Abstract
Emerging antibiotic resistance has become a cosmopolitan problem and evoking researchers to search for new antimicrobials from natural constituents. The present study was intended to test the antimicrobial potential of traditionally used unexplored polyherbal recipes for curing digestive ailments. A total of 25 plants species were combined in different ratios to form 14 polyherbal recipes. After collecting and grinding plant parts, methanolic extracts of 14 polyherbal recipes were prepared by the cold maceration process. Antibacterial and antifungal activity of the polyherbal extracts was checked by agar well diffusion method at a concentration of 50 mg/ ml while minimum inhibitory concentration (MIC) was determined by serial dilution method. Polyherbal recipes B and D showed significant inhibition zone each against Vibrio cholerae (25.63; p < 0.001). Recipe G (23.33; p < 0.001) showed better efficacy against Escherichia coli. Recipe E and G significantly inhibited Proteus species (28.33; 24.33; p < 0.001). Recipe B was highly effective against Salmonella typhi. Recipe C, A and F had significant antifungal affect and inhibited Aspergillus nigar (28.67; p < 0.05), Aspergillus fumigatus (27; p < 0.01) Trichoderma (30; p < 0.001), Rhizopus (19.67; p < 0.01), and Fusarium graminearum (28.67;p < 0.001). Polyherbal formulations A, B, D, K, and N were active with the lowest concentration. MIC ranges within 3.12–25 mg/ml while minimum bactericidal concentration (MBC) between 12.5 and 50 mg/ml. Polyherbal recipes’ A, B, D, G, K and N have enhanced antimicrobial potential with better efficacy than tested antibiotics and should be evaluated for further scientific validation.
Keyword: Polyherbal, Gastrointestinal infections, In-vitro, Antibiotic resistance
1. Introduction
Polyherbal therapy has been used in Ayurvedic, Chinese, and, Unani medicines, for thousands of years, yet scientific evidence of their therapeutic benefits is mostly lacking. In these systems, different chronic diseases are better managed by polyherbal formulations instead of monoherbal due to synergism and lesser side effects. The concept of polyherbal combination has been well established and achieved remarkable success in western medicine offering new hope to patients. In pharmaceutical industries, there are many research studies in which combination therapy of plants and antibiotics showed effective results for diabetes and cancer as compared to monotherapy (Patel and Saravolatz, 2006). A five-year literature review reported the in-vitro antimicrobial findings of synergy both within plant extracts and between plant extracts and antibiotics. Plant extracts and their combinations were more efficient than individual constituents (Abd El-Kalek and Mohamed, 2012, Mundy et al., 2016). In recent years, antimicrobial activities of mono herbal have been increasingly reported while there are very few studies on the biological activities of traditionally used polyherbal formulations.
Gastrointestinal diseases are common complaints caused by food poisoning and pathogenic microorganisms. Food poisoning and spoilage are mostly due to contamination with bacterial and fungal pathogens (Pandey and Singh, 2011, Solomakos et al., 2008). Some of the most common gastrointestinal problems in Pakistan are diarrhea, cholera, dyspepsia, stomachaches, cramps, vomiting, indigestion, colon cancer, and gastric ulcer. Every year approximately 4.0 million cases and 0.15 million deaths are reported worldwide due to gastrointestinal infections like diarrhea and cholera. Correspondingly in Pakistan, diarrhea deaths in children under 5 years remained at 0.1 million in 2015 (Ali et al., 2015). In recent years, antibiotic resistance is an emerging problem worldwide that raised the interest of the researcher to develop more potent antimicrobial agents to combat microbial resistance. Natural products remained a major source of new drugs that can offer a wide range of complex, pure secondary metabolites and structurally diverse compounds as potential antimicrobial agents (Mabona et al., 2013). These natural products regarded as nutritionally safe and easily degradable with no side effects due to antioxidant properties. An opportunity is to pharmacologically test the traditionally used polyherbal formulations being extensively used in the southern regions of Khyber Pakhtunkhwa to treat gastrointestinal tract infections. According to published literature there is scarce studies reported regarding pharmacology of traditionally used polyherbal formulation for gastrointestinal infections. There is need of time to evaluate polyherbal formulations using scientific methods such as clinical trials, possible bioactive constituents and mechanism of action for the future world. Hence, the present study has been designed with the objective to provide scientific background to the traditionally used polyherbal mixtures through in-vitro antimicrobial activities.
2. Materials and methods
2.1. Selection and preparation of polyherbal formulations
Polyherbal formulations used to treat digestive problems in rural and urban areas of district Dera Ismail Khan were selected (Mussarat et al., 2021). Plant parts of polyherbal recipes commonly used by the local people were collected and identified by Taxonomist at the Department of Botany, Kohat University of Science and Technology, Kohat. Collected plant parts were washed, cut into small pieces, shade dried, and crushed into powder form with the help of a grinder. Powder of individual plants was mixed according to the traditional description for a respective polyherbal mixture. A total of 25 plants species were combined in a different ratios, and 2–5 plants mixed to form these polyherbal formulations. Foeniculum vulgare was used in most of the polyherbal formulations (n = 7) followed by Elettaria cardamomum (n = 6) and Cuminum cyminum (n = 5). Fruit (n = 21) and seeds (n = 18) were the most used plants parts. Local names of all polyherbal recipes are given in the table and these are denoted by English alphabets (Table 1).
Table 1.
Local name/Abbreviation | Individual Plants in Polyherbal formulation | Local name | Habit | Part used | Disease name |
---|---|---|---|---|---|
(Phakki) A | Withania coagulans (Stocks) Dunal. Solanaceae | Paneer | Shrub | Fruit | Powder used for all digestive problems including diarrhea |
Foeniculum vulgare Mill. Apiaceae | Sounf | Herb | Seeds | ||
Cuminum cyminum L. Apiaceae | Jeera | Herb | Seeds | ||
Curcuma zedoaria Rosc. Zingiberaceae | Kachoor | Herb | Rhizome | ||
Terminalia chebula Retz. Combretaceae | Hareer | Herb | Rhizome | ||
(Podeena qehwa) B | Mentha piperita L. Lamiaceae | Podeena | Herb | Leaves | Decoction (tea) used for nausea, vomiting and diarrhea |
Camellia sinensis L. Kuntze Theaceae | Sabz chaey | Herb | Leaves | ||
Elettaria cardamomum (L.) Maton. Zingiberaceae | Sabz illaichi | Tree | Fruit | ||
(Savi chah) C | Foeniculum vulgare Mill. Apiaceae | Sounf | Herb | Seeds | Decoction used for gastric pain, mensis pain, stomach ache |
Withania coagulans (Stocks) Dunal. Solanaceae | Paneer | Shrub | Fruit | ||
Camellia sinensis L. Kuntze Theaceae | Sabz chaey | Herb | Leaves | ||
Elettaria cardamomum (L.) Maton. Zingiberaceae | Sabz illaichi | Tree | Fruit | ||
(Zeera sounf phakki) D | Terminalia chebula Retz. Combretaceae | Hareer | Herb | Rhizome | Intestinal problem |
Cuminum cyminum L. Apiaceae | Zeera | Herb | Seeds | ||
Foeniculum vulgare Mill. Apiaceae | Sounf | Herb | Seeds | ||
(Hazma Phakki) E | Withania coagulans (Stocks) Dunal. Solanaceae | Paneer | Shrub | Fruit | Constipation, Obesity, indigestion, gastric pain |
Piper nigrum L. Piperaceae | Kali mirch | Shrub | Buds/ seeds | ||
Trachyspermum ammi L. Apiaceae | Ajwain | Herb | Seeds | ||
Cuminum cyminum L. Apiaceae | Zeera | Herb | Seeds | ||
Foeniculum vulgare Mill. Apiaceae | Sounf | Herb | Seeds | ||
(Dawai dard) F | Foeniculum vulgare Mill. Apiaceae | Saunf | Herb | Fruit | Digestive problems like constipation, gastric pain, intestinal worms |
Cuminum cyminum L. Asteraceae | Sufaid Zeera | Herb | Fruit | ||
Citrullus colocynthis (L.) Schrad. Cucurbitaceae | Kortuma | Herb | Fruit | ||
Piper nigrum L. Piperaceae | Kali mirch | Herb | Fruit | ||
Elettaria cardamomum (L.) Zingiberaceae | Choti ilaichee | Tree | Fruit | ||
Plantago ovate Forssk. Plantaginaceae | Ispaghol | Herb | Fruit, husk | ||
Ferula asafetida L. Apiaceae | Heeng | Tree | Fruit | ||
(Podina Sharbat) G | Elettaria cardamomum (L.) Zingiberaceae | Choti ilaichee | Tree | Fruit | Used for 24 hrs. vomiting and indigestion |
Syzygium aromaticum L. Myrtaceae | Lowng | Tree | Buds | ||
Cinnamomum verum J. Presl Lauraceae | Dar cheeni | Tree | Bark | ||
Mentha piperita L. Lamiaceae | Podina | Herb | Leaves | ||
Rosa indica L. Rosaceae | Arq e Gulab | Shrub | Petal Extract | ||
(Safoof) H | Mentha piperita L. Lamiaceae | Podina | Herb | Leaves | Diarrhea, Dysentery |
Punica granatum L. Lythraceae | Anar sakh | Tree | Fruit cover | ||
(Adrak qehwa) I | Camellia sinensis L. Kuntze Theaceae | Sabz chaey | Herb | Leaves | Obesity/ Indigestion |
Citrus limon (L.) Osbeck. Rutaceae | Nimbo | Tree | Fruit | ||
Zingiber officinale Roscoe. Zingiberaceae | Adrak/ Sund | Herb | Rhizome | ||
(Powder) J | Syzygium cumini (L.) Skeels Myrtaceae | Jaman | Tree | Seeds | Typhoid, diarrhea, and useful for diabetes patient |
Punicum granatum L. Lythraceae | Anar | Tree | Fruit cover | ||
(Keero ki dawa) K | Cocos nucifera L. Arecaceae | Nareal | Tree | Fruit | Intestinal worms |
Punicum granatum L. Lythraceae | Anar | Tree | Seeds | ||
(Arq) L | Cassia fistula L. Fabaceae | Gardnali | Tree | Seeds cover | Constipation |
Foeniculum vulgare Mill. Apiaceae | Sounf | Herb | Seeds | ||
(Chaata) M | Butea monosperma (Lam.) Kuntze Fabaceae | Chichra | Shrub | Seeds | Constipation and bronchial problems |
Achyranthes aspera L. Amaranthaceae | Puhutkanda | Herb | Seeds | ||
Elettaria cardamomum (L.)Maton. Zingiberaceae | Sbz illachi | Herb | Fruit | ||
(Haiza recipe) N | Ocimum basilicum L. Lamiaceae | Niaz boo | Herb | Leaves/seeds | Diarrhea, Cholera |
Mentha piperita L. Lamiaceae | Podina | Herb | Leaves |
2.2. Preparation of polyherbal extract
A polyherbal mixture of 100 g of dried powder was soaked in 1000 ml methanol in 2000 ml flask and kept for seven days for allowing total extraction at room temperature by cold maceration process. After that, the soaked polyherbal mixture was filtered by Whattmann filter paper # 41. The filtrate was collected in a beaker and evaporates through a rotary evaporator. The semisolid extract was preserved for experimental purposes. For antimicrobial activity, crude extracts of polyherbal were dissolved in DMSO (50 mg/ml) to prepare a stock solution. In the present study 14 traditionally polyherbal formulations were tested for synergistic, antagonistic, and additive effects against selected pathogenic microbes.
2.3. Antibacterial activities of polyherbal mixtures
Antibacterial activities of 14 polyherbal crude extracts were checked at 50 mg/ml concentration against six bacterial strains Vibrio cholerae, Shigella flexneri, Escherichia coli, Proteus mirabilis Proteus vulgaris, Pseudomonas aeruginosa, and Salmonella typhi using the agar well diffusion method. All the equipment was autoclaved at 121 ˚C for 30 min. According to company instructions 11.4 g, Muller Hinton Agar was added in a 500 ml flask containing 300 ml distilled water. To dissolve all the ingredients, mixed and shake it well through an electric heater. After autoclaving, 20 ml of this media was poured aseptically into Petri plates and solidify for about 10 min. The bacterial strains were spread with sterile swabs on the nutrient agar. Wells was formed with a sterile cork borer. DMSO was used negative control while Meropenem standard disc (10 µg) as a positive control. To avoid any kind of contamination, all procedure was carried out in the laminar flow hood and then petri plates were incubated for 24 h at 37 ◦C in an incubator. Zones of inhibitions were measured in mm (Heatley, 1944, Kirby et al., 1956). All experiment was repeated three times and results recorded as mean values. The Minimum inhibitory concentration (MIC) was determined using the serial dilution method (NCCLS, 2000). The minimum bactericidal concentration (MBC) of the polyherbal extract was determined following the method of Spencer & Spencer (Spencer and de Spencer, 2004).
