Skip to main content
. 2021 Nov 11;21(22):7498. doi: 10.3390/s21227498

Table 10.

Stress recognition accuracy, sensitivity, and specificity on the constructed database.

Method Feature Dimension Accuracy (%) Sensitivity (%) Specificity (%)
HOG-SVM [68,69] 1764 50.9153 50.4360 64.3488
VGG-16 [65] 2048 56.9125 56.4093 71.0178
CBAM-ResNet-18 [47] 512 58.8559 58.1435 72.4161
ResNet-50 [57] 2048 60.0093 59.4649 74.2789
ResNet-18 [57] 512 60.0895 59.4573 74.4877
Inception v3 [66] 2048 63.4185 62.8578 77.6015
AlexNet [64] 4096 64.1588 63.4871 78.3340
DenseNet-121 [67] 1024 64.9408 64.4349 78.2179
SE-ResNet-18 [46] 512 65.7013 65.1206 79.2945
2D-CNN + LSTM + Facial Landmark [42] 768 58.3432 57.7521 72.5148
3D-CNN + Facial Landmark Image [41] 4096 62.5361 62.1877 76.1710
2D-CNN + GRU + Multimodel [43] 512 65.8770 65.3907 79.3543
3D-CNN + Hyperparameter Optimize [45] 4096 65.9372 65.4369 79.7895
Zhang et al. [30] 47,104 64.6481 64.0199 78.3209
Ours (w/o Facial Landmark Feature) 512 65.3396 64.5928 78.9639
Ours 768 66.8409 66.1292 80.0959