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Abstract
In this paper we argue that transparency of machine learning algorithms, just as explanation, can be defined at different levels 
of abstraction. We criticize recent attempts to identify the explanation of black box algorithms with making their decisions 
(post-hoc) interpretable, focusing our discussion on counterfactual explanations. These approaches to explanation simplify 
the real nature of the black boxes and risk misleading the public about the normative features of a model. We propose a new 
form of algorithmic transparency, that consists in explaining algorithms as an intentional product, that serves a particular 
goal, or multiple goals (Daniel Dennet’s design stance) in a given domain of applicability, and that provides a measure of 
the extent to which such a goal is achieved, and evidence about the way that measure has been reached. We call such idea of 
algorithmic transparency “design publicity.” We argue that design publicity can be more easily linked with the justification 
of the use and of the design of the algorithm, and of each individual decision following from it. In comparison to post-hoc 
explanations of individual algorithmic decisions, design publicity meets a different demand (the demand for impersonal 
justification) of the explainee. Finally, we argue that when models that pursue justifiable goals (which may include fairness 
as avoidance of bias towards specific groups) to a justifiable degree are used consistently, the resulting decisions are all 
justified even if some of them are (unavoidably) based on incorrect predictions. For this argument, we rely on John Rawls’s 
idea of procedural justice applied to algorithms conceived as institutions.

Keywords  Machine learning · Transparency · Explanations · Justifications · Philosophy of science · Computing 
methodologies ~ Artificial intelligence · Cognitive science · Machine learning  · Human-centered computing ~ HCI theory · 
Concepts and models

Introduction

In this paper, we provide a new theory of algorithmic trans-
parency, with a focus on both explanations and justifications, 
where we consider as “algorithms” those human artifacts 
stemming from the training of machine learning models 
on digital data, in order to generate predictions to assist or 
automate decision-making. These algorithms are subject to 
intense scrutiny for both technical and moral reason, as their 
applications in product and services is constantly increasing, 
as well as their potential to affect everyone’s lives. Examples 

come from credit scoring, to digital financial coaching and 
job assistants, automated insurance claim processing bots, 
smart home services, online dating platforms, autonomous 
driving solutions and policing as well as recidivism scoring 
algorithms. One current limitation of modern algorithmic-
assisted decision-making is that most advanced machine 
learning models are considered as “black boxes” or inscru-
table (Selbst & Barocas 2018). Therefore, the last few years 
have seen the rise of an active debate in the scientific com-
munity around interpretability, transparency, explainability 
and justification of (machine learning model-based) algo-
rithms and their outputs. Without a proper understanding 
of these constructs and their outcomes, any decision gener-
ated or supported by these algorithms cannot be adequately 
contested.

According to (Lipton 2018), interpretations of machine 
learning models fall into two categories: model transparency 
and post-hoc explanations. Model transparency is “some 
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sense of understanding the mechanism by which the model 
works”(Lipton 2018). We claim that transparency (at least, 
the kind of transparency we characterize in this paper) is 
valuable because and in so far as it enables the individu-
als, who are subjected to algorithmic decision-making, to 
assess whether these decisions are morally and politically 
justifiable. We explain the relation between transparency and 
justification in “Design Publicity and Justification.” Differ-
ent ideas may be conveyed by demanding that a machine 
learning model be transparent, each focusing on different 
aspects of the model, its components and the training algo-
rithm (Lipton 2018). On the other hand, post-hoc explana-
tions focus on the outcome of the (learned) model; they 
include (Mittelstadt et al. 2019) natural language processing 
explanations, visualizations, case-based and counterfactual 
explanations, and local approximations; they can be classi-
fied in model specific or model agnostic. Local approxima-
tion allow, in particular, to explain why a black box model 
produced a selected prediction by approximating it with an 
interpretable model (e.g. a linear regression) around the pre-
diction at hand (Ribeiro et al. 2016). We refer to the goal 
of post-hoc explanations of individual decisions as “model 
interpretability.”

In this paper, we advance a new conceptualization of 
what explaining an algorithm amounts to. A key feature of 
our proposal is that we are fully explicit about the purposes 
that this mode of explanation is intended to achieve. Design 
publicity is intended to empower the public to debate all 
the key algorithmic design and testing choices relevant to 
assessing whether the decisions taken by such systems are 
justified. This enables the revision of such design choices 
as the public understanding of these ideas evolves. It is not 
intended to identify solutions deemed absolutely correct and 
incorrigible, to be enshrined once and forever in code. Justi-
fication will realistically always be imperfect and incomplete 
in spite of the best efforts put into it.

