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The function of glutamate ionotropic receptor NMDA type subunit 1 (GRIN1) in neurodegenerative diseases has been widely
reported; however, its role in the occurrence of glioma remains less explored. We obtained clinical data and transcriptome data
from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Hub gene’s expression differential
analysis and survival analysis were conducted by browsing the Gene Expression Profiling Interactive Analysis (GEPIA)
database, Human Protein Atlas database, and LOGpc database. We conducted a variation analysis of datasets obtained from
GEO and TCGA and performed a weighted gene coexpression network analysis (WGCNA) using the R programming
language (3.6.3). Kaplan-Meier (KM) analysis was used to calculate the prognostic value of GRIN1. Finally, we conducted
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Using STRING, we
constructed a protein–protein interaction (PPI) network. Cytoscape software, a prerequisite of visualizing core genes, was
installed, and CytoHubba detected the 10 most tumor-related core genes. We identified 185 differentially expressed genes
(DEGs). GO and KEGG enrichment analyses illustrated that the identified DEGs are imperative in different biological
functions and ascertained the potential pathways in which the DEGs may be enriched. The overall survival calculated by
KM analysis showed that patients with lower expression of GRIN1 had worse prognoses than patients with higher
expression of GRIN1 (p = 0:004). The GEPIA and LOGpc databases were used to verify the expression difference of
GRIN1 among GBM, LGG, and normal brain tissues. Ultimately, immunohistochemical assay results showed that GRIN1
was detected in normal tissue and not in the tumor specimens. Our results highlight a potential target for glioma
treatment and will further our understanding of the molecular mechanisms underlying the treatment of glioma.

1. Introduction

Glioma—the most detrimental intracranial tumor—origi-
nates from the neuroepithelial tissue [1]. It occurs in approx-
imately eight in 100,000 adults every year; young people are
at a higher risk of certain phenotypes of glioma [2].

The World Health Organization (WHO) had catego-
rized four pathological patterns of glioma. Among them,
Category WHO VI has the highest malignant degree and
incidence. The treatment strategy of glioma used to be exci-
sion radiotherapy and chemotherapy [3]. However, the
potential treatments for glioma have inevitable side effects

and limitations. For example, temozolomide (TMZ) chemo-
therapy is limited by the promoter methylation status of
MGMT [4]. However, even when the most aggressive clini-
cal methods are applied, the median survival time of glioma
patients is still merely 12–15 months [5].

Therefore, numerous studies are being conducted on the
molecular mechanism of glioma because of the unsatisfactory
outcome of conventional treatments and the poor prognosis
of glioma. Glutamate ionotropic receptor NMDA type subunit
1 (GRIN1) is an isoform of the glutamate receptor channel
superfamily; it plays a crucial role in cooperating with NR2
(A-D) or NR3 (A-B) subunits of N-methyl-D-aspartate
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receptor and operates as a heteromultimer to form the ligand-
gated ion channel and increase the plasticity of synapses [6].
GRIN1 is located on chromosome band 9q34.3, a locus most
associated with the occurrences of various diseases [7, 8]. In
the past decade, numerous studies [9, 10] have shown that
GRIN1 dysfunction causes various neurodegenerative diseases

and mental illness. In addition, GRIN1 modulates the progres-
sion of some tumors [11]; however, no correlative research
regarding its function and mechanism in the occurrence of gli-
oma has been reported.

In this study, we collected data from The Cancer
Genome Atlas (TCGA) [12] and Gene Expression Omnibus
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Figure 1: DEGs are separated into different modules based on the p value and the relationships between DEGs and the clinical information
in TCGA-GLIOMA and GEO-GLIOMA are shown. (a) A cluster dendrogram was constructed, and the relationship among the
coexpression genes is shown in a hierarchy cluster based on the 1-TOM matrix. Each color represents a module. (b) Module-trait
relationships (TCGA). The lengthways grids represent a module with different colors. The crosswise grids represent the clinical relevance
(normal and tumor). (c) A cluster dendrogram was constructed, and the relationship among the coexpression genes in a hierarchy
cluster is shown based on the 1-TOM matrix. Each color represents a module. (d) Module-trait relationships (GEO). The lengthways
grids represent a module in different colors. The crosswise grids represent the clinical relevance (normal and tumor).
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(GEO) to conduct variation analysis and weighted gene
coexpression network analysis (WGCNA). We obtained
185 core genes by taking the intersection from the WGCNA
and variation analysis results of TCGA and GEO and subse-
quently visualized the outcomes by plotting a Venn diagram.
Using R programming language, we conducted the Gene
Ontology (GO) [13] and Kyoto Encyclopedia of Genes and
Genomes (KEGG) [14] enrichment analyses. Our results
revealed the potential sites and pathways that GRIN1 acts
upon and validated the diagnostic and prognostic values of
GRIN1 in glioma. We believe that GRIN1 can be applied
as a novel treatment target for the treatment of glioma.

