH) and PLA/GNPs and reported that the carbon
nanostructures exhibited improved mechanical performance, approaching the range of
ligament properties [18].

The functionalization of graphene is a good strategy to enhance its compatibility with
a polymeric matrix [23]. A covalent functionalization based on 1,3-dipolar cycloaddition
reaction of an azomethine ylide (DCA) has been successfully applied to graphene, pre-
serving its inherent structure [24–26]. For example, CNTs were functionalized by DCA
forming pyrrolidine groups at their surface that reacted with the ester groups of PLA,
forming covalent bonds with the polymer. The resulting composites presented higher
tensile properties and lower electrical resistivity [20].

The possibility of incorporating antibacterial components into scaffolds may ensure
proper healing and postoperative regeneration of the scaffold implantation site [27–29].
Silver nanoparticles have shown to be particularly beneficial for tissue regeneration, not
only by preventing bacterial adhesion and infection, but also by accelerating the healing
process and production of extracellular matrix components [28,30,31]. Functionalized
graphene surfaces can be decorated with silver nanoparticles through a reaction based on
the reduction of silver ions by N,N-dimethylformamide. This decoration was successfully
applied by Silva et al. [32] to amine-functionalized single-walled CNTs.

The aim of this work is the production by melt processing of composite filaments based
on PLA reinforced with graphite nanoplatelets, as received, chemically functionalized,
and decorated with silver nanoparticles, whilst ensuring good dispersion of the various
fillers. All filaments were produced with diameters of approximately 0.25 and 1.75 mm for
the subsequent preparation of textile-engineered and 3D-printed scaffolds, respectively.
The thermal and mechanical properties, morphology, biodegradation, and structure of the
filaments, as well as their suitability for the production of tissue engineering scaffolds by
textile fabrication and additive manufacturing, were assessed.

2. Materials and Methods
2.1. Production of Functionalized Micronized Graphite

Micrograf HC11 (hereafter designated as EG), a graphite subjected to grinding and
exfoliation, with a purity of 99.5%, nominal equivalent diameter of approximately 10 µm,
and few tens of nanometers of thickness, was obtained from Nacional de Grafite Lda
(Minas Gerais, Brazil). The functionalized EG (f-EG) was obtained by using the solvent-
free 1,3-dipolar cycloaddition reaction (DCA), adapted from the procedure described for
CNTs [24]. The reagents used were α-amino acid N-benzyloxycarbonylglycine (Z-gly-OH,
99%) and paraformaldehyde, both from Sigma-Aldrich, St. Louis, MO, USA, and a small
amount of diethyl ether (Fisher Scientific, Loughborough, UK) to aid homogenization.
The solid mixture was heated for 3 h at 250 ◦C. The functionalized products were washed
with absolute ethanol, hexane (95% n-hexane), and acetone (all from Fisher Scientific,
Loughborough, UK), and dried for 2 h at 150 ◦C in vacuum.
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2.2. Anchoring of Silver Nanoparticles onto Functionalized Exfoliated Graphite

The procedure of anchoring silver nanoparticles onto f-EG was adapted from a method
described for CNTs [32] consisting of the reduction reaction of silver ions (Ag+) using
N,N-dimethylformamide (DMF, from Panreac, Barcelona, Spain), obtaining [(f-EG)+Ag]. A
total of 140 mg of silver nitrate was mixed with 8 mL of absolute ethanol (both from Fisher
Scientific, Loughborough, UK) and left under magnetic stirring, at room temperature, for
15 min. At the same time, 280 mg f-EG was mixed with 16 mL DMF and magnetically
stirred, at room temperature, for 15 min. These two suspensions were then mixed together
and stirred for 72 h, protected from light, being subjected to ultrasounds for 15 min every
24 h. Finally, the product was filtered and washed with diethyl ether and hexane (95%
n-hexane from Fisher Scientific, Loughborough, UK) and then dried for 2 h at 150 ◦C
under vacuum.

2.3. Characterization of Functionalized Graphite

Thermogravimetric analysis (TGA) was performed on Q500 equipment (TA Instruments®,
New Castle, DE, USA). EG, f-EG, and [(f-EG)+Ag] were placed in a platinum crucible and
heated from 40–800 ◦C at 10 ◦C min−1 under a nitrogen atmosphere of 50 mL min−1.