2.4. Antifungal activities
Antifungal activities of fourteen polyherbal crude extracts were checked at 50 mg/ml concentration against six fungal pathogens Aspergillus nigar, Rhizopus, Fusarium oxysporum, Aspergillus fumigatus, Trichoderma, and Fusarium graminearum. To prepare media for fungal activity, 6.5 g of SDA was taken in 100 ml of distilled water, mixed it well, autoclaved, and then cooled to 40 Co. About 20 ml of this media was poured aseptically into petri plates and solidified. A piece of 7 days old culture fungus with 4 mm diameter was placed on media and extract was poured in wells and labeled. Fluconazole was used as a standard for comparison of inhibition zone. All plates were incubated at 28 Co for 7 days. The experiment was repeated three times and the zone of inhibition was measured in mm.
2.5. Review on the antimicrobial analysis of individual plants
Selected fourteen polyherbal recipes were comprised of 25 individual medicinal plants with different ratios. Literature was searched about these individual plants online through different databases like Google Scholar, ISI Web of Knowledge, Science hub, Research gate, and Science Direct Navigator. A huge published data about the antimicrobial screening of methanolic extract of respective plant parts against selected bacterial and fungal strains were gathered. In this review table we focused on data of respective plant parts extracted with methanol solvent and whose extracts concentrations (mg/ml) were mentioned quantitatively i.e. milligrams of the extracts dissolved in milliliters. The concentration given in microgram was converted to the milligram. The review table is not only limited to antimicrobial activity, it contains phytocompounds isolated from methanolic extract of plant part which might be active constituent responsible for microbes inhibition (Table 2).
Table 2.
Plant name/ Part used | Pathogen | Concentration (mg/ml) | Inhibition zone (mm) | MIC (mg/ml) | MBC (mg/ml) | Compounds | References |
---|---|---|---|---|---|---|---|
A. aspera Seeds | E. coli | 0.25–25 | 5–20 | 1.024 | NA | Alkaloids, tannins, saponins, glycosides and flavonoids | (Abi Beaulah et al., 2011, BK et al., 2013, Kaveti et al., 2013, Srinivasulu et al., 2016, Talreja et al., 2017 |
K. pneumoniae | 0.25–1 | 11.2–20 | 1.024 | ||||
S. flexneri | 0.25–1 | 10.1–13.8 | NA | ||||
P. vulgaris | 0.25–1 | 8.8–25 | |||||
P. aeruginosa | 0.25–1 | 12–20 | |||||
S. aureus | 0.25–25 | 1–13.7 | |||||
S. typhi | NA | ||||||
P. mirabilis | |||||||
V. cholerae | |||||||
A. nigar | |||||||
Rhizopus | |||||||
F. oxysporum | |||||||
A. fumigatus | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
B. monosperma Seeds | S. typhi | 50 | 7 | NA | NA | Polyphenols, glycosides, quinines, anthracyanosides, flavonic glycosides, coumarins | (Maharjan et al., 2011) |
E. coli | NA | ||||||
S. flexneri | |||||||
P. mirabilis | |||||||
P. vulgaris | |||||||
V. cholerae | |||||||
P. aeruginosa | |||||||
K. pneumoniae | |||||||
S. aureus | |||||||
A. nigar | |||||||
Rhizopus | |||||||
F. oxysporum | |||||||
A. fumigatus | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
C. colocynthis Fruit | A. nigar | 15–100 | 5–23 | 1–3.12 | 6.25 | α-Dglucopyranoside, O-α-D-glucopyranosyl, phthalic acid and y-tocopherol. Alkaloid ,Tannins, Saponins , Flavonoids Unsaturated sterols and terpens, Sterol and steroid Terpenoids and Cardiac glycosides, Cucurbitacin |
(Ali et al., 2013, Doss et al., 2011, Eidi et al., 2015, Gurudeeban et al., 2010, Hameed et al., 2020, Hany and Neelam, 2020, Hussain et al., 2011, Idan et al., 2015, Nora et al., 2015, Thangavel and Ramasamy, 2019) |
A. fumigatus | 15–100 | 6–19 | 1.56 | 3.12 | |||
E. coli | 40–60 | 3–16 | 0.5–13.9 | NA | |||
P. mirabilis | 0.3 | 2–10 | 1 | ||||
P. vulgaris | 0.3 | 12.3 | 1 | ||||
S. aureus | 25–100 | 2.9–22 | 0.25–10.8 | ||||
P. aeruginosa | 25–100 | 4.9–19 | 0.5–13.9 | ||||
K. pneumoniae | 25–100 | 9.4–19 | 1–13.9 | ||||
S. typhi | NA | 10 | 1 | ||||
F. oxysporum | 25–100 | 10–15 | NA | ||||
S. flexneri | NA | 5 | |||||
V. cholerae | NA | ||||||
Rhizopus | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
C. cyminum Seeds | E. coli | 0.5–250 | 2–31 | 0.12–20 | 0.25–40 | Gallic acid, tannin, Coumarin, terpenoids, 2-methyl-4isopropyliden-cyclopentan-1-al, 1-methyl-4-isopropyl-3-cyclohexen-1-ol, monoterpene, 4-isopropylcyclohex-1, 3-dien-1-yl) methanol, 4-isopropyl-1-cyclohexen-1-carbaldehyde, (3,4-dimethyl-2-oxo-cyclopenten-1-yl) p-cymene, 8a-methyl octahydro-2(1H)- naphthalenone, p-cymen-7-ol, o-cymen-5-ol, p-cymen-3-ol,6-allyl-4,5 dimethoxy-1,3 benzodioxole 3-isopropyl phenol, | (Akbar et al., 2019, Allaithy, 2017, Chaudhary et al., 2014, Dua et al., 2013b, Mostafa et al., 2018, Saee et al., 2016, Saeidi et al., 2015, Shahid et al., 2013, Sheikh et al., 2010, Shete and Chitanand, 2014, Singh and Tripathi, 2018, Srivastava et al., 2016) |
P. aeruginosa | 2–33.33 | 10–25 | 0.25–6.25 | 0.5 | |||
S. typhi | 0.5–250 | 8–35 | 40 | 60 | |||
K. pneumoniae | 0.5–250 | 8–22 | 0.12–40 | 0.25–60 | |||
S. aureus | 0.5–250 | 9–36 | 0.12–40 | 0.25–60 | |||
P. mirabilis | 50–100 | 11.5–12 | NA | ||||
V. cholerae | 0.5 | 8–17 | |||||
A. nigar | 0.5 | 17 | |||||
A. fumigatus | 0.5 | 15 | |||||
P. vulgaris | NA | ||||||
S. flexneri | |||||||
Rhizopus | |||||||
F. oxysporum | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
C. fistula Seeds, seed cover | E. coli | 100 | 4.83–16 | 50 | NA | 2,4-Dihydroxy-2,5-dimethyl-39(2H)-furan-3-one, á-D-Glucopyranoside , O-á-D-glucopyranosyl-(1.fwdarw.3)-ß-D-fruc, d-Mannose, 5,7-Dodecadiyn - 1,12- diol, 3- Tr ifluor oacetoxypentadecane, 3-Trifluoroacetoxypenta decane, Pterin-6-carboxylic acid, Imidazole-4-carboxylic acid ,2-fluoro-1-methoxymethyl-,ethyl ester, D-Carvone, | (Gupta et al., 2015, Kadhim et al., 2016, Subramanion et al., 2010) |
S. typhi | 100 | 4.15–25 | 3.12 | ||||
S. aureus | 25–100 | 5–18 | 12.5 | ||||
S. flexneri | 100 | 9 | NA | ||||
P. mirabilis | 100 | 6 | |||||
P. aeruginosa | 100 | 5.73 | |||||
K. pneumoniae | 100 | 5 | |||||
A. nigar | 100 | 5.8 | |||||
F. oxysporum | 100 | 5 | |||||
A. fumigatus | 100 | 6 | |||||
Trichoderma | 100 | 5 | |||||
P. vulgaris | NA | ||||||
V. cholerae | |||||||
Rhizopus | |||||||
F. graminearum | |||||||
C. limon Fruit juice/extract | E. coli | 0.2–1 | 11–19 | 0.5–50 | 0.1–1 | Alkaloids, flavonoids, phenols, quinines, terpenoids and carbohydrate, cyanogenetic, cardic and steroidal glycosides, tannins, saponins, and water-soluble vitamins | (Singh et al., 2020b) (Bhuiyan et al., 2019, Ekawati and Darmanto, 2019, Hindi and Chabuck, 2013, Kumari et al., 2014, Liya and Siddique, 2018, Oikeh et al., 2016, Okeke et al., 2015, Sah et al., 2011, Shakya et al., 2019) |
S. aureus | 0.2 | 14–26 | 0.025–25 | 0.05 | |||
K. pneumoniae | 0.2 | 18–30 | 0.0035 | 0.05 | |||
S. typhi | 0.1–1 | 6–30 | 0.025–12.5 | 0.05 | |||
P. aeruginosa | 0.2 | 10–19 | 0.0125 | 0.05 | |||
A. nigar | 0.2 | 4–12 | 0.05 | 0.1 | |||
P. vulgaris | 0.2 | 17–20 | 0.001–6.5 | NA | |||
S. flexneri | 100-1000 ug/disc | 9-15 | NA | ||||
V. cholerae | NA | ||||||
P. mirabilis | |||||||
Rhizopus | |||||||
F. oxysporum | |||||||
A. fumigatus | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
C. nucifera Fruit | E. coli | 0.5–1.5 | 0–10 | NA | NA | Phenols, flavonoids, alkaloids, tannins and saponins | (Chakraborty and Mitra, 2008, Igwe and Ugwunnaji, 2016) |
S. aureus | 0.5–1.5 | 8–15 | |||||
P. aeruginosa | NA | 16 | |||||
A. nigar | 12 | ||||||
V. cholerae | NA | ||||||
S. flexneri | |||||||
P. mirabilis | |||||||
K. pneumoniae | |||||||
P. vulgaris | |||||||
S. typhi | |||||||
Rhizopus | |||||||
F. oxysporum | |||||||
A. fumigatus | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
C. sinensis leaves | P. aeruginosa | 0.1–200 | 10–19 | 5 | >5 | Phenol, flavonoids, catechin, alkaloids, tannins and alkaloid | (Agbom et al., 2020, Archana and Abraham, 2011, Bashir et al., 2014, Chakrabort and Chakrabort, 2010, Dzotam and Kuete, 2017, Farooqui et al., 2015, Fazal and Rauf, 2015, Latteef, 2016, Mehta et al., 2016, Rajeswari, 2015, Roy et al., 2018, Vasudeo and Sonika, 2009) |
E. coli | 0.1–200 | 3.6–32 | 3.25–100 | >5 | |||
S. flexneri | 3–48 | 2–26 | 2.5–12 | >5 | |||
S. aureus | 0.1–200 | 0.8–20 | 0.1–0.39 | 1.56 | |||
S. typhi | 3–48 | 2.3–28.4 | 12 | 60 | |||
V. cholerae | 3–48 | 1.6–30.1 | 6 | NA | |||
K. pneumoniae | NA | 22 | 0.512 | ||||
P. mirabilis | 25 | NA | |||||
A. nigar | 5 | ||||||
F. oxysporum | 6 | ||||||
A. fumigatus | 30 | ||||||
P. vulgaris | NA | ||||||
Rhizopus | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
C. zedoaria Rhizome | V. cholerae | 0.5 | 0 | NA | NA | (Das and Rahman, 2012, Shahriar, 2010) 26] | |
E. coli | 0.5–40 | 9–18 | |||||
S. typhi | 0.5 | 16 | |||||
P. aeruginosa | 0.5–40 | 5–13 | |||||
K. pneumoniae | 0.5 | 0 | |||||
S. aureus | 0.5–40 | 16 | |||||
A. nigar | 0.5–40 | 11–14 | |||||
A. fumigatus | 40 | 12 | |||||
Trichoderma | 40 | 5 | |||||
S. flexneri | NA | ||||||
P. mirabilis | |||||||
P. vulgaris | |||||||
Rhizopus | |||||||
F. oxysporum | |||||||
F. graminearum | |||||||
C. zeylanicum Bark | S. aureus | 10–150 | 11–14 | 25 | NA | NA | (Aneja et al., 2009, Saliem and AbedSalih, 2018, Singh et al., 2020a, Vyas et al., 2015) |
E. coli | 0.1–10 | 4–12 | NA | ||||
P. aeruginosa | 10–150 | 9–14 | |||||
K. pneumoniae | 1–2 | 9–10 | |||||
A. nigar | 10 | 13 | |||||
V. cholerae | NA | ||||||
S. flexneri | |||||||
P. mirabilis | |||||||
P. vulgaris | |||||||
S. typhi | |||||||
Rhizopus | |||||||
F. oxysporum | |||||||
A. fumigatus | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
E. cardamomum Fruit/seeds | S. aureus | 100 | 6–38 | 2–50 | 2.5– >50 | terpenoids flavonoids and glycosides | (Al-Judaibi et al., 2014, Aneja and Joshi, 2009, Bano et al., 2016, Islam et al., 2010, Kaushik et al., 2010, Singh et al., 2008) |
S. typhi | 100 | 6.5–22 | 25 | 50 | |||
P. aeruginosa | 100 | 8.5–16 | 49 | 75 | |||
K. pneumoniae | 100 | 14 | 50 | 50 | |||
E. coli | 50 | 8.5-16.5 | NA | ||||
V. cholerae | NA | ||||||
S. flexneri | |||||||
P. mirabilis | |||||||
P. vulgaris | |||||||
A. nigar | |||||||
Rhizopus | |||||||