Design publicity takes the perspective of society (or of a 
regulator on behalf of society) rather than that of an actual, 
concrete, particular individual subject to algorithmic deci-
sions. It does not ignore that society is made of individuals, 
but it assumes that individuals are able to take (or at least 
aspire to) an impersonal standpoint when judging such sys-
tems. We refer to the more abstract idea of impartiality, not 
to a specific account of it—on which contrasting philosophi-
cal proposals have been put forth—to characterize the type 
of perspective that we have in mind here.1

Given this normative standpoint, we address a specific 
limitation of those post-hoc explanations that identify a fea-
ture or limited set of features as the reason(s) why a decision 

about an individual case was made. Although the post-hoc 
mode of explanation can be useful to empower individuals 
in certain settings, we argue that it fails to explain why a 
decision based on certain features is normatively adequate 
and justifiable from an impartial standpoint. While post-hoc 
explanations do not provide useful elements to judge and 
debate the justification of such systems, we intend transpar-
ency as design publicity to enable that type of discussion.

In this paper, after providing some definitions (2), we 
highlight some limitations of interpretable algorithms, by 
giving a prominent example of post-hoc interpretability 
methods, i.e. counterfactual explanations, drawing support 
from the recent literature. We, then, (3) propose a new con-
cept of algorithmic transparency that overcomes the classical 
split in model transparency vs. interpretability and which 
we label “transparency as design publicity”; subsequently, 
(4) we argue that it provides a kind of explanation of their 
behavior: a teleological explanation, or explanation by 
design. This form of explanation tries to take into account 
the domain-specificities of the algorithm as well as the 
expertise, understanding and interests of its end-users. The 
special value of this explanation is that it links the behav-
ior of an algorithm to their justification (5) and, when the 
algorithm is used consistently, to the procedural justice of 
its decisions.

Machine learning and algorithms: some definitions

In this section, we introduce some definitions that are rel-
evant for the remainder of this contribution. The aim here is 
to provide the reader with an overview of some commonly 
used concepts in the most recent literature on philosophy of 
technology and artificial intelligence without indulging (too 
much) in technicalities and jargon. We start with machine 
learning, which is a multidisciplinary discipline “concerned 
with the question of how to construct computer programs 
that automatically improve with experience” (Mitchell 
1997). Machine learning draws on concepts from artificial 
intelligence, information theory, algorithmics and philoso-
phy, among others. A machine learning problem “can be 
precisely defined as the problem of improving some meas-
ure of performance P when executing some task T, through 
some type of training experience E” (Mitchell 1997). Train-
ing experience E is represented by (digital) input data, which 
are preprocessed and formatted for the machine learning 

1  This is a much weaker, open ended, and vague account of public 
justification than the one offered by Binns (2018, p. 554) according 
to which a public justification must be grounded in public reason, 
implying that it “must be able to account for its system in normative 

and epistemic terms which all reasonable individuals in society could 
accept” For society, the account of what counts as public argument 
(i.e. in our view, one involving reasons relevant from an impartial 
standpoint) is meant to be as revisable and open-ended as every other 
assumption on which the justification of algorithms rests.

Footnote 1 (continued)
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problem under consideration. Performance measures P 
can be off-the-shelf or ad-hoc, that is engineered by the 
resources responsible for the solution of the corresponding 
machine learning problem; they provide with an estimation 
of the error made by the solution to the machine learning 
problem in executing T, using experience E.

Solving a machine learning problem consists of specify-
ing a class H of mathematical constructs called machine 
learning models, to be trained on input data D using a set of 
algorithms implemented in computer-understandable pro-
gramming languages (Mitchell 1997). Therefore, through the 
algorithms in the training process, the best machine learn-
ing model is trained or learned. The result of this process 
is an object in a programming language embedded in an IT 
infrastructure to generate predictions on new data with the 
goal to assist or automate decision-making; such complex, 
dynamic computer system becomes a “cognitive engine” 
at the core of products and services mentioned in (1). In 
the remainder of these notes, we will call this object “algo-
rithm;” in fact, this is an algorithm—i.e. a procedure or rule 
to compute predictions from input (new) data points—and 
stemming from the training of machine learning models to 
solve a given machine learning problem. We will come back 
to the teleological nature of algorithms in (4).