Raman spectra were acquired using a LabRAM HR Evolution Raman spectrometer
with a microscope (Horiba Scientific, Piscataway, NJ, USA) using a laser with a wavelength
of 532 nm and a grating of 600 gr mm-1. The results were analyzed with the Horiba
Scientific’s Labspec 6 (version 6.4.4) Spectroscopy Suite Software (Horiba France SAS,
Longjumeau, France) and the peak positions were determined by applying a baseline (in
LabSpec 6).

Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS)
were carried out using a FEI Nova 200 FEG-SEM/EDS (FEI Europe Company, Hillsboro,
OR, USA). The samples were previously sputtered with a gold layer, using a sputter coater
108A (Cressington, Watford, UK).

2.4. Production of Filaments

PLA with a melt flow index of 3 g/10 min (Luminy LX175 from Total Corbion, Gor-
inchem, The Netherlands) was used as matrix of the composites. Filaments of PLA and
PLA with 0.25, 0.5, 1, and 2 wt.% of EG, f-EG, and [(f-EG)+Ag] were produced with diam-
eters of circa 0.25 mm (FilText) and 1.75 mm (Fil3D), using an intermeshing co-rotating
twin-screw extruder (Rondol Microlab, Nancy, France) with a screw diameter of 10 mm
and a length-to-diameter ratio (L/D) of 25 (Figure 1), coupled to an extrusion rod die with
2 mm of diameter and two pulling rolls (see Figure 2). The screws comprised three mixing
zones separated by conveying elements. The polymer was fed upstream by a volumetric
feeder (Piovan MDP1, S. Maria di Sala, VE, Italy) at the rate of 2.81 g·min−1 or 0.62 g·min−1

for the production of Fil3D and FilText, respectively. The fillers were added manually at the
same location, at a rate adjusted according to the desired concentration. The speed of the
puling rolls was adjusted to obtain filament diameters of 1.75 and 0.25 mm. The operating
parameters used for the production of the filaments Fil3D and FilText are presented in
Supplementary Materials Table S1. The PLA was dried for 8 h at 70 ◦C and 3 h at 100 ◦C
before processing.
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2.5. Characterization of the Composite Filaments

The filaments were analyzed on a LabRAM HR Evolution Raman spectrometer (Horiba
Scientific, Piscataway, NJ, USA) equipped with a laser with wavelength of 532 nm and a
grating of 600 gr mm−1. The results were analyzed with the LabSpec6 (version 6.4.4) software.

TGA analysis was carried out on Q500 equipment (TA Instruments®, New Castle,
DE, USA). The samples were placed in a platinum crucible and heated from 40–800 ◦C at
10 ◦C min−1 under a nitrogen atmosphere of 50 mL min−1.

The filaments’ cross-sections were analyzed by SEM, using a FEI Nova 200 FEG-SEM/EDS
(FEI Europe Company, Hillsboro, OR, USA). Composite filaments with [(f-EG)+Ag] were
also analyzed by EDS, using the same equipment.

Cross-sections with 3 µm thickness of each type of filament were cut with a Leica
EM UC6 ultramicrotome and placed over a glass coverslip with Canada balm. Due to the
reduced diameter, FilText filaments were embedded in epoxy to facilitate sample micro-
toming. Then, the cross-sections were analyzed on an Olympus BH-2 optical microscope
using a 40× objective, in transmission mode. The images obtained from OM were then
analyzed with the ImageJ software for statistical analysis.

Differential scanning calorimetry (DSC) measurements were performed on a DSC 200
F3 Maia (Netzsch-Gerätebau GmbH, Selb, Germany) under a constant flow of nitrogen.
The samples were heated from 30–190 ◦C at 5 ◦C min−1, cooled and then reheated up to
190 ◦C, at the same rate. The results were analyzed using the Netzsch Proteus software.
The degree of crystallinity (χc) of PLA and composite filaments was calculated by:

χc (%) =
∆Hm

ϕPLA × ∆Hm0 × 100 (1)

where ∆Hm is the enthalpy of fusion (J g−1), ϕPLA is the weight fraction of PLA in the
composites, and ∆Hm

0 is the enthalpy of PLA for 100% crystallinity, considered equal to
93.7 J g−1 [33].