F. oxysporum | |||||||
A. fumigatus | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
E. jambolana Seeds | S. aureus | 0.050–1 | 6–25 | 0.125 | 0.125 | NA | (Chandrasekaran and Venkatesalu, 2004, Mehreen et al., 2016, Ogato et al., 2015, Raju et al., 2011, Saha et al., 2013a) |
E. coli | 0.050–1 | 4–15 | 0.250 | 0.5 | |||
S. typhi | 0.050–1 | 5–18 | 0.125 | 0.5 | |||
P. aeruginosa | 0.050–1 | 5–23 | 0.250 | 0.5 | |||
K. pneumoniae | 0.050–1 | 4 | 0.25 | 0.5 | |||
A. nigar | 0.050–1 | 6–11 | 0.0625 | 0.125 | |||
Rhizopus | 0.050–1 | 10 | 0.0625 | 0.125 | |||
A. fumigatus | 0.050–1 | 12 | 0.0625 | 0.250 | |||
S. flexneri | 25–100 | 20–26 | NA | ||||
V. cholerae | NA | ||||||
P. mirabilis | |||||||
P. vulgaris | |||||||
F. oxysporum | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
F. asafetida Root/ Gum resine | S. aureus | 1–5 | 5–20 | 0.5 | NA | Alakaloids, tannins, glycosoids, flavonoids,saponins | (Patil et al., 2015, Sharma et al., 2016, Shrivastava et al., 2012) |
E. coli | 1–5 | 16–19 | 1 | ||||
K. pneumoniae | 2–4 | 14–17 | 1 | ||||
A. nigar | 2–4 | 14–17 | 1 | ||||
P. aeruginosa | 1–5 | 13.9 | NA | ||||
S. flexneri | NA | ||||||
V. cholerae | |||||||
P. mirabilis | |||||||
P. vulgaris | |||||||
S. typhi | |||||||
Rhizopus | |||||||
F. oxysporum | |||||||
A. fumigatus | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
F. vulgare Seeds | S. aureus | 0.05–0.4 | 3.33–20 | 0.0125–0.5 | NA | terpenoids, tannins, steroids, alkaloids and glycosides, gallic acid, catechin, quercetin | (Agarwal et al., 2017, Al-Hadid, 2017, Al Akeel et al., 2014, Allaithy, 2017, Arman et al., 2019, Beyazen et al., 2017, Chang et al., 2016, Dua et al., 2013a, Jayalakshmi et al., 2011, Salami et al., 2016, Shahid et al., 2013) |
E. coli | 0.4–100 | 2–19 | 0.015–0.25 | ||||
S. typhi | 1–15 | 11–25 | 0.015–0.5 | ||||
P. aeruginosa | 0.4–100 | 1.33,14–19 | >33.33 | ||||
V. cholerae | 0.4 | 4.33 | NA | ||||
P. mirabilis | 50-100 | 10.5-16 | |||||
P. vulgaris | 0.0044 | 12 | |||||
K. pneumoniae | 10-15 | 12-15 | |||||
A. nigar | NA | 15.6 | |||||
S. flexneri | NA | ||||||
Rhizopus | |||||||
F. oxysporum | |||||||
A. fumigatus | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
M. piperita Leaves | E. coli | 0.21 | 0.49 | (Ali et al., Elansary et al., 2020) | |||
P. aeruginosa | 0.16 | 0.47 | |||||
S. aureus | 0.17 | 0.37 | |||||
A. nigar | 19 | ||||||
A. fumigatus | 15 | ||||||
V. cholerae | NA | ||||||
S. flexneri | |||||||
S. typhi | |||||||
K. pneumoniae | |||||||
P. mirabilis | |||||||
P. vulgaris | |||||||
Rhizopus | |||||||
F. oxysporum | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
O. basilicum Seeds | S. aureus | 25–100 | 5–11 | 0.125 | NA | NA | (Adigüzel et al., 2005, Ahmad et al., 2016, Gajendiran et al., 2016, Kadhim et al., 2016, Saha et al., 2013b) |
E. coli | 25–100 | 11–12 | 0.25 | ||||
V. cholerae | 300 µg/disc | 10 | NA | ||||
P. mirabilis | 50–75 | 4–12 | |||||
S. typhi | 50–75 | 9–10 | |||||
P. aeruginosa | 75 | 16 | |||||
K. pneumoniae | 50–75 | 4–13 | |||||
A. nigar | 1–6 | 63–100% | |||||
Rhizopus | 1–6 | 56–100% | |||||
A. fumigatus | 1–6 | 58–100% | |||||
S. flexneri | NA | ||||||
P. vulgaris | |||||||
F. oxysporum | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
P. granatum Fruit cover | S. aureus | 4–100 | 7–29 | 0.1–50 | >10–60 | steroids, triterpenoides, alkaloids, flavonoids, saponins, tannins and carbohydrates, Anthraquinones | (Al-Zoreky, 2009, Ali, 2017, Dahham et al., 2010) (Abdollahzadeh et al., 2011, Kesur et al., 2016, Mathabe et al., 2006, Raju et al., 2011) (Abdu et al., 2020, Alemu et al., 2017, Barathikannan et al., 2016, Bereksi et al., 2018, Rajeswari, 2015, Rashid et al., Sajjad et al., 2015, Salmen et al., 2016, Shafiq et al., 2013, Shahbazi, 2017, Ullah et al., 2012) |
E. coli | 0.03–0.05 | 13–27 | 1–12.5 | >10–32 | |||
S. typhi | 14–24 | 1–13–37 | 25 | >10–32 | |||
P. aeruginosa | 1–100 | 8–26 | 12.5 | NA | |||
K. pneumoniae | 0.125–1 | 7-18 | 2 | ||||
P. mirabilis | 0.03–0.05 | 12-20 | NA | ||||
P. vulgaris | NA | 6 | 12.5 | ||||
S. flexneri | 16-25 | NA | |||||
A. nigar | 7-23 | ||||||
F. oxysporum | 13 | ||||||
V. cholerae | |||||||
Rhizopus | |||||||
A. fumigatus | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
P. nigrum Seeds, fruit | E. coli | 1–2 | 4-11-11.8 | NA | (Sharma et al., 2016) Antibacterial activity for fruit peel Methanol extract of Punica granatumLinn. (Punicaceae) Afzan Mahmad | ||
P. aeruginosa | 1–200 | 10-16 | |||||
K. pneumoniae | 1–2 | 10-10.9 | |||||
S. aureus | 1–200 | 4-10.3-16 | |||||
V. cholerae | NA | ||||||
S. flexneri | |||||||
P. mirabilis | |||||||
P. vulgaris | |||||||
S. typhi | |||||||
A. nigar | |||||||
Rhizopus | |||||||
F. oxysporum | |||||||
A. fumigatus | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
P. ovate Fruit, husk | E. coli | 50–400 | 7–10 | NA | saponin, tannin, flavonoids, alkaloids, steroids | (Motamedi et al., 2010) | |
P. mirabilis | 50–400 | 0 | |||||
P. vulgaris | 5–50 | 8.5–12 | |||||
S. typhi | 50–400 | 0 | |||||
P. aeruginosa | 400 | 7 | |||||
K. pneumoniae | 400 | 7 | |||||
S. aureus | 5-400 | 9-18 | 20 | >200 | |||
V. cholerae | NA | ||||||
S. flexneri | |||||||
A. nigar | |||||||
Rhizopus | |||||||
F. oxysporum | |||||||
A. fumigatus | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
R. indica Petal extract/ flower | S. aureus | 200 | 17–22 | 4.5 | NA | Phenolic compounds, flavonoids, tannins, alkaloids | (Mishra et al., 2011, Pathak et al., 2019, Rikhi et al., 2015, Safdar and Malik, Sowmya et al., 2017) |
E. coli | 200 | 12–15 | 3.7 | ||||
P. aeruginosa | 200 | 18–21 | 4.5 | ||||
S. typhi | 20 | 6–10 | NA | ||||
K. pneumoniae | NA | 22 | |||||
V. cholerae | 10–17 | ||||||
S. flexneri | NA | ||||||
P. mirabilis | |||||||
P. vulgaris | |||||||
A. nigar | |||||||
Rhizopus | |||||||
F. oxysporum | |||||||
A. fumigatus | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
S. aromaticum Buds | V. cholerae | NA | NA | 0.025 | NA | alkaloid, terpenoids, flavonoids, steroid, saponin Anthraquinones, and tannin, phenolic compounds | (Abd El Azim et al., 2014, Aneja and Joshi, 2010, Dua et al., 2014, Ghulam and Ahmad, 2014, Mehrotra and Srivastava, 2010, Okmen et al., 2018, Pandey and Singh, 2011, Prajapati et al., 2018, Sharma et al., 2016, Vizhi et al., 2016, Wankhede, 2015) |
E. coli | 1–500 | 5–24 | 3.12–125 | 12.5–125 | |||
S. flexneri | 25–500 | 7–19 | 6.25–125 | 50–125 | |||
P. vulgaris | 250–500 | 7–11 | 31.25 | 62.5 | |||
S. typhi | 25–500 | 10–16 | 3.9–6.25 | 7.8–25 | |||
P. aeruginosa | 1–100 | 10–30 | 1.95–12.5 | 50 | |||
K. pneumoniae | 25–500 | 7.5–15 | 6–7.8 | 15.6–25 | |||
S. aureus | 1–350 | 5–28 | 0.98–3.25 | 25 | |||
A. nigar | NA | 4-14 | NA | ||||
F. oxysporum | 9 | ||||||
Trichoderma | 24 | ||||||
P. mirabilis | NA | ||||||
A. fumigatus | |||||||
Rhizopus | |||||||
F. graminearum | |||||||
T. chebula Rhizome | V. cholerae | 10 | 15 | 0.25 | 1.5 | Phenolic compounds, flavonoids, Alkaloid, Tannin, Steroid, Cardiac glycosides, terpenoids | (Bajpai et al., 2010, Baliah and Astalakshmi, 2014, Jayalakshmi et al., 2011, Monisha et al., 2013, Mostafa et al., 2011, Rai and Joshi, 2009, Sharma et al., 2012, Singh et al., 2012, Zearah, 2014) |
E. coli | 10–500 | 14–30 | 50–100 | NA | |||
S. aureus | 1–500 | 22–35 | 3.12–25 | ||||
P. mirabilis | 10 | 20.6 | 12.5 | ||||
P. aeruginosa | 125–500 | 18–30 | 12.5 | ||||
F. oxysporum | 1.5 | 23 | 0.5 | ||||
S. flexneri | 10 | 12 | NA | ||||
S. typhi | 10 | 16–25 | |||||
K. pneumoniae | 125–500 | 17–30 | |||||
P. vulgaris | NA | ||||||
A. fumigatus | |||||||
A. nigar | |||||||
Rhizopus | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
T. ammi Seeds | E. coli | NA | 9–20 | 1–12.5 | 25 | NA | (Bashyal and Guha, 2018, Hassan et al., 2016, Sharma et al., 2018, Sharma and Shrivastava, Shokrian et al., 2016) |
S. typhi | 9–12 | 1 | 25 | ||||
S. aureus | 9–20 | 1 | 50 | ||||
P. aeruginosa | 0.025 | 8–21 | 1 | NA | |||
A. nigar | NA | 15 | NA | ||||
S. flexneri | NA | ||||||
P. vulgaris | |||||||
P. mirabilis | |||||||
V. cholerae | |||||||
K. pneumoniae | |||||||
Rhizopus | |||||||
F. oxysporum | |||||||
A. fumigatus | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
W. coagulance Fruit | E. coli | 15 | 10–21 | NA | terpenoids, flavonoids and tannin | (Peerzade et al., 2018, Shahid et al., 2013, Sudhanshu et al., 2012) | |
S. flexneri | 50–250 | 8–13 | |||||
P. vulgaris | 50–250 | 0–16 | |||||
S. typhi | 1–250 | 7–16 | |||||
P. aeruginosa | 1–250 | 13–20 | |||||
K. pneumoniae | 1–250 | 10–22 | |||||
S. aureus | 1–250 | 11–19 | |||||
A. nigar | 50–250. | 7–11 | |||||
A. fumigatus | 0.025 | 29 | |||||
V. cholerae | NA | ||||||
P. mirabilis | |||||||
Rhizopus | |||||||
F. oxysporum | |||||||
Trichoderma | |||||||
F. graminearum | |||||||
Z. officinale Rhizome | E. coli | 0.025–80 | 2.9–22 | 3.5 | 40 | alkaloid, phlobotannins, flavanoids, glycosides, saponins, tannin and terpenoids. zingiberene, β- bisabolene , α-farnesne, β-sesquiphellandrene ,α-curcumene and gingerol and shogaol | (Agrawal et al., 2018, Azadpour et al., 2016, Bashir et al., 2015, Bhargava et al., 2012, El-Mesallamy et al., 2017, Hasan et al., 2012, Iotsor et al., 2019, Kaushik and Goyal, 2011, Njobdi et al., 2018, Riaz et al., 2015, Sunilson et al., 2009, Ushimaru et al., 2007, Yadufashije et al., 2020, Yassen and Ibrahim, 2016, Yusuf et al., 2018) |
S. aureus | 0.025–50 | 3.75–31 | 0.052–1.75 | 0.1 | |||
P. aeruginosa | 0.025–0.1 | 4–26 | 0.416–1.75 | 0.416 | |||
P. mirabilis | 3.1–50 | 1.9–12 | NA | ||||
S. typhi | 0.025–0.1 | 6–21 | |||||
S. flexneri | 20 | 11 | |||||
K. pneumoniae | 0.025-50 | 4.93-29 | |||||
A. nigar | 3 | 11–25 | |||||
F. oxysporum | 3 | 29 | |||||
V. cholerae | NA | ||||||
P. vulgaris | |||||||
Rhizopus | |||||||
A. fumigatus | |||||||
Trichoderma | |||||||
F. graminearum |
2.6. Data analysis
All results were arranged and analyzed using Microsoft 2007. The average zone of inhibition and Standard deviation were calculated. ANOVA was used to measure statistical significance (p-value) among polyherbal recipes producing inhibition zones for a single bacterial strain by Microsoft Excel.
