Skip to main content
. 2021 Nov 11;21(22):7498. doi: 10.3390/s21227498

Table 2.

Network structure of the residual network and spatial attention module.

Unit Layer Filter/Stride Output Size
Input 0 112 × 112 × 3
Residual
Network
1 Conv-BN-ReLU 7 × 7, 64/2 56 × 56 × 64
Max Pooling 3 × 3/2 28 × 28 × 64
2 Conv-BN-ReLU 3 × 3, 64/1 28 × 28 × 64
Conv-BN 3 × 3, 64/1 28 × 28 × 64
3 Conv-BN 1 × 1, 128/2 14 × 14 × 128
Conv-BN-ReLU 3 × 3, 128/1 14 × 14 × 128
Conv-BN 3 × 3, 128/1 14 × 14 × 128
4 Conv-BN 1 × 1, 256/2 7 × 7 × 256
Conv-BN-ReLU 3 × 3, 256/1 7 × 7 × 256
Conv-BN 3 × 3, 256/1 7 × 7 × 256
5 Conv-BN 1 × 1, 512/2 4 × 4 × 512
Conv-BN-ReLU 3 × 3, 512/1 4 × 4 × 512
Conv-BN 3 × 3, 512/1 4 × 4 × 512
Spatial
Attention
Module
6 AvgPool 4 × 4 × 1
MaxPool 4 × 4 × 1
AvgPool + MaxPool 4 × 4 × 2
Conv-Sigmoid 7 × 7, 1/1 4 × 4 × 1
7 Product (5 ∘ 6) 4 × 4 × 512
Output 8 GlobalAvgPool 512

BN: batch normalization. In Unit 7, the outputs of Units 5 and 6 are multiplied for each position in the feature maps.