Dynamic mechanical analysis (DMA) tests were carried out using Tritec 2000 B equip-
ment (Triton Technology, Grantham, UK), equipped with the tensile mode and a grip
distance of 15 mm. Filament samples were cut with a length of approximately 30 mm. The
diameter of each sample was measured on three different places along the filament length,
using a micrometer (Mitutoyo, Kawasaki, Japan). The tests were carried out between 10 ◦C
and 70 ◦C, with a step of 2 ◦C. A static pre-load of 1 N was used and the measurements were
made at a frequency of 1 Hz, which corresponds to the physiological loading frequency
defined as an ASTM standard frequency to determine Tg (ASTM E1640–07) [34]. At least
three specimens were tested for each composition.

The electrical resistivity of the composite filaments was measured on a Keithley SMU
2635B SourceMeter® (Keithley Instruments Inc., Cleveland, OH, USA). The test specimens
were cut with 20 mm length and their diameter was measured on three different places
along the filament length, using a micrometer (Mitutoyo, Kawasaki, Japan). Each sample
was clamped by the electrodes and the current across the test specimen was measured with
the application of a 10 V potential.
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To assess the biodegradation, composite filaments with 0.25 and 0.5 wt.% of fillers,
previously dried and weighed, were immersed in phosphate-buffered saline (PBS) and
stored in an incubator at 37 ◦C for 7, 14, 21, and 28 days. Every two days the PBS solutions
were replaced by fresh solutions; the filaments were removed from the PBS, washed with
distilled water, dried, and weighed. The weight loss was calculated by:

Weight loss (%) =
mi − m f

mi
× 100 (2)

where mi is the weight of the filament before immersion in PBS and mf is the dry weight of
the filament at each time. Each experiment was repeated three times.

2.6. Scaffold Production and Characterization

Braided and 3D-printed scaffolds were manufactured using FilText and Fil3D reinforced
with 0.5 and 2 wt.% of fillers to evaluate their potential usefulness for scaffold production.

Three-dimensional-printed scaffolds were designed using the Ultimate Cura software
and produced by an Ender-3 3D Printer adopting the following parameters: infill density
of 50%, infill linear pattern (0 and 90 ◦C), and a layer height of 0.15 mm. The build
platform was set to 80 ◦C, the nozzle temperature to 185 ◦C, and the printing speed to
45 mm·s−1. The textile-engineered scaffold was produced through a kumihimo hand
braiding technique, with a circular stand. The scaffold is formed by an exterior braided
structure formed by 8 FilText and an inner part containing 4 pairs of bundles. The bundles
were aligned in parallel and tied together with a suture of the same material and each was
formed by 8 braided FilText. Both scaffolds exhibit approximately 32 mm of length and
9 mm of diameter, similar to the dimensions of the native ACL.

The scaffolds were analyzed using the Digital Microscope Leica DMS1000 in order to
identify their morphology and qualitatively estimate the shape, size, and distribution of
the pores. Images were collected with a magnification of 1.6× g.

3. Results and Discussion
3.1. Functionalization of Graphite

The functionalization of EG to form f-EG was carried out using a DCA reaction of an
azomethine ylide. This reaction is expected to functionalize the EG surface by covalent
bonding pyrrolidine (cyclic amine) groups without structural damage to the EG [24]. The
cyclic amine may react with PLA under melt processing conditions, establishing a strong
interface that enhances stress transfer from the polymer to the reinforcement [20]. This
process is represented in Figure 3.

Silver nanoparticles were anchored onto f-EG through a reaction based on the reduc-
tion of silver ions by DMF [32]. At the end of this step, silver decorated f-EG [(f-EG)+Ag]
was obtained, as represented in Figure 4.

Figure 3. Schematic representation of the EG functionalization by the DCA reaction, obtaining f-EG
as well as its further interaction with PLA under melt processing conditions.



Nanomaterials 2021, 11, 2796 6 of 21

Nanomaterials 2021, 11, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 3. Schematic representation of the EG functionalization by the DCA reaction, obtaining f-
EG as well as its further interaction with PLA under melt processing conditions. 

 
Figure 4. Schematic representation of the decoration of f-EG with silver nanoparticles, obtaining 
[(f-EG)+Ag]. 

3.2. Characterization of Functionalized Graphite 
3.2.1. Thermogravimetry 

The effect of functionalization on the thermal stability of graphite was assessed by 
TGA, performed on EG, f-EG, and [(f-EG)+Ag]. The results are presented in Figure 5. 