3. Results
3.1. Antibacterial activities
On observation of antibacterial screening, all bacterial pathogens were sensitive towards tested polyherbal crude extracts; indicating the efficacy of these extracts, however, they vary in inhibition zone against the tested micro-organisms (Table 3). Polyherbal extract A, B and D produced the least number of colonies of bacterial strains V. cholerae, E. coli, and S. typhi on agar plate and statistically significant inhibition (p < 0.01). Polyherbal recipes B, and D showed a significant inhibition zone against Vibrio cholerae (25.63;p < 0.001).
Table 3.
V. cholerae | E. coli | S. flexneri | P. mirabilis | P. vulgaris | S. typhi | P. aeruginosa | |
---|---|---|---|---|---|---|---|
A | 24.33 ± 2.1 | 22.66 ± 2.3 | 12 ± 0 | 11.33 ± 1.1 | 20.67 ± 1.1 | 20.67 ± 1.1 | 13.33 ± 2.3 |
B | 25.63 ± 3.5 | 19.33 ± 2 | 14 ± 3.6 | 15 ± 0 | 13 ± 1.7 | 24.67 ± 2.2 | 18 ± 2.6 |
C | 13 ± 3.6 | 20.33 ± 0.5 | 12 ± 1 | 20.67 ± 1.1 | 20 ± 0 | 13.67 ± 1.5 | 14 ± 1.7 |
D | 25.63 ± 0.5 | 18.67 ± 3.2 | 12 ± 1.7 | 21.33 ± 1.1 | 27.33 ± 1.5 | 14.33 ± 3.7 | 15 ± 4.3 |
E | 16 ± 1.7 | 19.33 ± 1.1 | 13.67 ± 2.3 | 24.33 ± 1.1 | 28.33 ± 0.5 | 0 | 19.67 ± 0.5 |
F | 12.67 ± 1.1 | 18.33 ± 0.5 | 10 ± 0 | 6.33 ± 5.5 | 15.67 ± 1.1 | 11.33 ± 1.1 | 18.67 ± 1.1 |
G | 17 ± 3.5 | 23.33 ± 4.1 | 8 ± 1.7 | 24.33 ± 1.1 | 20.67 ± 1.1 | 14 ± 2 | 19.33 ± 4.0 |
H | 25.33 ± 1 | 15.67 ± 4.0 | 4 ± 3.6 | 6.67 ± 5.7 | 25 ± 0 | 15.33 ± 3.5 | 17.67 ± 2.5 |
I | 21 ± 1 | 22 ± 0 | 10.67 ± 1.1 | 15.33 ± 0.5 | 15.33 ± 0.5 | 11.67 ± 0.5 | 16.33 ± 1.5 |
J | 24.67 ± 2.5 | 14.33 ± 1.1 | 11.67 ± 1.5 | 20 ± 0 | 15.33 ± 0.5 | 13 ± 2 | 18.33 ± 2 |
K | 21 ± 1 | 18 ± 2 | 17 ± 1 | 24.33 ± 1.1 | 14.67 ± 0.5 | 12.33 ± 1.5 | 16 ± 2.8 |
L | 16.33 ± 3.8 | 18.33 ± 0.5 | 13 ± 1.7 | 10.67 ± 1.1 | 15.33 ± 0.5 | 13.33 ± 1.5 | 16.67 ± 4.1 |
M | 9.33 ± 2.5 | 15 ± 0 | 6.67 ± 5.7 | 14 ± 1.7 | 13 ± 1 | 10.67 ± 1.1 | 13.33 ± 1.5 |
N | 15 ± 2 | 18.33 ± 1.1 | 11.67 ± 0.5 | 4 ± 3.6 | 19.67 ± 0.5 | 9.67 ± 0.5 | 16.67 ± 2.8 |
AB | 22.67 ± 3 | 19.33 ± 1.5 | 21.33 ± 1.1 | 23.33 ± 1.1 | 20 ± 0 | 21.33 ± 1.1 | 23.67 ± 1.1 |
P value | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.001 | p < 0.0001 |
DMSO | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
p value for ANNOVA, AB = Antibiotics.
Across all the polyherbal extracts, compared with antibiotic, polyherbal recipe E and G were very effective for four bacterial isolates P. vulgaris (28.33;p < 0.001), P. mirabilis (24.33; p < 0.001) P. aeruginosa (19.67 ± 0.5; p < 0.0001) and S. flexneri (13.67 ± 2.3). S. typhi was resilient towards recipe E with zero inhibition. Both the P. mirabilis and S. flexneri were also more sensitive to polyherbal extract K. Polyherbal recipe N showed potent activity against E. coli and S. flexneri. Among all the tested polyherbal extracts A, B, K, D, and N showed minimum inhibition and bactericidal effect at very low concentrations (3.12–6.25) (Table 4). Minimum inhibitory concentration ranges within (3.12–<6.25 mg/ml) while bactericidal concentration was (12.5–50 mg/ml).
Table 4.
Recipe |
V. cholerae |
E. coli |
S. flexneri |
P. mirabilis |
P. vulgaris |
S. typhi |
P. aeruginosa |
|||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Crude extract (mg/ml) | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC |
A | 3.12 | 50 | < 6.25 | 25 | 25 | >50 | 6.25 | >25 | 6.25 | >25 | 6.25 | >25 | 50 | >100 |
B | 12.5 | >50 | 6.25 | >25 | 6.25 | >25 | 25 | 50 | 25 | >50 | 6.25 | >25 | 25 | >50 |
C | < 6.25 | 25 | < 6.25 | 50 | 25 | >50 | 6.25 | 25 | 6.25 | >25 | 50 | 100 | 50 | >100 |
D | 6.25 | 25 | 6.25 | >50 | 25 | >50 | 6.25 | >25 | 6.25 | >25 | 50 | 100 | 25 | >50 |
E | 6.25 | >25 | < 6.25 | 50 | 12.5 | >50 | 6.25 | >25 | 25 | >50 | – | – | 25 | >50 |
F | 25 | >50 | 25 | 100 | 50 | 100 | 50 | 100 | 50 | 100 | 50 | >100 | 25 | >50 |
G | 6.25 | 50 | < 6.25 | 25 | 50 | 100 | 6.25 | >25 | 50 | 100 | 50 | >100 | 25 | >50 |
H | 50 | 100 | 6.25 | 50 | 50 | 100 | 50 | 100 | 6.25 | >25 | 50 | 100 | 50 | 100 |
I | < 6.25 | 25 | < 6.25 | 25 | 25 | >50 | 25 | 50 | 50 | 100 | 50 | >100 | 50 | 100 |
J | < 6.25 | 50 | < 12.5 | 25 | 25 | >50 | 25 | 50 | 50 | 100 | 50 | >100 | 50 | 100 |
K | < 6.25 | 50 | < 6.25 | 25 | 25 | >50 | 6.25 | >25 | 50 | 100 | 50 | >100 | 50 | 100 |
L | 6.25 | 25 | < 6.25 | >50 | 12.5 | >50 | 25 | >50 | 50 | 100 | 50 | >100 | 50 | 100 |
M | 6.25 | 50 | 25 | >50 | 50 | 100 | 25 | >50 | 50 | 100 | 50 | >100 | 50 | >100 |
N | 6.25 | 50 | 12.5 | >25 | 12.5 | >50 | 25 | 100 | 25 | >50 | 50 | >100 | 25 | >50 |
3.2. Antifungal activities
Polyherbal crude extracts showed potential antifungal activity. Polyherbal extracts A, C, D, and F showed good inhibition than Fluconazole (Table 5). A. nigar and A. fumigatus tended to be more sensitive for polyherbal extract C with the least number of colonies on SDA plate and statistically significant inhibition (28.67; p < 0.05) and (27; p < 0.01), respectively.
Table 5.
Polyherbal crude extract | A. nigar | Rhizopus | F. oxysporum | A. fumigatus | Trichoderma | F. graminearum |
---|---|---|---|---|---|---|
A | 24.67 ± 1.5 | 19.67 ± 4 | 17 ± 1.7 | 5 ± 5 | 30 ± 0 | 20 ± 0 |
B | 25.67 ± 6 | 0 | 17.67 ± 2.5 | 25.33 ± 5 | 29 ± 1 | 20 ± 0 |
C | 28.67 ± 1.1 | 1.67 ± 2.8 | 25.33 ± 1.1 | 27 ± 7 | 18.67 ± 1.1 | 25 ± 0 |
D | 25 ± 2 | 0 | 31 ± 1.7 | 14.33 ± 8.1 | 15.67 ± 1.1 | 25 ± 0 |
E | 24 ± 3.6 | 11.67 ± 10.4 | 24 ± 1 | 3.33 ± 2.8 | 27 ± 1.7 | 20 ± 0 |
F | 13.33 ± 12.5 | 13.33 ± 2.8 | 23.33 ± 1.5 | 19.33 ± 1.1 | 15 ± 0 | 28.67 ± 1.1 |
G | 22 ± 6 | 6.67 ± 5.7 | 23.33 ± 3 | 16.67 ± 10 | 0 | 20 ± 0 |
H | 25 ± 5 | 9.33 ± 1.1 | 24.33 ± 2 | 22.33 ± 2.5 | 19.33 ± 1.1 | 20 ± 0 |
I | 24.33 ± 1.1 | 14 ± 5.5 | 25.33 ± 1.5 | 24.67 ± 4.5 | 0 | 25.67 ± 1.1 |
J | 26.33 ± 2.8 | 12 ± 10.5 | 25.67 ± 1.1 | 15.67 ± 4.9 | 24.67 ± 0.5 | 25.33 ± 0.5 |
K | 21.33 ± 1.1 | 16.67 ± 5.7 | 20 ± 3.4 | 10.33 ± 8.9 | 0 | 23.33 ± 1.5 |
L | 22.33 ± 2.5 | 9.33 ± 1.1 | 19 ± 8.5 | 12.67 ± 11 | 0 | 20.33 ± 0.5 |
M | 22.67 ± 6.8 | 10 ± 0 | 24.33 ± 0.5 | 15 ± 10 | 15.67 ± 1.1 | 20.33 ± 0.5 |
N | 23.33 ± 2.8 | 16.33 ± 7.0 | 24 ± 2 | 17.67 ± 2.5 | 29.67 ± 0.5 | 19.67 ± 0.5 |
Fluconazole | 19.33 ± 0.5 | 16.33 ± 2.3 | 19.67 ± 2.5 | 26.67 ± 2.8 | 21.33 ± 1.1 | 22.33 ± 2.08 |
P-value | p < 0.5 | p < 0.01 | p < 0.001 | p < 0.01 | p < 0.001 | p < 0.001 |
DMSO | 0 | 0 | 0 | 0 | 0 | 0 |
Rhizopus (19.67; p < 0.01) and Trichoderma (30; p < 0.001) were more sensitive and produced the least number of colonies after treatment with polyherbal recipe A. Polyherbal recipe D and F showed higher significant inhibition against F. oxysporum (31; p < 0.001) and F. graminearum (28.67;p < 0.001), respectively as compared to standard antifungal (19.67 mm). Trichoderma was resistant to polyherbal recipe G, I, K, and L and showed no inhibition.
4. Discussion
Antimicrobial resistance is an alarming threat to human health. The rate of development of novel medicine is limited and slow. In the present study, the assessment of selective polyherbal combinations showed synergistic, antagonistic, and additive interactions. Polyherbal recipes A, B, D, E, N, K, and H were more potent and showed good antimicrobial effect. Synergism of polyherbal formulation provides a direction to develop effective antibiotics with changing ratio in active constituents. A review reported the five-year literature regarding antimicrobial activities and plant synergy concluded that synergism both within plants extracts and between plants and antibiotics can enhance the antimicrobial effect (Mundy et al., 2016).