2. Materials and Methods

2.1. Datum Origins. Microarray data were derived from the
GEO database, which included a gene expression profile
dataset (GSE109857) and a platform profile of GPL6480

Agilent-014850 Whole Human Genome Microarray 4x44K
G4112F. The GSE109857 dataset contained 225 samples,
222 of which were glioma samples, whereas three were nor-
mal samples. We obtained transcriptome data of 174 glioma
cases from the National Cancer Institute (NIH) GDC Data
Portal. Data of 599 clinical samples were also abstracted
from the NIH GDC Data portal.

2.2. Filtration and Annotation of Data. Annotation of the
GEO datasets is necessary before conducting variation anal-
ysis and WGCNA when the data are enormous, obscure, and
unmatched. The datasets downloaded from the GEO website
were in two files: the platform files and the probe matrix file.
The platform files and the probe matrix files were prepared
as the input documents, and then, the PERL (version
5.32.1) arithmetic software was operated [15]. PERL proc-
essed the data by detecting the gene name and matching it
with its specific probe according to the relationship between
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Figure 2: Identification of the expression of DEGs in the normal and tumor tissues in the TCGA dataset and GEO dataset. The criteria are
as follows: ∣logFC ∣ >1, adjusted p < 0:05. (a) Heatmap used to visualize the consequence of DEGs of TCGA. The red section represents the
upregulation of DEGs in tumor, whereas the green section represents the upregulation of DEGs in normal tissue. (b) Volcano diagram based
on the TCGA database. (c) Heatmap used to visualize the consequence of DEGs of GSE109857. The red section represents the upregulation
of DEGs in tumor, whereas the green section represents the upregulation of DEGs in normal tissue. (d) Volcano diagram of the GSE109857
dataset.
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the gene name and the probe matrix, ultimately transform-
ing the probe matrix into the gene matrix.

2.3. Detection of Differentially Expressed Genes (DEGs) and
Glioma-Related Genes. EdgR (version 3.32.1) and limma
[16] (version: 3.46.0) packages in Bioconductor were utilized
to process the data and analyze DEG expression. We divided
the genes into two groups with the different expression
trends based on log fold change (FC) and calculated the
mean value of the expressed genes in glioma to obtain the
t value. We calculated the p value based on the t value and
adjusted it using the false discovery rate (FDR) method.
The DEGs were filtered under the condition of ∣logFC ∣ >1
and adjusted p < 0:05. Moreover, we visualized DEGs by
plotting heatmaps and volcano plots using the heatmap
and ggplot packages in R, respectively.

To identify the glioma-related gene modules, we con-
ducted WGCNA based on R programming language
(3.6.3). The GO.db (version 3.12.1), preprocessCore (version
1.52.1), impute (version 1.64.0), and limma packages in Bio-
conductor were used to save and process the obtained data-
sets. The WGCNA package [17] was applied to identify the
highly cooperative genes. Using the coefficient of association
and the corresponding p value, we obtained several modules
that reflected the relationships between tumor tissues and
normal ones.

According to all modules we obtained from variation
analysis and WGCNA, we selected the best glioma-related
modules based on the most conspicuous coefficient of asso-
ciation and fetched information regarding the genes from
the modules. The VennDiagram [18] package in R should
be installed to identify the intersection among modules
and plot the Venn diagram to visualize the consequences
of the intersection.