 
Figure 5. TGA curves for pristine EG, f-EG, and [(f-EG)+Ag]. 

The TGA curves of f-EG and [(f-EG)+Ag] exhibit a similar shape. The beginning of 
thermal degradation is observed at a lower temperature for [(f-EG)+Ag], but the weight 
loss at 800 °C is lower than that observed for f-EG. As shown by Silva et al. [23], pristine 
EG is thermally stable in the analyzed temperature range, as expected for pristine 

Figure 4. Schematic representation of the decoration of f-EG with silver nanoparticles, obtaining
[(f-EG)+Ag].

3.2. Characterization of Functionalized Graphite
3.2.1. Thermogravimetry

The effect of functionalization on the thermal stability of graphite was assessed by
TGA, performed on EG, f-EG, and [(f-EG)+Ag]. The results are presented in Figure 5.
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Figure 5. TGA curves for pristine EG, f-EG, and [(f-EG)+Ag].

The TGA curves of f-EG and [(f-EG)+Ag] exhibit a similar shape. The beginning of
thermal degradation is observed at a lower temperature for [(f-EG)+Ag], but the weight loss
at 800 ◦C is lower than that observed for f-EG. As shown by Silva et al. [23], pristine EG is
thermally stable in the analyzed temperature range, as expected for pristine materials with
a low contamination level. Thus, the weight loss observed is due to the thermal degradation
of the organic moieties bonded to EG through the DCA reaction. Since [(f-EG)+Ag] was
expected to have the same organic groups that were bonded in f-EG, the weight loss
difference between f-EG and [(f-EG)+Ag] results from the silver nanoparticle residue that
remains stable within the temperature range of the TGA tests. This indicates a successful
functionalization of EG and addition of Ag nanoparticles. The weight loss of EG, f-EG, and
[(f-EG)+Ag] was 0.4, 13.8, and 10.1, respectively. The functionalization yield was 13.4 wt.%
and silver nanoparticle content was 3.7 wt.%.

3.2.2. Raman Spectroscopy

The Raman spectra of graphite and graphene derivatives typically exhibit three charac-
teristic bands designated by D, G, and 2D (Figure 6) [35]. The D band, located at 1350 cm−1,
indicates the presence of sp3 carbon atoms, demonstrating the existence of defects in the
sp2 hybridized carbon lattice. The G band, near 1580 cm−1, is due to in-plane vibration of
the ordered sp2 bonded carbon atoms [36,37]. The normalized Raman spectra of EG, f-EG,
and [(f-EG)+Ag] allowed the measurement of the intensity ratios of D and G bands (ID/IG).
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The ID/IG ratio is 0.24, 0.10, and 0.13 for EG, f-EG, and [(f-EG)+Ag], respectively. The
low ID/IG ratio is indicative of few defects in the pristine graphite structure. Moreover,
the ID/IG ratio decreased from 0.24 to 0.10 after functionalization, indicating fewer defects
present in the f-EG compared to the pristine EG. This may result from the functionalization
method, consisting of the cycloaddition reaction to the graphite C–C double bonds, which
may lead to the selection of the less defective graphite flakes [38]. Additionally, although
sp3 carbon is generated by functionalization, the reaction does not damage the graphene
structure, keeping the hexagonal lattice. Finally, the EG material remaining with a low
degree of functionalization, or not functionalized, may be separated during the washing
and sonication procedures, leaving mostly the functionalized material (f-EG). With the
addition of silver nanoparticles, the ID/IG intensity ratio between f-EG and [(f-EG)+Ag]
was maintained or slightly increased, which may indicate incipient disturbance of the
in-plane sp2 carbon lattice [23] due to the addition of Ag nanoparticles to the graphene
layers. Nevertheless, this is a negligible variation.