Polyherbal recipe B, the mixture of highly used three individual plants Mentha piperita, Camellia sinensis, and Elettaria cardamomum, was more effective at least concentration against common gastrointestinal pathogens.piperita. Capsules of E. cardamomum have been used since ancient times for treating various respiratory and digestive problems. In the traditional system of Chinese medicine, it was used to treat constipation, stomach ache, and dysentery in children. M. piperita and E. cardamomum individually have not been tested against theselected pathogens yet, however C. sinensis showed good effect with least concentration (Adwan et al., 2010). Adwan et al. (Adwan et al., 2010) studied the synergistic effects of plant combinations and found a decrease in MIC value against bacterial pathogens. Polyherbal formulation with S. aromaticum, Zingiber officinalis, and T. ammi used to cure digestive ailments. Presence of 1, 8-cineole, α-ter-pinyl acetate, α-terpineol and sabinene compounds in cardamom oil can serve as natural source of antimicrobial agent (Ashokkumar et al., 2020).
Least concentration of MIC and MBC were shown by mixture A, B, D, and N i.e (3.12 mg/ml) and (<25 mg/ml), respectively. Lower concentration of MIC may be due to damage of inner and outer membrane of the bacterial cell and releasing of all cell materials observed under the Transmission electron microscope. As synergistic effects of Amoxicillin with the combination of essential oil studied by El-Kalek and Mohamed (Abd El-Kalek and Mohamed, 2012). Recipe D was a mixture of three plants i.e rhizome of Terminalia chebula (Combretaceae), seeds of Cuminum cyminum, and Foeniculum vulgare (Apiaceae) with equal ratio showed higher significant inhibition against tested pathogens. Individually F. vulgare showed good inhibition with increasing concentration but its methanolic extract was not tested yet for selected fungal and S. flexneri as well there is a lack of information available about MBC values. Methanolic extract of T. chebula and C. cyminum also have increasing inhibition with increasing concentration but lack proof for S. flexneri and fungal isolates. Essential oil from seeds of F. vulgare has potential to inhibit and kill gram-positive and gram-negative as well fungal pathogens at very low concentrations. Anethole and fenchone, are considered as the main components of its oil (Al-Hadid, 2017). MIC of anethole and fenchone reported in literature against Aspergillus species were 1.8 and 5.3 ul/ml, respectively (Mimica-Dukić et al., 2003). The mechanism of action of essential oil might be acting on the membrane integrity and releasing all the cellular contents (Diao et al., 2014). Dua et al. (Dua et al., 2013a) found that the antibacterial effect of F. vulgare is due to the presence of a higher quantity of flavonoids like gallic acid, caffeic acid, ellagic acid, quercetin, and kaempferol in its methanolic extract. As in most of the polyherbal recipes used in the present study were consists of F. vulgare with other plants so, increased in inhibiton zone may be due to these diverse compounds.
Polyherbal recipe G was a mixture of Elettaria cardamomum, Syzygium aromaticum, Cinnamomum zeylanicum, Mentha piperita, and Rosa indica with a ratio of 1:2:2:3:3, respectively, and showed good inhibition zones against E. coli, and Proteus species. C. zylinicum was also a part of polyherbal formulation with A. indica, C. longa, A. sativum, O. sanctum, and T. indica studied by Bhinge et al. (Bhinge et al., 2017). This polyherbal recipe showed additive effects when mixed with synthetic base and exhibited maximum activity. Chandra et al. (Chandra et al., 2017) reported medicinal plants such as decoction of Coriandrum sativum leaves, Cinnamomum spp., Syzygium aromaticum, which eliminate or inhibit the growth of E. coli; the most common causal agent of urinary tract infections.
Recipe E was a combination of Withania coagulans, Piper nigrum, Trachyspermum ammi, Cuminum cyminum, Foeniculum vulgare. Two plants species Cuminum cyminum, Foeniculum vulgare were belonged to Apiaceae were part of many polyherbal mixtures and reported for digestive problems and have a good antibacterial effect. Literature showed that these plants have extra amounts of essential oil and flavonoids. Piperine extracted from Piper nigrum was studied for antibacterial activity and its synergistic effect with Ciprofloxacin at a very low concentration (20 μg/mL) against Escherichia coli and Bacillus subtilis (Maitra, 2017). Acetone and ethanol extract of polyherbal formulation of Trachyspermum ammi: Cinnamonum zeylanicum: Syzygium aromaticum with the ratio of 1:1:1, 1:2:1, and 1:1:2, respectively showed enhanced activity as compared to individual plants in literature against E. coli and P. mirabilis. Phytochemical analysis confirms the presence of different secondary metabolites responsible for activity (Reji and Rajasekaran, 2015). A polyherbal formulation Laxisen found significantly effective (p < 0.003) for acute and chronic constipation is common symptom of gastrointestinal infections and badly affecting the quality of life (Sheikh et al., 2014). Polyherbal recipes that have not shown good antimicrobial effect asrecipe E showed no activity against S. typhi may have an inadequate quantity of active constituents that can kill or inhibit the bacterial population. The effectiveness of polyherbal or combination of plant extract with antibiotic may be due to modification or blocking of resistance mechanism so that bacterium becomes sensitive to these antibacterial extract in lower concentrations. Synergistic action of plant extract with antibiotics is a potential approach to overcome bacterial resistance (Stefanović, 2018).
Crude methanolic extract of polyherbal mixture A, C, D and F showed statistically significant antifungal effect against A. nigar, A. fumigatus and F. graminearum compared to Fluconazole (22.33 mm). These polyherbal mixtures share common plants with different ratios might be the reason for the change in the inhibition zone. It is noted that polyherbal mixture consist of plants from Apiaceae and Zingiberaceae showed maximum inhibition zone which may be due to essential oil present in the extracts. Polyherbal mixture comprised of three plants Azadirachta indica, Cichorium intybus, and Trigonella foenum‑graecum; demonstrated synergistic broad‑spectrum antimicrobial potential for pathogenic bacterial and fungal strains (minimum inhibition concentration: 5–7 mg/ml) (Yadav et al., 2019). In literature, there is a lack of studies reported for these individual plants against selected fungal pathogens. There is less data reported for MIC and MBC against bacterial and fungal strains, that need to be tested.
5. Conclusions
The present study confirms the efficacy of polyherbal formulations used traditionally to treat different gastrointestinal infections. All the 14 selected polyherbal crude extracts showed potential antimicrobial activity; however, they vary in inhibition effect against the micro-organisms tested. Polyherbal recipes A, B, D, G, K, N, and H and A, C, D, F showed higher significant inhibition against tested bacterial and fungal pathogens, respectively. MIC ranges within 3.12–25 mg/ml while MBC between 12.5 and 100 mg/ml.
Foeniculum vulgare (Apiaceae) is used in most of the polyherbal formulations. Polyherbal formulations consist of Apiaceae species show good inhibition may be due to the presence of essential oil in the extract. Comparison with review table individual plants of selected polyherbal mixtures are not studied for MIC and MBC. There are scarce studies reported for these plants extracts against Fusarium species, Shigella, and Proteus species.
Antimicrobial activity in combination gives a synergistic and boosted inhibition against pathogenic bacteria and fungi and thus leading towards developing more potent drugs. Traditionally used polyherbal formulations provide new hope to solving the microbial resistance issue. So, there is a need to further evaluate these polyherbal mixtures for clinical, and in vivio trials against respective diseases. The study will also provide the basis for the isolation of bioactive synergistic compounds and drug discovery after toxicity evaluation.
Polyherbal recipes A, B and N highly used recipes for curing diarrhea at local level and were more potent against pathogenic bacteria that are highly involved in diarrhea. So, these recipes should be recommended for in vivo antidiarrheal activity.
Ethical statement
After taking the oral consent from traditional healers the study was approved by the advanced board of research studies KUST.
Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgments
This article is a part of Sakina Mussarat Ph. D thesis. The authors acknowledge the KUST ORIC project entitled “Diversity and Biological Efficacy of Ethnobotanically Used Polyherbal Mixtures Against gastro-intestinal Infections in Khyber Pakhtunkhwa” for supporting this work. Thanks are extended to the laboratory staff at the Department of Botanical and Environmental Sciences, KUST for technical support. The authors would like to extend their sincere appreciation to the Researchers Supporting Project Number (RSP-2021/134), King Saud University, Riyadh, Saudi Arabia.
Footnotes
Peer review under responsibility of King Saud University.
References
- Abd El-Kalek H.H., Mohamed E.A. Synergistic effect of certain medicinal plants and amoxicillin against some clinical isolates of methicillin–resistant Staphylococcus aureus (MRSA) Int. J. Pharmaceut. Appl. 2012;3:387–398. [Google Scholar]
- Abd El Azim, M., El-Mesallamy, A.M., El-Gerby, M., Awad, A., 2014. Anti-tumor, antioxidant and antimicrobial and the phenolic constituents of clove flower Buds (Syzygiumaromaticum). J. Microb. Biochem. Technol. 10, s8–s007.
- Abdollahzadeh S., Mashouf R., Mortazavi H., Moghaddam M., Roozbahani N., Vahedi M. Antibacterial and antifungal activities of Punica granatum peel extracts against oral pathogens. J. Dentistry (Tehran, Iran) 2011;8:1. [PMC free article] [PubMed] [Google Scholar]
- Abdu, O.H., Saeed, A.A., Fdhel, T.A., 2020. Polyphenols/flavonoids analysis and antimicrobial activity in pomegranate peel extracts. Electronic J. Univ. Aden Basic Appl. Sci. 1, 14–19.
- Abi Beaulah G., Mohamed Sadiq A., Jaya Santhi R. Antioxidant and antibacterial activity of Achyranthes aspera: An in vitro study. Ann. Biol. Res. 2011;2:662–670. [Google Scholar]
- Adigüzel A., Güllüce M., Şengül M., Öğütcü H., Şahin F., Karaman I. Antimicrobial effects of Ocimum basilicum (Labiatae) extract. Turkish J. Biol. 2005;29:155–160. [Google Scholar]
- Adwan G., Abu-Shanab B., Adwan K. Antibacterial activities of some plant extracts alone and in combination with different antimicrobials against multidrug–resistant Pseudomonas aeruginosa strains. Asian Pacific J. Trop. Med. 2010;3(4):266–269. [Google Scholar]
- Agarwal D., Sharma L., Saxena S. Anti-microbial properties of fennel (Foeniculum vulgare Mill.) seed extract. J. Pharmacognosy Phytochem. 2017;6:479–482. [Google Scholar]
- Agbom J.N., Ogbu O., Iroha I.R., Moses I.B., Onuora A.L., Kalu A.C., Nwakaeze E.A., Mohammed D.I., Oke B., Egwu I.H., Ajah P.M., Okorie C.C., Okata-Nwali O.D. Antibacterial activities of Camellia sinensis plant extracts against uropathogenic E. coli in vitro and in vivo. African J. Pharm. Pharmacol. 2020;14(6):147–155. [Google Scholar]
- Agrawal, P., Kotagiri, D., Kolluru, V., 2018. Comparative analysis of antimicrobial activity of herbal extracts against pathogenic microbes. Adv. Biochem. Biotehcnol.: ABIO-163 DOI 10, 2574-7258.
- Ahmad K., Khalil A.T., Yusra, Somayya R. Antifungal, phytotoxic and hemagglutination activity of methanolic extracts of Ocimum basilicum. J. Tradit. Chin. Med. 2016;36(6):794–798. doi: 10.1016/s0254-6272(17)30017-1. [DOI] [PubMed] [Google Scholar]
- Akbar A., Ali I., Ullah S., Ullah N., Khan S.A., Rehman Z., Rehman S.U. Functional, antioxidant, antimicrobial potential and food safety applications of curcuma longa and cuminum cyminum. Pak. J. Bot. 2019;51(3) doi: 10.30848/PAK.J.BOT10.30848/PJB2019-310.30848/PJB2019-3(30). [DOI] [Google Scholar]
- Al-Hadid K.J. Quantitative analysis of antimicrobial activity of'Foeniculum vulgare': A review. Plant Omics. 2017;10(1):28–36. [Google Scholar]
- Al-Judaibi A., Al-Zahrani A., Altammar K.A., Ismail S.B., Darweesh N.T. Comparative study of antibacterial activity of plant extracts from several regions of asia. Am. J. Pharmacol. Toxicol. 2014;9(2):139–147. [Google Scholar]
- Al-Zoreky N.S. Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels. Int. J. Food Microbiol. 2009;134(3):244–248. doi: 10.1016/j.ijfoodmicro.2009.07.002. [DOI] [PubMed] [Google Scholar]
- Al Akeel R., Al-Sheikh Y., Mateen A., Syed R., Janardhan K., Gupta V.C. Evaluation of antibacterial activity of crude protein extracts from seeds of six different medical plants against standard bacterial strains. Saudi J. Biol. Sci. 2014;21(2):147–151. doi: 10.1016/j.sjbs.2013.09.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alemu, F., Tilahun, A., Elias, E., 2017. In vitro antimicrobial activity screening of Punica granatum extracts against human pathogens. of 7,2.