2.4. Function Cognition and Pathway Enrichment Analysis.
To detect how the glioma-related genes functioned in glioma
and which sites and pathways they may act on, GO and
KEGG enrichment analyses were conducted. Dose [19]
(3.16.0), clusterProfiler [20] (3.18.1), and enrichplot
(1.10.2) packages in Bioconductor and colorspace, stringi,
and ggplot2 packages in R were applied for analyses.

Results of GO and KEGG enrichment analyses were out-
put as two diagrams: a bar plot and a bubble diagram. Dia-
grams of GO enrichment analysis included three parts—a
molecular function (MF) section, a cellular component
(CC) section, and a biological process (BP) section—whereas
the KEGG results revealed several pathways and target sites
where the DEGs may be enriched. The results of GO enrich-
ment and KEGG enrichment analyses were calculated based
on p < 0:05.

2.5. Configuration of the PPI Network and Developing a
Network of Hub Genes. After filtering glioma-related genes,
we attempted to identify the potential interaction among
these genes and subsequently developed a protein–protein
interaction (PPI) network. The hub genes were identified
using STRING [21] (version 11.0) and the CytoHubba [22]
plug-in in Cytoscape [23] software.

The application of Cytoscape software is aimed at
abstracting DEGs encoding proteins and establishing a net-
work scaffold. The CytoHubba plug-in can detect and locate
10 of the most relevant DEGs using the maximal clique cen-
trality (MCC) and mark them in red (high correlation),
orange (medium correlation), and yellow (low correlation)
colors based on their correlation with glioma.

2.6. Correlation Analysis between the Target Gene and
Glioma. GRIN1 was selected from the 10 hub genes and
selected as the optimum gene. Confirmation regarding
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whether it is associated with the occurrence of gliomas is
required. Module GEPIA2 [24] in the Gene Expression Pro-
filing Interactive Analysis (GEPIA) database provides a
macroperspective of the difference in the gene expression
between glioma and normal tissues.

2.7. Clinical Correlation Analysis. In this study, to identify
the difference in the expression of GRIN1 between different
sexes and ages of glioma patients, we conducted two differ-
ent clinical correlation analysis including ages and sexes.
The limma package in Bioconductor was applied to perform
a comprehensive analysis between two different groups,
whereas the ggpubr package in R was installed and utilized
to visualize the comparison. The results of the comparison
analysis were calculated based on the p value.

2.8. Verification of the Protein Expression of Hub Genes in
Tissue Based on the Human Protein Atlas (HPA) Database,
GEPIA Website, and LOGpc Database. The expression of
core genes was verified by browsing the Human Protein
Atlas (HPA) database to identify the differential expression

of GRIN1 between the normal tissue and glioma tissue.
HPA contains abundant data; more than 26,000 antibodies
have been collected, and all results are immunohistochemi-
cal results. The HPA database is free for use for researchers.
We input the hub gene into the website and chose the tissue
module and pathology module to run the analysis. The cere-
bral cortex was selected, and the result with immunohisto-
chemical images was generated automatically. The
antibody serial number chosen was HPA 067773 in both
the normal tissue and tumor tissue.

The survival and survminer packages in R were applied
to analyze the overall survival (OS) using the best cut-off cri-
teria based on the gene samples. We divided the samples
based on the expression level of the target genes and con-
ducted the KM analysis to check the difference in the sur-
vival rate between the groups. A p value of <0.05 was
considered statistically significant. Subsequently, a survival
curve diagram was plotted to visualize the survival analysis
results. The GEPIA [25] database was used to analyze the
expression difference among GBM, LGG, and normal brain
tissues. In order to understand the correlation between
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Figure 4: GO enrichment analysis of the turquoise module and the KEGG enrichment analysis of the turquoise module. Results were
visualized using a bar plot and bubble diagram. (a) Bar plot. Gradients of colors are based on the adjusted p value. (b) Bubble plot.
Gradients of colors are based on the adjusted p value. The size of the circle represents the gene number. (c) Bar plot. Gradients of colors
are based on the adjusted p value. (d) Bubble plot. Gradients of colors are based on the adjusted p value. The size of the circle represents
the gene number.
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GRIN1 and glioma more comprehensively, we consulted the
LOGpc [26] database to verify the expression difference of
GRIN1 in a high-grade glioma and a low-grade glioma.