The 2D band observed near 2700 cm−1 correlates with the quality of graphene and with
the number of layers of graphene by the shape, width, and position of the peak [35]. This
band is at double the frequency of the D band [39]. As Zhu et al. [35] and Ferrari et al. [40]
reported in their studies, with an increasing number of graphene layers the 2D peak moves
to higher wavenumbers and becomes broader, while pure graphene exhibits a single sharp
2D peak with higher intensity relative to the G peak [40]. In Figure 6, a shift of the 2D
peak wavenumber is observed, decreasing from 2717 cm−1, for EG, to 2706 and 2698 cm−1,
for f-EG and [(f-EG)+Ag], respectively. This observation is consistent with the selective
functionalization of the thinner and structurally more perfect pristine EG flakes. Besides,
the deposition of silver nanoparticles on functionalized graphite also shifted the 2D band
towards lower wavenumbers, which may suggest a charge-transfer process and chemical
interaction between the Ag nanoparticles and the graphene surface after the deposition
process, as reported in previous works [41].

3.2.3. Scanning Electron Microscopy

The graphite morphology was characterized by SEM, the images of (a) pristine EG,
(b) f-EG, and (c) [(f-EG)+Ag] being displayed in Figure 7, evidencing that the graphite mor-
phology was maintained after functionalization. EDS tests were performed for [(f-EG)+Ag]
and are presented in Supplementary Materials Figure S1, showing the presence of Ag on
the graphite surface.
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3.3. Characterization of the Composite Filaments
3.3.1. Macroscopic Characterization

Figure 8 presents the filaments produced by melt mixing, namely of PLA,
PLA+0.5[(f-EG)+Ag], and PLA+2[(f-EG)+Ag] of FilText (Figure 8a1–a3, respectively) with
an average diameter of 0.26 ± 0.03 mm and Fil3D (Figure 8b1–b3, respectively), with an
average diameter of 1.71 ± 0.07 mm. All filaments exhibited good filler dispersion and
a flexibility suited to the intended application. Their thermal, mechanical, and electrical
properties are presented and discussed below.
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3.3.2. Thermogravimetric Analysis

The thermal stability of Fil3D and FilText as well as their nanoparticle weight compo-
sition were assessed by TGA. Thermal stability is an important factor due to its impact on
melt processing, as well as on the end-use applications. The analysis of the thermograms
of Fil3D and FilText presented in Figure 9a,b shows a single step degradation for all the
compositions in the range of 300–400 ◦C, which occurs due to the decomposition of the
PLA and functional organic groups of f-EG and [(f-EG)+Ag].
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Above 400 ◦C the weight loss stabilizes, reaching a plateau and showing a higher
residual weight of the composite filaments as compared to the PLA filament. Graphene-
based materials are known for their high thermal stability under inert atmosphere, thus
allowing the estimation of the filler composition by residual weight analysis. Table 1
presents the temperature at the onset of thermal degradation, as well as the residual
weight measured at 800 ◦C. It is observed that PLA and composites present similar thermal
stability, in agreement with results reported before by Paiva et al. [24] for composites with
PLA and CNTs.

Table 1. Initial degradation temperatures of composite filaments.

Filament
Fil3D FilText

Tonset (◦C) Residue (wt.%) Tonset (◦C) Residue (wt.%)

PLA 351 - 301.6 -

PLA+0.25

EG

347 0.43 ± 0.21 318 0.20 ± 0.25
PLA+0.5 342 0.74 ± 0.22 295 0.39 ± 0.31
PLA+1 342 1.02 ± 0.88 307 1.14 ± 1.30
PLA+2 328 1.44 ± 0.37 301 2.34 ± 1.74

PLA+0.25

f-EG

342 0.23 ± 0.25 310 0.48 ± 0.74
PLA+0.5 339 0.73 ± 0.16 310 0.36 ± 0.58
PLA+1 342 1.13 ± 1.17 307 1.15 ± 0.26
PLA+2 328 2.00 ± 0.96 312 2.18 ± 1.72

PLA+0.25

(f-EG)+Ag

343 0.26 ± 0.14 323 0.21 ± 0.85
PLA+0.5 344 0.55 ± 0.27 327 0.53 ± 0.44
PLA+1 330 1.43 ± 1.40 309 1.06 ± 1.10
PLA+2 338 2.04 ± 0.85 304 1.02 ± 0.22

The residual weight percent increases with increasing reinforcement concentration
and is within the nominal range, except for the composition of PLA+2EG for Fil3D and
PLA+2[(f-EG)+Ag] for FilText, where the effective composition is considerably lower than
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the nominal value. More than five TGA tests were carried out for each composition,
showing a significant variation in the final residue values. This variation is possibly due to
the manual feeding of the extruder during composite preparation by melt mixing.