- Ali A., Alian M., Elmahi H. Phytochemical analysis of some chemical metabolites of Colocynth plant [Citrullus colocynthis L.] and its activities as antimicrobial and antiplasmidial. J. Basic Appl. Sci. Res. 2013;3:228–236. [Google Scholar]
- Ali, J., Hussain, A., Rehman, S., Khan, F.A., Sher, M., Antifungal Potential of Mentha piperita Leaves and Stem Extracts against Phytopathogenic Fungi.
- Ali M., Nelson A.R., Lopez A.L., Sack D.A., Remais J.V. Updated global burden of cholera in endemic countries. PLoS Neglected Trop. Dis. 2015;9(6):e0003832. doi: 10.1371/journal.pntd.0003832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ali, M.S., 2017. In vivo antimicrobial inhibition of Punica granatum extracts as mouthwash. Russian Open Med. J. 6.
- Allaithy S.A. Chemical compound of cumin and fennel seed extracts against some types of pathogenic bacteria. Iraq Med. J. 2017;1:1–6. [Google Scholar]
- Aneja K., Joshi R. Antimicrobial activity of Amomum subulatum and Elettaria cardamomum against dental caries causing microorganisms. Ethnobotanical Leaflets. 2009;2009:3. [Google Scholar]
- Aneja K.R., Joshi R. Antimicrobial activity of Syzygium aromaticum and its bud oil against dental cares causing microorganisms. Ethnobotanical Leaflets. 2010;14:960–975. [Google Scholar]
- Aneja K.R., Joshi R., Sharma C. Antimicrobial activity of Dalchini (Cinnamomum zeylanicum bark) extracts on some dental caries pathogens. J. Pharm. Res. 2009;2:1387–1390. [Google Scholar]
- Archana S., Abraham J. Comparative analysis of antimicrobial activity of leaf extracts from fresh green tea, commercial green tea and black tea on pathogens. J. Appl. Pharmaceut. Sci. 2011;1:149. [Google Scholar]
- Arman M.S.I., Akter S., Mahaldar K., Tuly F.A., Hossain M.S. Investigation of antiemetic, antimicrobial and anti-radical properties of methanolic extract of Foeniculum vulgare: A medicinal herb. Discovery Phytomed. 2019;6:70–76. [Google Scholar]
- Ashokkumar K., Murugan M., Dhanya M.K., Warkentin T.D. Botany, traditional uses, phytochemistry and biological activities of cardamom [Elettaria cardamomum (L.) Maton]–A critical review. J. Ethnopharmacol. 2020;246:112244. doi: 10.1016/j.jep.2019.112244. [DOI] [PubMed] [Google Scholar]
- Azadpour M., Azadpour N., Bahmani M., Hassanzadazar H., Rafieian-Kopaei M., Naghdi N. Antimicrobial effect of Ginger (Zingiber officinale) and mallow (Malva sylvestris) hydroalcholic extracts on four pathogen bacteria. Der Pharmacia Lettre. 2016;8:181–187. [Google Scholar]
- Bajpai V.K., Rahman A., Shukla S., Shukla S., Yassir Arafat S.M., Hossain M.A., Mehta A. In vitro kinetics and antifungal activity of various extracts of Terminalia chebula seeds against plant pathogenic fungi. Arch. Phytopathol. Plant Protection. 2010;43(8):801–809. [Google Scholar]
- Baliah N., Astalakshmi A. Phytochemical analysis and antibacterial activity of extracts from Terminalia chebula Retz. Int. J. Curr. Micro Appl. Sci. 2014;3:992–999. [Google Scholar]
- Bano S., Ahmad N., Sharma A.K. Phytochemical screening and evaluation of anti-microbial and anti-oxidant activity of Elettaria cardamom (Cardamom) J. Appl. Natural Sci. 2016;8(4):1966–1970. [Google Scholar]
- Barathikannan K., Venkatadri B., Khusro A., Al-Dhabi N.A., Agastian P., Arasu M.V., Choi H.S., Kim Y.O. Chemical analysis of Punica granatum fruit peel and its in vitro and in vivo biological properties. BMC Complement. Alternative Med. 2016;16:264. doi: 10.1186/s12906-016-1237-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bashir S., Khan B., Babar M., Andleeb S., Hafeez M., Ali S., Khan M. Assessment of bioautography and spot screening of TLC of green tea (Camellia) plant extracts as antibacterial and antioxidant agents. Indian J. Pharmaceut. Sci. 2014;76:364. [PMC free article] [PubMed] [Google Scholar]
- Bashir, S.F., Gurumayum, S., Kaur, S., 2015. In vitro antimicrobial activity and preliminary phytochemical screening of methanol, chloroform, and hot water extracts of ginger (Zingiber officinale). IN VITRO 8.
- Bashyal S., Guha A. Evaluation of Trachyspermum ammi seeds for antimicrobial activity and phytochemical analysis. Evaluation. 2018;11(5):274. doi: 10.22159/ajpcr.2018.v11i5.24430. [DOI] [Google Scholar]
- Bereksi M.S., Hassaïne H., Bekhechi C., Abdelouahid D.E. Evaluation of antibacterial activity of some medicinal plants extracts commonly used in Algerian traditional medicine against some pathogenic bacteria. Pharmacognosy J. 2018;10(3):507–512. [Google Scholar]
- Beyazen A., Dessalegn E., Mamo W. Phytochemical screening and biological activities of leaf of Foeniculum vulgare (Ensilal) World J. Agric. Sci. 2017;13:01–10. [Google Scholar]
- Bhargava S., Dhabhai K., Batra A., Sharma A., Malhotra B. Zingiber officinale: Chemical and phytochemical screening and evaluation of its antimicrobial activities. J. Chem. Pharmaceut. Res. 2012;4:360–364. [Google Scholar]
- Bhinge, S., Bhutkar, M., Randive, D., Wadkar, G., Todkar, S., Kakade, P., Kadam, P., 2017. Formulation development and evaluation of antimicrobial polyherbal gel. In: Annales Pharmaceutiques Francaises, Elsevier, pp 349–358. [DOI] [PubMed]
- Bhuiyan F.R., Hasan M., Imran A.S. Antimicrobial activity screening for three Citrus pulp extracts and phytochemical constituency profiling. J. Pharmacognosy Phytochem. 2019;8:157–161. [Google Scholar]
- BK, D., Sen, M., Alam, M., 2013. In vitro inhibitory activity of Achyranthes aspera L. seed against some test bacteria. Am. J. Life Sci. 1, 113–116.
- Chakrabort Devjani, Chakrabort Sunanda. Bioassay-guided isolation and identification of antibacterial and antifungal component from methanolic extract of green tea leaves (Camellia sinensis) Res. J. Phytochem. 2010;4(2):78–86. [Google Scholar]
- Chakraborty M, Mitra A. The antioxidant and antimicrobial properties of the methanolic extract from Cocos nucifera mesocarp. Food Chem. 2008;107(3):994–999. [Google Scholar]
- Chandra Harish, Bishnoi Parul, Yadav Archana, Patni Babita, Mishra Abhay, Nautiyal Anant. Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials—a review. Plants. 2017;6(4):16. doi: 10.3390/plants6020016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandrasekaran M, Venkatesalu V. Antibacterial and antifungal activity of Syzygium jambolanum seeds. J. Ethnopharmacol. 2004;91(1):105–108. doi: 10.1016/j.jep.2003.12.012. [DOI] [PubMed] [Google Scholar]
- Chang, S., Mohammadi Nafchi, A., Karim, A., 2016. Chemical composition, antioxidant activity and antimicrobial properties of three selected varieties of Iranian fennel seeds. J. Essential Oil Res. 28, 357–363.
- Chaudhary N., Husain S.S., Ali M. Chemical composition and antimicrobial activity of volatile oil of the seeds of Cuminum cyminum L. World J. Pharm. Pharmaceut. Sci. 2014;3:1428–1441. [Google Scholar]
- Dahham S.S., Ali M.N., Tabassum H., Khan M. Studies on antibacterial and antifungal activity of pomegranate (Punica granatum L.) Am. Eurasian J. Agric. Environ. Sci. 2010;9:273–281. [Google Scholar]
- Das K., Rahman M.A. Analgesic and antimicrobial activities of Curcuma zedoaria. Chem. Anal. 2012;9:20. [Google Scholar]
- Diao Wen-Rui, Hu Qing-Ping, Zhang Hong, Xu Jian-Guo. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.) Food Control. 2014;35(1):109–116. [Google Scholar]
- Doss A., Vijayasanthi M., Anand S., Parivuguna V., Venkataswamy R. Screening of Antimicrobial activity of essential oil and methanol extracts of Citrullus colocynthis (L.) Schrad. South Asian J. Biol. Sci. 2011;1:7–15. [Google Scholar]
- Dua A., Garg G., Mahajan R. Polyphenols, flavonoids and antimicrobial properties of methanolic extract of fennel (Foeniculum vulgare Miller) Eur. J. Exp. Biol. 2013;3:203–208. [Google Scholar]
- Dua A., Garg G., Nagar S., Mahajan R. Methanol extract of clove (Syzygium aromaticum Linn.) damages cells and inhibits growth of enteropathogens. J. Innov. Biol. 2014;1:200–205. [Google Scholar]
- Dua Anita, Garg Gaurav, Singh Balkar, Mahajan Ritu. Antimicrobial properties of methanolic extract of cumin (Cuminum Cyminum) Seeds. Int. J. Res. Ayurveda Pharm. 2013;4(1):104–107. [Google Scholar]
- Dzotam, J.K., Kuete, V., 2017. Antibacterial and antibiotic-modifying activity of methanol extracts from six Cameroonian food plants against multidrug-resistant enteric bacteria. BioMed Res. Int. 2017. [DOI] [PMC free article] [PubMed]
- Eidi Samaneh, Azadi Hamideh Ghodrati, Rahbar Nasrollah, Mehmannavaz Hamid Reza. Evaluation of antifungal activity of hydroalcoholic extracts of Citrullus colocynthis fruit. J. Herbal Med. 2015;5(1):36–40. [Google Scholar]
- Ekawati, E., Darmanto, W., 2019. Lemon (citrus limon) juice has antibacterial potential against diarrhea-causing pathogen. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, p 012023.
- El-Mesallamy Amani, Hussein Sahar, Gad Gehan, Abd-Elazem Mohamed, Ebrahem Eman. Cytotoxicity and Anti-microbial Activity of Aqueous Methanolic Extract of Zingiber officinale Roscoe (Zingiberacae) Eur. J. Med. Plants. 2017;19(2):1–8. [Google Scholar]
- Elansary Hosam O., Szopa Agnieszka, Kubica Paweł, Ekiert Halina, Klimek-Szczykutowicz Marta, El-Ansary Diaa O., Mahmoud Eman A. Polyphenol profile and antimicrobial and cytotoxic activities of natural Mentha× piperita and Mentha longifolia populations in Northern Saudi Arabia. Processes. 2020;8(4):479. doi: 10.3390/pr8040479. [DOI] [Google Scholar]
- Farooqui Amber, Khan Adnan, Borghetto Ilaria, Kazmi Shahana U., Rubino Salvatore, Paglietti Bianca, Cloeckaert Axel. Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria. PLoS ONE. 2015;10(2):e0118431. doi: 10.1371/journal.pone.0118431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fazal H., Rauf A. Antimicrobial activity of different tea varieties available in Pakistan. Pakistan J. Pharmaceut. Sci. 2015;28:2091–2094. [PubMed] [Google Scholar]
- Gajendiran, A., Thangaraman, V., Thangamani, S., Ravi, D., Abraham, J., 2016. Antimicrobial, antioxidant and anticancer screening of Ocimum basilicum seeds. Bull. Pharmaceut. Res. 6, 114–119.
- Ghulam H., Ahmad A. In vitro antibacterial and antifungal activity of flower buds (clove) of Syzygium aromaticum. J. Chem. Soc. Pak. 2014;36:723. [Google Scholar]
- Gupta H., Kumar K., Agrawal R. Evaluation of antibacterial and antioxidant activity from fruit extract of Cassia fistula L. Biomed. Pharmacol. J. 2015;3:207–210. [Google Scholar]
- Gurudeeban S., Rajamanickam E., Ramanathan T., Satyavani K. Antimicrobial activity of Citrullus colocynthis in Gulf of Mannar. Int. J. Curr. Res. 2010;2:78–81. [Google Scholar]
- Hameed B., Ali Q., Hafeez M., Malik A. Antibacterial and antifungal activity of fruit, seed and root extracts of Citrullus colocynthis plant. Biol. Clin. Sci. Res. J. 2020;33 [Google Scholar]
- Hany O., Neelam A. Antimicrobial Activity of Citrullus Colocynthis (Bitter Mellon) Biomed. J. Sci. Tech. Res. 2020;27:21156–21158. [Google Scholar]
- Hasan H.A., Raauf A.M.R., Razik B., Hassan B.A.R. Chemical composition and antimicrobial activity of the crude extracts isolated from Zingiber officinale by different solvents. Pharmaceut. Anal. Acta. 2012;3:1–5. [Google Scholar]
- Hassan W., Noreen H., Rehman S., Gul S. Antimicrobial efficacies, antioxidant activity and nutritional potentials of Trachyspermum ammi. Vitam Miner. 2016;5:1–5. [Google Scholar]
- Heatley N. A method for the assay of penicillin. Biochem. J. 1944;38:61–65. doi: 10.1042/bj0380061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hindi N.K.K., Chabuck Z.A.G. Antimicrobial activity of different aqueous lemon extracts. J. Appl. Pharmaceut. Sci. 2013;3:74. [Google Scholar]
- Hussain T., Arshad M., Khan S., Sattar H., Qureshi M.S. In vitro screening of methanol plant extracts for their antibacterial activity. Pak. J. Bot. 2011;43:531–538. [Google Scholar]
- Idan, S.A., Al-Marzoqi, A.H., Hameed, I.H., 2015. Spectral analysis and anti-bacterial activity of methanolic fruit extract of Citrullus colocynthis using gas chromatography-mass spectrometry. African J. Biotechnol. 14, 3131–3158.