Post‑hoc explanations of machine learning models

As discussed by Selbst and Barocas “interpretability has 
received considerable attention in research and practice due 
to the widely held belief that there is a tension between how 
well a model will perform and how well humans will be able 
to interpret it” (Selbst & Barocas 2018). Following Lipton 
(2018), we refer to post-hoc interpretability as the provision 
of understandable explanations of machine learning model 
outcomes, also called predictions. Despite the proliferation 
of post-hoc interpretability tools in the literature of explaina-
ble artificial intelligence, we now explain more theoretically, 
with reference to prior work (Selbst & Barocas 2018), what 
post-hoc interpretability explanations intend to achieve and 
why they lead to partial understanding of the impersonally 
salient normative features of algorithmic systems.

We shall focus on a prominent example of explanations 
for post-hoc interpretability of machine learning models, i.e. 
counterfactual explanations, which recently drew attention 
in the artificial intelligence research community (Wachter 
et al. 2017). But we focus on limits to this approach that 
are shared with other post-hoc explanation.2 Counterfactual 
explanations are (1) “a novel type of explanation of auto-
mated decisions that overcomes many challenges facing cur-
rent work on algorithmic interpretability and accountability” 

(Wachter et al. 2017), (2) “should be used as a means to pro-
vide explanations for individual decisions” (Wachter et al. 
2017), and (3) “can bridge the gap between the interests of 
data subjects and data controllers that otherwise acts as a 
barrier to a legally binding right to explanation” (Wachter 
et al. 2017). For simplicity, we do not consider the theory of 
counterfactuals and causality, limiting our considerations to 
machine learning counterfactuals only.

Counterfactual explanations identify the explanation of 
machine learning outcome by the provision of a set of fac-
tors, or model features, whose change in value alters the 
outcome under consideration, keeping all other factors 
equal (Wachter et al. 2017). By design, they highlight “a 
limited set of features that are most deserving of a deci-
sion subject’s attention” (Barocas et al. 2020). Therefore, in 
the best-case scenario, counterfactual explanations provide 
users with actionable strategies to change the outcome into 
a more favorable one (recourse) as a response to a machine-
generated decision (Ustun et al. 2019).3

For the purpose of our discussion, the most salient limi-
tation of counterfactual explanations, shared with other 
post-hoc explanations, follows from their being “feature-
highlighting” (Barocas et al. 2020), i.e. these explanation 
provide “an explanation that seeks to educate the decision 
subject by pointing to specific features in the model that mat-
ter to the individual decision” (Barocas et al. 2020, p. 81).4 
This way of educating the decision subject is silent about the 
reasons why the model makes the decision based on such 
(and other) features, in the first place, e.g. why individuals 
in general are judged by such features. But this is highly 
relevant for one to evaluate whether the decision based on 
such features is justifiable. The explainee of counterfactual 
explanations must accept as a presupposition that the deci-
sion is (reasonably?) taken based on certain features. The 
explainee is modelled as having exclusively self-centered, 
concrete, pragmatic interest in the specific features that are 
relevant for the decision about her or him. So the explainee 

2  Additionally, counterfactual explanations may provide users with 
scenarios, which cannot be realized in practice, as they violate, for 
example, the causal constraints between model features used to gen-

3  Moreover, like other post-hoc explanations, counterfactual expla-
nations provide only local explanations of selected machine learn-
ing outcomes; moreover, the choice of the features to highlight may 
reflect subjective and potentially opaque preferences of the person in 
charge for providing counterfactual explanations to those demanding 
them (“selection bias”), and are sensitive to perturbations of input 
data (“lack of robustness” (Hancox-Li 2020)).
4  Where clearly, “each type of feature-highlighting explanation may 
define “matter” differently” (Barocas et al. 2020, p. 81).

erate the explanation (“lack of ontological stability”). In a big-data 
context, i.e. in presence of hundreds or thousands of variables and 
synthetic data points, hard-coding causal constraints in the synthetic 
data generating algorithm that reflect a priori criteria of plausibility 
or possibility is an unviable strategy, due to the time needed for con-
sidering and implementing all possible scenarios.