3.3.3. Scanning Electron Microscopy

The morphology of all filaments and the dispersion of the reinforcement in the poly-
meric matrix were analyzed by SEM. The images of the cross-sections of composite fila-
ments reinforced with 2wt.% of fillers are presented in Figure 10 and are complemented in
the Supplementary Materials Figures S2 and S3. A good dispersion of nanoparticles across
the composite and a good interface between PLA and graphite are observed, especially for
the smaller particles. The incorporation of Ag nanoparticles does not significantly affect the
filament morphology. SEM images highlighting the presence of silver nanoparticles and
EDS analysis confirming their presence in Fil3D and FilText reinforced with [(f-EG)+Ag]
are shown in the Supplementary Materials Figure S4.
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[(f-EG)+Ag]. However, they also present slightly larger particles, which may result from
higher nanoparticle cohesion after functionalization, as observed in SEM images for f-EG.
In general, the average agglomerate size tends to be smaller for FilTex filaments, which
is a consequence of the higher draw ratio applied during filament production, inducing
the alignment of the EG flakes along the filament length, thus showing mainly the thinner
flake side on the filament cross-sections. A rough estimate for the lateral size and thickness
of one flake, considering a circular flake with 10 µm diameter and 30 nm thickness, is 80
µm2 and 0.3 µm2, respectively. The average agglomerate areas obtained (Table 2) are much
lower than the flat surface area of an average EG flake, which is indicative of considerable
flake alignment along the filament axis, in particular for FilTex, and good EG dispersion.

Table 2. Characterization of Fil3D and FilText’s cross-section by optical microscopy.

Filament

Average Agglomerate Size Number of Agglomerates

(µm2) (mm−2)

Fil3D FilText Fil3D FilText

PLA+0.25

EG

2.97 1.37 2757 11,025
PLA+0.5 2.34 0.72 6691 11,675
PLA+1 5.90 7.35 6032 27,244
PLA+2 6.53 4.92 6223 29,534

PLA+0.25

f-EG

5.30 3.52 2390 6523
PLA+0.5 2.67 1.83 7735 7806
PLA+1 6.95 8.76 3378 12,045
PLA+2 10.91 3.64 4378 14,813

PLA+0.25

(f-EG)+Ag

2.53 3.38 6671 9132
PLA+0.5 4.06 0.60 5154 9749
PLA+1 11.83 3.66 2992 12,170
PLA+2 6.69 4.66 6118 20,430
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Figure 11. Optical microscopy images of the filaments’ cross-section, namely PLA and PLA reinforced
with 0.5 wt.% and 2 wt.% of EG, f-EG, and [(f-EG)+Ag].

3.3.5. Raman Spectroscopy

Raman spectroscopy was performed on the filaments to further observe the graphite
nanoparticles in the composite filaments. As mentioned before, all carbon-based materials
show characteristic bands at a specific wavenumber in the Raman spectrum, namely D, G,
and 2D bands [37]. All Raman spectra of Fil3D and FilText are similar and exhibited these
three characteristics bands. Figure 12 presents the Raman spectra of filaments reinforced
with 0.5 wt.% of EG, f-EG, and [(f-EG)+Ag]. PLA also presents prominent bands in the
Raman spectrum, thus the wavenumbers of the D, G, and 2D bands of EG, f-EG, and
[(f-EG)+Ag] were highlighted in the spectra. PLA does not show scattering in the region of
the G band, and thus the corresponding wavenumber may be used to monitor the presence
of graphite in composite filaments.
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3.3.6. Differential Scanning Calorimetry