- Igwe, O., Ugwunnaji, I., 2016. Phytochemistry, Antioxidant and Antimicrobial Studies of Endosperm Tissues of Cocos nucifera L.
- Iotsor, B., Iseghohi, F., Oladoja, O., Raji, O., Yusuf, Z., Oyewole, O., 2019. Antimicrobial Activities of Garlic and Ginger Extracts on Some Clinical Isolates. Int. J. Biotechnol. 8, 59–65.
- Islam S., Rahman A., Sheikh M.I., Rahman M., Jamal A.H.M., Alam F. In vitro antibacterial activity of methanol seed extract of Elettaria cardamomum (L.) Maton. Agric. Conspectus Scientificus. 2010;75:113–117. [Google Scholar]
- Jayalakshmi B., Raveesha K., Amruthesh K. Phytochemical investigations and antibacterial activity of some medicinal plants against pathogenic bacteria. J. Appl. Pharmaceut. Sci. 2011;1:124. [Google Scholar]
- Kadhim, M.J., Sosa, A.A., Hameed, I.H., 2016. Evaluation of anti-bacterial activity and bioactive chemical analysis of Ocimum basilicum using Fourier transform infrared (FT-IR) and gas chromatography-mass spectrometry (GC-MS) techniques. J. Pharmacognosy Phytotherapy 8, 127–146.
- Kaushik P., Goyal P. Evaluation of various crude extracts of Zingiber officinale rhizome for potential antibacterial activity: A study in vitro. Adv. Microbiol. 2011;1:7. [Google Scholar]
- Kaushik P., Goyal P., Chauhan A., Chauhan G. In vitro evaluation of antibacterial potential of dry fruitextracts of Elettaria cardamomum Maton (Chhoti Elaichi) Iranian J. Pharmaceut. Res.: IJPR. 2010;9:287. [PMC free article] [PubMed] [Google Scholar]
- Kaveti B., Xian P.X., Siew Fern R., Lee M.T.L., Baig M. Antimicrobial and Antioxidant activities of the Seeds of Achyranthes Aspera. Int. J. 2013;4:747–751. [Google Scholar]
- Kesur P., Gahlout M., Chauhan P., Prajapati H. Evaluation of antimicrobial properties of peels and juice extract of Punica granatum (Pomegranate) Int. J. Res. Sci. Innov. 2016;3:11–20. [Google Scholar]
- Kirby W., Yoshihara G., Sundsted K., Warren J. Clinical usefulness of a single disc method for antibiotic sensitivity testing. Antibiotics Annual. 1956;892 [PubMed] [Google Scholar]
- Kumari S., Sarmah N., Handique A. Antioxidant and antimicrobial potential of ripen and unripe juice of Citrus limon. Int. J. Pharm. Sci. Invent. 2014;3:18–20. [Google Scholar]
- Latteef N.S. Phytochemical, antibacterial and antioxidant activity of Camellia sinensis methanolic and aqueous extracts. IOSR J. Pharm. Biol. Sci. 2016;11:113–119. [Google Scholar]
- Liya Sabiha Jahan, Siddique Romana. Determination of antimicrobial activity of some commercial fruit (apple, papaya, lemon and strawberry) against bacteria causing urinary tract infection. Eur. J. Microbiol. Immunol. 2018;8(3):95–99. doi: 10.1556/1886.2018.00014. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mabona Unathi, Viljoen Alvaro, Shikanga Emmanual, Marston Andrew, Van Vuuren Sandy. Antimicrobial activity of southern African medicinal plants with dermatological relevance: from an ethnopharmacological screening approach, to combination studies and the isolation of a bioactive compound. J. Ethnopharmacol. 2013;148(1):45–55. doi: 10.1016/j.jep.2013.03.056. [DOI] [PubMed] [Google Scholar]
- Maharjan Bijaya Laxmi, Mainali Smritri, Baral Bikash. Phytochemical screening and antimicrobial assay of some Nepalese medicinal plants. Sci. World. 2011;9(9):90–92. [Google Scholar]
- Maitra J. Synergistic effect of piperine, extracted from Piper nigrum, with ciprofloxacin on Escherichia coli, Bacillus subtilis. Pharm. Sin. 2017;8:29–34. [Google Scholar]
- Mathabe M.C., Nikolova R.V., Lall N., Nyazema N.Z. Antibacterial activities of medicinal plants used for the treatment of diarrhoea in Limpopo Province, South Africa. J. Ethnopharmacol. 2006;105(1-2):286–293. doi: 10.1016/j.jep.2006.01.029. [DOI] [PubMed] [Google Scholar]
- Mehreen, A., Waheed, M., Liaqat, I., Arshad, N., 2016. Phytochemical, antimicrobial, and toxicological evaluation of traditional herbs used to treat sore throat. BioMed Res. Int. 2016. [DOI] [PMC free article] [PubMed]
- Mehrotra S., Srivastava A.K. Comparative antimicrobial activities of Neem, Amla, Aloe, Assam Tea and Clove extracts against Vibrio cholerae, Staphylococcus aureus and Pseudomonas aeruginosa. J. Med. Plants Res. 2010;4:2393–2398. [Google Scholar]
- Mehta Abhishek, Saxena Gaurav, Mani Abin. Comparative analysis of antibacterial activity of aqueous, ethanolic, methanolic and acetone extracts of commercial green tea and black tea against standard bacterial strains. Int. J. Curr. Microbiol. Appl. Sci. 2016;5(11):145–152. [Google Scholar]
- Mimica-Dukić N., Kujundžić S., Soković M., Couladis M. Essential oil composition and antifungal activity of Foeniculum vulgare Mill. obtained by different distillation conditions. Phytotherapy Res.: Int. J. Devoted Pharmacol. Toxicol. Evaluation Nat. Product Derivatives. 2003;17(4):368–371. doi: 10.1002/ptr.1159. [DOI] [PubMed] [Google Scholar]
- Mishra R., Arshad M., Sami A. Antibacterial properties of Rosa indica (L.) Stem, leaves and flowers. J. Pharmaceut. Biomed. Sci. 2011;12:1–3. [Google Scholar]
- Monisha K., Nirali A., Vandita P., Khyati P., Ajay G., Vinit M.K., Verma H., Prasad S.B., Yashwant H.S. Phytochemical determination and evaluation of antibacterial, antifungal and cytotoxic effects in selected medicinal plants. Int. J. Curr. Pharm. Rev. Res. 2013;4:69–76. [Google Scholar]
- Mostafa Ashraf A., Al-Askar Abdulaziz A., Almaary Khalid S., Dawoud Turki M., Sholkamy Essam N., Bakri Marwah M. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J. Biol. Sci. 2018;25(2):361–366. doi: 10.1016/j.sjbs.2017.02.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mostafa M.G., Rahman M., Karim M.M. Antimicrobial activity of Terminalia chebula. Int. J. Med. Arom. Plan. 2011;1:175–179. [Google Scholar]
- Motamedi H., Darabpour E., Gholipour M., Nejad S.M. Seyyed. Antibacterial effect of ethanolic and methanolic extracts of Plantago ovata and Oliveria decumbens endemic in Iran against some pathogenic bacteria. Int. J. Pharmacol. 2010;6(2):117–122. [Google Scholar]
- Mundy Lorna, Pendry Barbara, Rahman Mukhlesur. Antimicrobial resistance and synergy in herbal medicine. J. Herbal Med. 2016;6(2):53–58. [Google Scholar]
- Mussarat S., Adnan M., Begum S., Alqarawi A.A., Rehman S.U., Abd_Allah E.F. Diversity of traditionally used polyherbal medicines. Pak J Bot. 2021;53:1417–1432. [Google Scholar]
- NCCLS, 2000. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, NCCLS Wayne^ ePA PA.
- Njobdi S., Gambo M., Ishaku G.A. Antibacterial Activity of Zingiber officinale on Escherichia coli and Staphylococcus aureus. J. Adv. Biol. Biotechnol. 2018;19(1):1–8. [Google Scholar]
- Nora N.B., Hamid K., Snouci M., Boumediene M., Abdellah M. Phytochemical and antibacterial screening of Citrullus colocynthis of South-west Algeria. J. Chem. Pharmaceut. Res. 2015;7:1344–1348. [Google Scholar]
- Ogato D.M., Mauti E.M., Mauti G.O., Kowanga D.K., Ouno G.A. Antimicrobial activity of Eugenia jambolana seeds against foodborne isolates. J. Sci. Innov. Res. 2015;4:232–236. [Google Scholar]
- Oikeh E.I., Omoregie E.S., Oviasogie F.E., Oriakhi K. Phytochemical, antimicrobial, and antioxidant activities of different citrus juice concentrates. Food Sci. Nutrit. 2016;4(1):103–109. doi: 10.1002/fsn3.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okeke M.I., Okoli A.S., Eze E.N., Ekwume G.C., Okosa E.U., Iroegbu C.U. Antibacterial activity of Citrus limonum fruit juice extract. Pak. J. Pharm. Sci. 2015;28:1567–1571. [PubMed] [Google Scholar]
- Okmen G., Mammadhkanli M., Vurkun M. The antibacterial activities of Syzygium aromaticum (L.) Merr. & Perry against oral bacteria and its antioxidant and antimutagenic activities. Int. J. Pharmaceut. Sci. Res. 2018;9:4634–4641. [Google Scholar]
- Pandey A., Singh P. Antibacterial activity of Syzygium aromaticum (clove) with metal ion effect against food borne pathogens. Asian J. Plant Sci. Res. 2011;1:69–80. [Google Scholar]
- Patel S.M., Saravolatz L.D. Monotherapy versus combination therapy. Med. Clin. 2006;90(6):1183–1195. doi: 10.1016/j.mcna.2006.07.008. [DOI] [PubMed] [Google Scholar]
- Pathak D., Dave K.M., Aliasgar L. Antimicrobial Properties of Rosa indica (A New Start with Nature) Biosci. Biotechnol. Res. Asia. 2019;16(2):403–409. [Google Scholar]
- Patil S., Shinde S., Kandpile P., Jain A. Evaluation of antimicrobial activity of asafoetida. Int. J. Pharmaceut. Sci. Res. 2015;6:722. [Google Scholar]
- Peerzade, N., Sayed, N., Das, N., 2018. Antimicrobial and phytochemical screening of methanolic fruit extract of Withania coagulans L. Dunal for evaluating the antidiabetic activity.
- Prajapati M., Pandya D., Maitrey B. Comparative Phytochemicalscreening and Antibacterial activity of leaf and flowering bud of Syzygium aromaticum. L Int. J. Botany Stud. 2018;3:55–60. [Google Scholar]
- Rai, A.K., Joshi, R., 2009. Evaluation of antimicrobial properties of fruit extracts of Terminalia chebula against dental caries pathogens.
- Rajeswari A. Evaluation of phytochemical constituents, quantitative analysis and antimicrobial efficacy of potential herbs against selected microbes. Evaluation. 2015;8 [Google Scholar]
- Raju B., Ballal M., Bairy I. A novel treatment approach towards emerging multidrug resistant Enteroaggregative Escherichia coli (EAEC) causing acute/persistent diarrhea using medicinal plant extracts. Res. J. Pharmaceut., Biol. Chem. Sci. 2011;2:15–23. [Google Scholar]
- Rashid, M., Shabbir, A., Bilal, R., Antityphoid Activity of Peel, Pericarp and Fruit Extracts of Punica Granatum (Pomegranate) in vitro.
- Reji R., Rajasekaran M. Evaluation of synergistic antimicrobial activity of Cinnamomum zeylancium, Trachyspermum ammi and Syzygium aromaticum. Int. J. Pharmaceut. Sci. Res. 2015;6:304–311. [Google Scholar]
- Riaz, H., Begum, A., Raza, S.A., Khan, Z.M.-U.-D., Yousaf, H., Tariq, A., 2015. Antimicrobial property and phytochemical study of ginger found in local area of Punjab, Pakistan. Int. Curr. Pharmaceut. J. 4, 405–409.