2.9. Tissue Sample Collection. Human specimens of glioma
and normal brain tissues were collected from China medical
University Shengjing Hospital (Shenyang, China). All
patients were informed of the use of tissues. The study pro-
tocol was approved by ethics committee of Shengjing Hospi-
tal. Tissues are preserved well in liquid nitrogen after surgery
and divided into two groups according to the 2007 WHO
classification guidelines of tumors in the central nervous sys-
tem: WHO I-II (n = 3) and WHO III-IV (n = 3). Normal
human brain tissue (n = 1) was obtained from a cerebrovas-
cular malformation case, which was considered the negative
control.

2.10. Immunohistochemical (IHC). Frozen tissues were
paraffin-embedded and then sliced to mount on slides. Slides

were preprocessed by dewaxing and antigen repairing; a pri-
mary antibody against protein was used (GRIN1, 1 : 100
dilutions, Abclonal, China). Slides were preserved overnight
at 4°C. Subsequently, we incubated slides with a secondary
antibody and streptavidin peroxidase (MXB biotechnologies,
China). Development using DAB and nuclear counterstain-
ing by hematoxylin was done in the final step.

3. Results

3.1. Variation Analysis and WGCNA of DEGs. To identify
DEGs in the TCGA datasets and GEO datasets, variation
analysis and WGCNA must be conducted, and then, a net-
work based on the gene’s cooperation relationship must be
constructed. To visualize the results, we placed the gene clus-
ters into different modules by plotting dendrograms
(Figures 1(a) and 1(c)); meanwhile, module-trait diagrams
were also obtained based on R. These dendrograms illus-
trated the association of the gene cluster between the normal
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Figure 5: The establishment and visualization of the PPI network and identification of hub genes. (a) A PPI network was constructed by the
STRING website; each circle represents a single gene. Genes are linked by line segments that highlight the association among them. (b) Hub
genes were identified by CytoHubba based on the MCC algorithm. Red color represents a high level of hub genes, whereas orange color
represents medium level and yellow low level of hub genes. (c) Blue nodes represent gene names. Relationships among genes are
illustrated by the line connection.
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and tumor tissues. After WGCNA of TCGA datasets, a dia-
gram containing 9 colors representing different modules
were constructed (Figure 1(b)), whereas for the GEO data-
sets, the results included 27 colors representing different
modules (Figure 1(d)). The turquoise module was declared
to have the highest association with the normal tissue
(r = 0:73, p = 9e − 31) and tumor tissue (r = −0:73, p = 9e −
31) after TCGA analysis. A common phenomenon was
observed in the GEO WGCNA results, wherein the tur-
quoise module represents the most relevant relationship
with the normal tissue (r = 0:24, p = 3e − 04) and tumor tis-
sue (r = −0:24, p = 3e − 04).

The output of the TCGA and GEO analyses was heatmaps
(Figures 2(a) and 2(c)) and volcano diagrams (Figures 2(b)
and 2(d)). These diagrams exhibited solid evidence illustrating
the relationships between DEGs and tissues. Two groups were
divided based on the expression level in different tissues in
both the heatmap and volcano plots.

3.2. Abstracting the Intersection of the DEGs. Two module-
trait diagrams and a pair of heatmaps and volcano diagrams
were constructed using the results of variation analysis and
WGCNA. To understand the intersection of the variation anal-

ysis and WGCNA, we imported packages of VennDiagram in
R and plotted the Venn diagram. As shown in the Venn dia-
gram (Figure 3), the intersection was located over 4 parts (the
GEO_diff, TCGA_diff, TCGA turquoise, and GEO turquoise).
A total of 185 genes were marked in this intersection.

3.3. Enrichment Analysis of DEGs. To gain a further under-
standing of how DEGs mobilized and worked in glioma, we
conducted an enrichment analysis. Two types of enrichment
analysis were performed based on R. Dose and clusterProfiler
packages in Bioconductor were installed. The enrichment
analysis provided a pair of bar plots and bubble diagrams.