The analysis of the DSC results allows the characterization of the thermal behavior
of PLA and the influence of filler addition. The relevant thermal characteristics (glass
transition temperature, Tg, cold crystallization temperature, Tc, melting temperature, Tm,
melting enthalpy, ∆Hm, cold crystallization enthalpy, ∆Hc, and degree of crystallinity,
χc) of each composition obtained for the first and second heating scans are reported in
Supplementary Materials Tables S2 and S3, respectively. Since the Fil3D will be used in
additive manufacturing to produce 3D-printed scaffolds involving filament melting, the
analysis of the second heating scan has particular interest. It can be seen in Figure 13 that
the Tg of the composites for the second heating does not vary significantly compared to
PLA and it is approximately 60 ◦C. Additionally, all compositions exhibited a similar Tm of
approximately 158 ◦C and the double-melting peak, as was observed in PLA composites by
other authors [42,43]. Conversely, FilText filaments are used as-produced to manufacture
textile-based scaffolds without further heating and thus the analysis of the first heating
scan is more relevant. For FilText, the Tg of the first and second heating is approximately
58.3 ◦C and 58.6 ◦C, respectively, and it is not significantly affected by the presence of
reinforcement. All FilText filaments presented a similar Tm of approximately 160 ◦C and a
double-melting peak. The cold crystallization temperature measured on the second heating
scan is shifted to a higher temperature, presenting lower values for the PLA filaments
compared to the composite filaments, either Fil3D and FilText. This observation suggests
that PLA crystallization is delayed by the presence of the graphite nanoparticles, with and
without functionalization, as reported in previous works [33]. Filaments exhibited low
crystallinity, slightly increasing in the second heating with the incorporation of graphite, as
was previously reported for PLA composites [44].
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3.3.7. Mechanical Characterization

DMA was used to evaluate the effect of the incorporation of EG, f-EG, and [(f-EG)+Ag]
on the mechanical and viscoelastic properties of the filaments. Figure 14 shows the DMA
results obtained as a function of temperature, at 1Hz (physiological frequency), with (a1)
and (a2) representing the storage modulus of Fil3D and FilText, respectively, and (b1) and
(b2) the loss factor of Fil3D and FilText, respectively.
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As the temperature increases, all compositions show a gradual decrease in the storage
modulus (E’), followed by a drop when Tg is reached. The drop in modulus is related to
the material transition from the glassy to the rubbery state [45]. As expected, the composite
filaments present higher E’ values compared to PLA [33], and may indicate good interfacial
properties allowing for stress transfer at low deformations [45].

The loss factor, or tan δ, expressed as the ratio of the loss modulus to the storage mod-
ulus, is a measure of energy loss and provides information about the damping properties
of the composites [46]. In Figure 14b1,b2, the tan δ peak observed at about 63–68 ◦C is
related to the Tg of the nanocomposites. Except for PLA+0.25[(f-EG)+Ag] of FilText, all
composite filaments exhibited higher tan δ values compared to PLA, indicating that they
have a higher capacity to dissipate energy and damping. The viscoelastic character of
these filaments has particular relevance for the application, since ligaments also exhibit
viscoelastic behavior [47].
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The analysis of E’ at body temperature is presented in Figure 15, showing that most of
the composite filaments present higher E’ compared to PLA.
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3.3.8. Electrical Resistivity

The electrical properties of materials for TE applications are quite relevant, considering
their influence on cell adhesion and growth [48]. The application of electrical fields (static
and pulsing) has been widely used in orthopedic practices, namely to improve tendon [49]
and ligament [50] healing and repair. ACL fibroblasts demonstrated enhanced migration
speed and perpendicular alignment to the applied electric fields [50].

The homogeneous dispersion of the electrically conductive graphite nanoparticles in
PLA is expected to decrease the electrical resistivity of the composite [51]. Figure 16 shows
the electrical resistivity of the composites as a function of the graphite content for (a) Fil3D
and (b) FilText. The electrical resistivity of PLA is in the order of 1012 Ω·m, as reported in
the literature [33,52]. The electrical resistivity of the composite filaments was determined
by measuring the current after applying a voltage of 10 V. It is observed that the electrical
resistivity decreases with the incorporation of EG, f-EG, and [(f-EG)+Ag], as reported in
previous studies [20,51,53]. Although the composite nanoparticle concentrations are far
from the electrical percolation threshold, a decrease in electrical resistivity of four orders
of magnitude for Fil3D and five orders of magnitude for FilText filaments is observed.
The thinner filaments present lower electrical resistivity for all graphite concentrations
except for the lower concentration of pristine EG, showing that the morphology of the
nanoparticle distribution was affected by the drawing conditions. The presence of graphite
nanoparticles in the composite filaments, even far from the electrical percolation level, may
provide a positive effect on the cellular response by allowing localized electron mobility, as
reported in previous works [54–56].