- Rikhi M., Bhatnagar S., Sanwal H., Pooja V. Antimicrobial properties of indian medicinal plants and their effect in attenuating fungal virulence: A herbal approach. Int. J. Pharmaceut. Res. Allied Sci. 2015;4 [Google Scholar]
- Roy N., Mandal S., Mahanti B., Dasgupta S. Antimicrobial activity of Green Tea: A comparative study with different Green Tea extract. PharmaTutor. 2018;6(1):23. doi: 10.29161/PT.v6.i1.2018.23. [DOI] [Google Scholar]
- Saee Y., Dadashi M., Eslami G., Goudarzi H., Taheri S., Fallah F. Evaluation of antimicrobial activity of Cuminum cyminum essential oil and extract against bacterial strains isolated from patients with symptomatic urinary tract infection. Novelty Biomed. 2016;4:147–152. [Google Scholar]
- Saeidi, S., Boroujeni, N.A., Ahmadi, H., Hassanshahian, M., 2015. Antibacterial activity of some plant extracts against extended-spectrum beta-lactamase producing Escherichia coli isolates. Jundishapur J. Microbiol. 8. [DOI] [PMC free article] [PubMed]
- Safdar, Y., Malik, T., Antibacterial activity of the rose extract.
- Sah A.N., Juyal V., Melkani A.B. Antimicrobial activity of six different parts of the plant Citrus medica Linn. Pharmacognosy J. 2011;3(21):80–83. [Google Scholar]
- Saha R.K., Zaman N.M., Roy P. Comparative evaluation of the medicinal activities of methanolic extract of seeds, fruit pulps and fresh juice of Syzygium cumini in vitro. J. Coastal Life Med. 2013;1:300–308. [Google Scholar]
- Saha S., Dhar T.D., Sengupta C., Ghosh P. Biological activities of essential oils and methanol extracts of five Ocimum species against pathogenic bacteria. Czech J. Food Sci. 2013;31(No. 2):195–202. [Google Scholar]
- Sajjad W., Sohail M., Ali B., Haq A., Din G., Hayat M., Khan I., Ahmad M., Khan S. Antibacterial activity of Punica granatum peel extract. Mycopath. 2015;13:105–111. [Google Scholar]
- Salami M., Rahimmalek M., Ehtemam M.H. Inhibitory effect of different fennel (Foeniculum vulgare) samples and their phenolic compounds on formation of advanced glycation products and comparison of antimicrobial and antioxidant activities. Food Chem. 2016;213:196–205. doi: 10.1016/j.foodchem.2016.06.070. [DOI] [PubMed] [Google Scholar]
- Saliem A., AbedSalih A. Evaluation the antibacterial properties of different extracts of cinnamomum zeylanicum barks. Adv. Anim. Vet. Sci. 2018;6:380–383. [Google Scholar]
- Salmen, S.H., Aloufi, A.S., Wainwright, M., Alatar, A., Alharbi, S.A., 2016. Antibacterial Activity of Methanol Extract of Pomegranate (Punica granatum L.) Peels. Biosci. Biotechnol. Res. Asia 9, 229–233.
- Shafiq S.A., Mahdi L.H., Ajja H.A., Muslim S.N. In vitro antimicrobial agents of fruit peel extracts of Punica granatum L. and Citrus sinensis against many bacterial and fungal genera. Int. J. Curr. Sci. 2013;9:E101–E104. [Google Scholar]
- Shahbazi Y. Antibacterial and antioxidant properties of methanolic extracts of apple (Malus pumila), grape (Vitis vinifera), pomegranate (Punica granatum L.) and common fig (Ficus carica L.) fruits. Pharmaceut. Sci. 2017;23(4):308–315. [Google Scholar]
- Shahid W., Durrani R., Iram S., Durrani M., Khan F.A. Antibacterial activity in vitro of medicinal plants. Sky J. Microbiol. Res. 2013;1:5–21. [Google Scholar]
- Shahriar M. Antimicrobial activity of the rhizomes of curcuma zedoaria. J. Bangladesh Acad. Sci. 2010;34:201–203. [Google Scholar]
- Shakya A., Luitel B., Kumari P., Devkota R., Dahal P.R., Chaudhary R. Comparative study of antibacterial activity of juice and peel extract of citrus fruits. Tribhuvan Univ. J. Microbiol. 2019;6:82–88. [Google Scholar]
- Sharma C., Aneja K.R., Kasera R., Aneja A. Antimicrobial potential of Terminalia chebula Retz. Fruit extracts against ear pathogens. World J. Otorhinolaryngol. 2012;2:8–13. [Google Scholar]
- Sharma L., Agarwal D., Saxena S., Kumar H., Kumar M., Verma J., Singh B. Antibacterial and Antifungal activity of ajwain (Trachyspermum ammi) in different solvent. J. Pharmacognosy Phytochem. 2018;7:2672–2674. [Google Scholar]
- Sharma, P., Shrivastava, D. In-vitro Efficacy of Methanol and Acetone Extracts of Trigonella foenum (Fenugreek) and Trachyspermum ammi (Ajwain) Against Pathogenic Bacteria.
- Sharma V., Kumar T., Dev K. Effect of medicinal plant extracts on the antimicrobial activity of amoxyclave and erythromycin against E. coli and S. aureus. Int. J. Pharmaceut. Sci. Res. 2016;7:4615–4625. [Google Scholar]
- Sheikh M.I., Islam S., Rahman A., Rahman M., Rahman M., Rahman M., Rahim A., Alam F. Control of some human pathogenic bacteria by seed extracts of cumin (Cuminum cyminum L.) Agric. Conspectus Scientificus. 2010;75:39–44. [Google Scholar]
- Sheikh Z.A., Khan A.A., Nawaz A., Zahoor A., Khan S.S., Usmanghani K. Development and clinical evaluation of polyherbal laxative laxisen. RADS J. Pharm. Pharmaceut. Sci. 2014;2:63–70. [Google Scholar]
- Shete H., Chitanand M. Antimicrobial activity of some commonly used Indian Spices. Int. J. Curr. Microbiol. Appl. Sci. 2014;3:765–770. [Google Scholar]
- Shokrian, T., Sadat, N.S.A., Nematzadeh, G.A., Alavi, S.M., 2016. Evaluating Antibacterial Activity of In Vitro Culture of Ajwain (Trachyspermum copticum) Extract and Comparison with Seed Extract and Essential Oils.
- Shrivastava V., Bhardwaj U., Sharma V., Mahajan N., Sharma V., Shrivastava G. Antimicrobial activities of Asafoetida resin extracts (a potential Indian spice) J. Pharm. Res. 2012;5:5022–5024. [Google Scholar]
- Singh D., Singh D., Choi S.M., Zo S.M., Ki S.B., Han S.S. Therapeutical effect of extracts of Terminalia chebula in inhibiting human pathogens and free radicals. Int. J. Biosci., Biochem. Bioinform. 2012:164–167. doi: 10.7763/IJBBB.2012.V2.93. [DOI] [Google Scholar]
- Singh G., Kiran S., Marimuthu P., Isidorov V., Vinogorova V. Antioxidant and antimicrobial activities of essential oil and various oleoresins of Elettaria cardamomum (seeds and pods) J. Sci. Food Agric. 2008;88(2):280–289. [Google Scholar]
- Singh J., Singh R., Parasuraman S., Kathiresan S. Antimicrobial activity of extracts of bark of cinnamomum cassia and cinnamomum zeylanicum. Int. J. Pharmaceut. Investig. 2020;10(2):141–145. [Google Scholar]
- Singh N., Jaiswal J., Tiwari P., Sharma B. Phytochemicals from Juice as Potential Antibacterial Agents. The Open Bioactive Compounds J. 2020;8 [Google Scholar]
- Singh, P., Tripathi, S.K., 2018. Therapeutic effect of Indian spices in the treatment of gastrointestinal diseases caused by Vibrio species.
- Solomakos N., Govaris A., Koidis P., Botsoglou N. The antimicrobial effect of thyme essential oil, nisin and their combination against Escherichia coli O157: H7 in minced beef during refrigerated storage. Meat Sci. 2008;80(2):159–166. doi: 10.1016/j.meatsci.2007.11.014. [DOI] [PubMed] [Google Scholar]
- Sowmya L., Deepika S., Geetha S., Sri L. Biochemical and antimicrobial analysis of rose petals (Rosa indica) Eur. J. Pharm. Med. Res. 2017;4:637–640. [Google Scholar]
- Spencer J.F., de Spencer A.L.R. Springer Science & Business Media; 2004. Public health microbiology: methods and protocols. [Google Scholar]
- Srinivasulu, N., Rao, B.S.B., Mallaiah, P., Sudhakara, G., Prasad, T.M., Saralakumari, D., 2016. Screening, determination of phytoconstituents and antimicrobial activity of different solvent extracts of different parts of achyranthes aspera on human pathogenic bacteria. Pharmaceut. Res. 6.
- Srivastava A., Singh A.N., Singh M. Antibacterial activity of spices against Vibrio species isolated from pond water. European J. Exp. Biol. 2016;6:21–25. [Google Scholar]
- Stefanović, O.D., 2018. Synergistic activity of antibiotics and bioactive plant extracts: a study against Gram-positive and Gram-negative bacteria. Bacterial Pathogenesis Antibacterial Control 23.
- Subramanion J., Zakaria Z., Sreenivasan S. Antimicrobial activity and toxicity of methanol extract of Cassia fistula seeds. Res. J. Pharmaceut., Biol. Chem. Sci. 2010;1:391–398. [Google Scholar]
- Sudhanshu M.S., Rao N., Menghani E. Phytochemical and antimicrobial activity of Withania coagulans (Stocks) Dunal (Fruit) Int. J. Pharm. Pharm. Sci. 2012;4:387–389. [Google Scholar]
- Sunilson J.A.J., Suraj R., Rejitha G., Anandarajagopal K., Kumari A.A.G., Promwichit P. In vitro antimicrobial evaluation of Zingiber officinale, Curcuma longa and Alpinia galanga extracts as natural food preservatives. Am. J. Food Technol. 2009;4:192–200. [Google Scholar]
- Talreja T., Kumar M., Goswami A., Sharma T. In vitro Screening of Antibacterial Potentials of Achyranthes aspera Azolla pinnata and Cissus quadrangularis. Int. J. Curr. Microbiol. Appl. Sci. 2017;6:483–488. [Google Scholar]
- Thangavel P., Ramasamy R.K. Phytochemical screening and antibacterial and antifungal activity of the stem, leaf and fruit extracts using different solvent of Citrullus colocynthis (L.) Schrad. J. Pharmacognosy Phytochem. 2019;8:352–355. [Google Scholar]
- Ullah N., Ali J., Khan F.A., Khurram M., Hussain A., Rahman I., Rahman Z., Ullah S. Proximate composition, minerals content, antibacterial and antifungal activity evaluation of pomegranate (Punica granatum L.) peels powder. Middle East J. Sci. Res. 2012;11:396–401. [Google Scholar]
- Ushimaru, P.I., Silva, M.T.N.d., Di Stasi, L.C., Barbosa, L., Fernandes Junior, A., 2007. Antibacterial activity of medicinal plant extracts. Br. J. Microbiol. 38, 717–-719.
- Vasudeo Z., Sonika B. Antimicrobial activity of tea (Camellia sinensis) Biomed. Pharmacol. J. 2009;2:173. [Google Scholar]
- Vizhi D.K., Irulandi K., Mehalingam P., Kumar N.N. In vitro antimicrobial activity and phytochemical analysis of fruits of Syzygium aromaticum (L.) Merr. & LM Perry-An important medicinal Plant. J. Phytopharm. 2016;5:137–140. [Google Scholar]
- Vyas P., Suthar A., Patel D., Dayma P., Raval J., Joshi D. Antimicrobial activity of extracts of Cinnamomum zeylanicum Bark and Its Combination with Antibiotics against Various Micro Organisms. J. Chem. Pharmaceut. Res. 2015;7:68–70. [Google Scholar]
- Wankhede T. Evaluation of antioxidant and antimicrobial activity of the Indian clove Syzygium aromaticum L. Merr. and Perr. Int. Res. J. Sci. Eng. 2015;3:166–172. [Google Scholar]
- Yadav S.K., Jain G.K., Mazumder A., Khar R.K. Antimicrobial activity of a novel polyherbal combination for the treatment of vaginal infection. J. Adv. Pharm. Technol. Res. 2019;10:190. doi: 10.4103/japtr.JAPTR_3_19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yadufashije C., Niyonkuru A., Munyeshyaka E., Madjidi S., Mucumbitsi J. Antibacterial activity of ginger extracts on bacteria isolated from digestive tract infection patients attended Muhoza Health Center. Asian J. Med. Sci. 2020;11:35–41. [Google Scholar]
- Yassen D., Ibrahim A.E. Antibacterial activity of crude extracts of ginger (Zingiber officinale Roscoe) on Escherichia coli and Staphylococcus aureus: A Study in vitro. Indo Am. J. Pharmaceut. Res. 2016;6:5830–5835. [Google Scholar]
- Yusuf A.A., Lawal B., Abubakar A.N., Berinyuy E.B., Omonije Y.O., Umar S.I., Shebe M.N., Alhaji Y.M. In-vitro antioxidants, antimicrobial and toxicological evaluation of Nigerian Zingiber officinale. Clin. Phytosci. 2018;4:12. [Google Scholar]
- Zearah S.A. Antifungal and antibacterial activity of flavonoid extract from Terminalia chebula Retz. fruits. J. Basrah Res. (Sciences) 2014;40:122–131. [Google Scholar]