A bubble diagram (Figure 4(a)) and bar plot
(Figure 4(b)) were constructed based on the results of the
GO enrichment analysis which included three parts—mole-
cular function (MF), CC, and BP. DEGs play a significant
role in modulating the chemical synaptic transmission and
regulating the trans-synaptic signaling in the BP section. In
the CC section, we observed that DEGs were enriched on
presynapse and in the MF section, and DEGs are involved
in the process of a metal ion transmembrane transporter.
The KEGG enrichment analysis results were used to con-
struct a bubble diagram (Figure 4(c)) and a bar plot
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Figure 6: Expression difference of GRIN1 in glioma and normal tissues based on the GEPIA database and LOGpc database. Survival status
of differential expression of GRIN1. (a) OS based on GRIN1 expression levels. Calculated using the p value based on Kaplan-Meier (KM)
analysis. (b) OS based on GRIN1 expression levels in the GBM group by searching the LOGpc database. (c) Difference in GRIN1
expression among GBM, LGG, and normal tissue. Red represents GRIN1 expression in glioma, whereas gray represents GRIN1
expression in normal tissue. (d) OS based on GRIN1 expression levels in the LGG group by searching the LOGpc database.

18 BioMed Research International



(Figure 4(d)), which both illustrated that DEGs are enriched
in the calcium signaling pathway.

3.4. Configuration of the PPI Network and Localization of
Hub Genes. A PPI network can only be established once
the connections among the DEGs are clarified. The results
obtained from STRING are shown in Figure 5(a). Cytos-

cape software was used to clarify the PPI network. Cyto-
Hubba, a plug-in in Cytoscape, selects and marks 10 of
the most relevant DEGs with colors based on the MCC,
which includes YWHAG, GRIN1, GRIN2B, CACNB3,
STX1A, DLG4, VAMP2, BEGAIN, ADRA1B, and
RASGRF2. Results of visualization of the PPI network
are shown in Figures 5(b) and 5(c).
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Figure 7: Verification of the expression of GRIN1 in different sexes and ages. (a) Comparison of the expression between females and males
based on the p value. (b) Comparison of the expression between groups of patients greater than 65 ages and less than 65 ages.
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3.5. Survival Analysis of GRIN1 and Comparison of GRIN1 in
Different Ages and Genders. The target gene GRIN1 was cho-
sen to perform survival analysis. The survival and survminer
packages were used for analysis. The curve graph
(Figure 6(a)) that we obtained showed that patients with
low expression of GRIN1 had worse prognosis than patients
with higher expression (p = 0:004). Subsequently, we

browsed the GEPIA database and verified the expression dif-
ference of GRIN1 between the high-grade glioma and low-
grade glioma. Another box plot (Figure 6(c)) proved that
the expression of GRIN1 differed among the high-grade gli-
oma group, low-grade glioma group, and normal tissue,
whereas the lower expression of GRIN1 represents higher
grades of malignancy. Consequence by browsing, the LOGpc

GBM
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NC
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GBM (200x)

(c)

LGG (200x)
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NC (200x)
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Figure 8: IHC results of GRIN1 protein levels obtained by searching the HPA database and conducting IHC experiment. (a) Protein levels
of GRIN1 in the glioma tissue of the human brain (antibody HPA067773, staining: not detected; intensity: negative; quantity: none). (b)
Protein levels of GRIN1 in the normal tissue of the human brain (antibody HPA067773, staining: low; intensity: weak; quantity: >75%-
25%). (c–e) Images (200x) of hematoxylin-stained section with immunohistochemical detection of GRIN1 in GBM tissues, LGG tissues,
and normal brain tissues.
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database also showed this difference. The curve graph in
Figure 6(b) shows that in the high grade-glioma (WHO
III-IV) group, patients with high expression of GRIN1
earned a better prognosis than patients with lower expres-
sion of GRIN1 (p = 0:0205). Another curve graph
(Figure 6(d)) illustrated that in low-grade glioma (WHO I-
II), patients with high expression of GRIN1 also earned a
better prognosis than patients with lower expression of
GRIN1 (p = 0:0134). Thus, the lower the expression of
GRIN1, the worse the prognosis of patients.