3.3.9. Biodegradation

PLA and all the composite filaments were immersed in a PBS solution at 37 ◦C, mim-
icking natural body fluids, for 7, 14, 21, and 28 days. The obtained results are detailed
in Supplementary Materials Table S4. PLA did not exhibit any degradation after approx-
imately one month in PBS, and the addition of carbon nanoparticles did not affect its
degradation behavior, which is an important feature for the intended application due to the
ACL’s poor healing capacity and long recovery periods [57], as it takes at least 6–9 months
for complete regeneration [58–60].
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3.4. Scaffold Production and Characterization

The scaffolds were produced to demonstrate the processability of the composite
filaments FilText and Fil3D, their detailed characterization being the focus of future work.

Braided and 3D-printed scaffolds were manufactured using FilText and Fil3D fila-
ments, respectively, as described above. The production of 3D-printed scaffolds was faster,
easier, and more reproducible compared to braided scaffolds. While the operating con-
ditions for 3D printing were similar for both PLA and its composites, obtaining braided
scaffolds was lengthier and more difficult for PLA braids, which lacked the flexibility of
composite FilText.

Figure 17 illustrates the scaffolds produced by 3D printing and textile engineering,
using PLA and PLA+0.5[(f-EG)+Ag] filaments. Observation with a digital microscope
shows their porous structure and suitable shape. The composite scaffolds presented a
morphology and pore size similar to those of neat PLA scaffolds. A preliminary assessment
indicates a porosity greater than 60% for all scaffold compositions, which is appropriate for
the intended application.
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Figure 17. Stereoscopic magnifying glass images of PLA scaffolds obtained by (a1) 3D printing
and (b1) textile engineering and of PLA+0.5[(f-EG)+Ag] scaffolds obtained by (a2) 3D printing and
(b2) textile engineering.

4. Conclusions

Composite filaments based on PLA reinforced with EG, f-EG, and [(f-EG)+Ag] were
produced by melt processing with diameters of 0.25 and 1.75 mm for the preparation of
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textile-engineered and 3D-printed scaffolds for ligament application, respectively. All fila-
ments exhibited a good dispersion of the fillers and interaction with the polymeric matrix.
The filaments were thermally stable up to 130 ◦C in the presence of EG and functionalized
EG. In general, the storage modulus of the composite filaments is approximately 3 GPa or
greater at 37 ◦C, with tan δ values higher than those observed for PLA filaments, indicat-
ing that the addition of functionalized graphite increases the stiffness of the composites
and provides a higher capacity to dissipate energy and damping. The incorporation of
fillers led to a decrease in the electrical resistivity relative to neat PLA up to five orders
of magnitude, with the composites with 2 wt.% of reinforcement presenting the lowest
values. The degradation rate of PLA and composite filaments is low, with no significant
degradation being observed after 27 days in PBS. Thus, composite filaments based on PLA
and thin graphite flakes, functionalized for enhanced interface with PLA and for anchoring
a small concentration of Ag as an anti-microbial agent, were produced, presenting good
mechanical performance and thermal properties. The composite filaments were success-
fully processed into three-dimensional scaffolds with finely controlled dimensions using
textile-engineered and additive fabrication techniques, demonstrating their potential for
ligament TE applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11112796/s1. Figure S1: SEM image and EDS analysis of [(f-EG)+Ag], Figure S2: SEM
images of Fil3D: PLA; PLA reinforced with 0.25, 0.5, 1, and 2 wt.% of EG, f-EG, and [(f-EG)+Ag],
Figure S3: SEM images of FilText: PLA; PLA reinforced with 0.25, 0.5, 1, and 2 wt.% of EG, f-EG, and
[(f-EG)+Ag], Figure S4: SEM images and EDS analysis of Fil3D and FilText reinforced with 1 and
2 wt.% of [(f-EG)+Ag], Figure S5: Optical microscopy images of the Fil3D’s cross-section, namely
PLA; PLA reinforced with 0.25, 0.5, 1, and 2 wt.% of EG, f-EG, and [(f-EG)+Ag], Figure S6: Optical
microscopy images of the FilText’s cross-section, namely PLA; PLA reinforced with 0.25, 0.5, 1, and
2 wt.% of EG, f-EG, and [(f-EG)+Ag], Table S1: Operating parameters used for the production of
composite filaments, Table S2: Summary of the thermal properties of Fil3D and FilText obtained for
the 1st heating, Table S3: Summary of the thermal properties of Fil3D and FilText obtained for the
2nd heating, Table S4: Weight loss (%) of Fil3D and FilText.
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