To analyze whether GRIN1 is expressed differently in
different ages and sexes, we separated the samples into two
groups: the age comparison group (two more groups were
separated by the boundary of 65 ages) and the sex compari-
son group. The limma and ggpubr packages of R were used
for analysis. There was no difference in the GRIN1 expres-
sion between males and females in the glioma tissue
(Figure 7(a), p = 0:1). Furthermore, no difference was
observed between people younger than 65 and people older
than 65 (Figure 7(b), p = 0:26).

3.6. Expression of the Hub Genes in Protein and Glioma
Tissue. By searching the HPA database, we inputted GRIN1
as the target gene into the website. The output showed a sig-
nificant difference, wherein GRIN1 was not detected in the
GBM tissue (Figure 8(a)) and detected in the normal brain
tissue. (Figure 8(b)). To confirm the expression difference
of GRIN1 in glioma tissues and normal brain tissues, we
conducted IHC. Results indicated that GRIN1 was in a low
expression status in the GBM tissue (Figure 8(c)) and LGG
tissue (Figure 8(d)) compared to the normal brain tissue
(Figure 8(e)).

4. Discussion

Glioma is a type of refractory intracranial tumor, which can
occur at any location in the central nervous system such as
the brainstem, ventricle, cerebellum, corpus callosum, and
basal ganglia. Numerous molecular studies have been con-
ducted because of the tremendous harm that it causes and
the poor curative effect of conventional neurosurgery and
chemotherapy. A previous study [27] confirmed that with
the mediation of the upstream miRNA or ceRNA, down-
stream genes can exhibit a synergistic effect, taking part in
glioma growth, proliferation, and invasion by changing the
expression level. Because of the differences in gene charac-
teristics, the high or low expression of genes can both be
involved in the process of glioma, thereby accelerating gli-
oma progression [28, 29].

In this study, the GO enrichment analysis outcomes
showed that the 185 DEGs were mostly related to the mod-
ulation of chemical synaptic transmission and the regulation
of the trans-synaptic signaling pathway within the BP sec-
tion, and hub genes were enriched in presynapse in the CC
section; in addition, they are involved in the process of the
metal ion transmembrane transporter. The results of the
KEGG enrichment analysis showed that the hub genes were
enriched in the calcium signaling pathway. By establishing a
protein–protein interaction (PPI) network and using Cytos-

cape software, we identified GRIN1 as a potential biomarker
for glioma. Subsequently, we conducted immunohistochem-
ical assay and browsed the Human Protein Atlas (HPA) to
compare the results and identify differences in protein
expression between the normal and tumor tissues. Based
on these results, we showed that the dysregulation of GRIN1
could lead to the occurrence of glioma, and its low expres-
sion is strongly associated with poor prognosis of patients
with glioma.

GRIN1 is located on chromosome band 9q34.3. In dis-
eases of the nervous system, GRIN1 has frequently been
reported in neurodegenerative diseases, while it has been
reported to a lower degree in glioma. Thus, the specific
mechanism of GRIN1 expression in the growth, prolifera-
tion, and invasion of glioma is still unclear. Thus, we need
more experiments to uncover this mystery.

Our study has some inevitable limitations. First, data
obtained from the TCGA database and GEO database are
not complete and the samples are insufficient, which may
lead to a low statistical power. Moreover, the clinical stages
of the samples we obtained from the GEO database were
WHO III; thus, in this research, we only compared the dif-
ferences between ages and sexes without analyzing the dif-
ferences among different glioma grades and prognosis.
Second, this study is merely a bioinformatics research based
on data screening and analysis. Although we have estimated
the molecular mechanism and the prognostic value of
GRIN1, further systematic studies on the mechanism of
GRIN1 at the molecular, cellular, and biological levels based
on experimental techniques such as western blotting need to
be performed.

Data Availability

Transcriptome data and clinical data can be downloaded
from https://portal.gdc.cancer.gov/. The gene expression
profile dataset (GSE109857) can be downloaded from
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE109857. The platform profile of GPL6480 Agilent-
014850 Whole Human Genome Microarray 4x44K G4112F
can be downloaded from: https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GPL6480
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