Footnote 2 (continued)
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is not provided with essential elements necessary to judge 
whether taking such decisions based on certain features is 
socially desirable or acceptable. In this context, the justifi-
cation of the algorithmic practice is treated as irrelevant to 
the explainee.

Counterfactual explanations lack normative informative-
ness, as it is not possible to infer normative properties of the 
model from explanations of individual decisions. As will 
be later argued, the most normatively important properties 
of model-based decisions emerge from repeated applica-
tion of the model—they are properties of the kind of pat-
terns, e.g. the distribution of errors, or of benefits, between 
groups, or of groups defined by morally salient properties, 
that emerge when the law of large numbers applies, as well 
as the model accuracy and ability to generate benefits (e.g. 
profit, or other forms of utility). A case in point of a mor-
ally salient property is indirect discrimination or disparate 
impact, which can be considered morally or legally relevant 
in certain contexts, but cannot be determined by reference to 
counterfactual explanations, because a protected group may 
be discriminated via proxy (e.g. ZIP code can be a proxy of 
race), so the protected group information will not appear as 
a feature in the model. Interestingly, the opposite misun-
derstanding may also occur. A counterfactual explanation 
may show that a decision, e.g. concerning a loan, would 
have been different had the individual been of a different 
race. This explanation may suggest unfairness, even when 
the intention behind using information about the protected 
group is used to make the prediction fairer, e.g. the informa-
tion is used to ensure the statistical property of separation 
(Hardt et al. 2016).

Summing up, counterfactual explanations do represent 
a practical strategy to explanation in presence of few vari-
ables and scenario choices, where the assumption that the 
model makes decisions that are normatively appropriate is 
taken for granted. In what follows, we provide a model of 
transparency that relies on explanations that are relevant 
for the justification of algorithmic decisions and, thus, their 
public acceptability.5 We do not maintain that transparency 
as design publicity—the approach we propose—fulfill all the 
desiderata various authors have associated with explainable 
and interpretable AI. Our transparency idea serves a particu-
lar purpose: that of normative justification. It provides the 
kind of explanation, which is useful for the public to assess 

if the deployment of algorithmic decision-making and the 
decisions following from it is justifiable.

Design explanation of algorithms

As showed by Kroll (2018), the thesis that the understanding 
and transparency of algorithmic-assisted decision-making is 
limited by the inscrutability of the machine learning mod-
els and their algorithms (i.e. the fact that they are opaque 
or “black boxes”) is criticizable. The debate on algorithm 
inscrutability mostly depends on the meaning we attribute 
to the expression “explaining the model” and accordingly 
“understanding the model.”

Explanation—the process and product (Ruben 2012) of 
making something understandable—has many meanings: 
definition, interpretation, individuation of the necessary 
conditions or sufficient conditions, of purposes, of functions, 
and of goals. An explanation is effective when the x that is 
explained is clear and open to people that want to understand 
x. An effective explanation renders an object understandable 
and its understandability contributes to the transparency of 
the object, i.e. the quality of being easy to see through, ana-
lyze, and assess.

The explanation of the behavior of an algorithmic system 
has not only different meanings but also different levels of 
abstraction to which it can refer (Floridi & Sanders 2004). 
For example, if we consider a low level of abstraction for the 
algorithmic system by focusing on its core mechanics, then 
explainability strategies will focus on its functioning, both 
from a theoretical (e.g. considering the machine learning 
model, including the optimization procedures for learning) 
and more engineering-oriented (e.g. the software running 
the machine learning training and the algorithm deployment) 
perspectives. However, at this level of abstraction, explain-
ability may be difficult to reach even to computer scientists 
and engineers (Lipton 2018). On the other hand, one could 
consider a level of abstraction where explanations clarify the 
purpose of algorithms; these would be understandable to the 
public, from the end users with low expertise to policymak-
ers in the need of justifying the use of algorithmic-assisted 
decision-making, to corporate executives adopting such 
models, to computer scientists and engineers that design 
them.

We define a design explanation of an algorithmic system 
to be the explanation of what such a system does, which 
essentially describes the ability of a system to achieve a 
given purpose. The design explanation of an algorithmic 
system is an explanation by intelligent design, namely it 
explains an x by referring to that for the sake of which x was 
created. This explanation is more abstract than the mechanis-
tic one and corresponds to Dennett’s design stance, namely 
the intellectual strategy by which we explain the behavior of 
a system by referring to its purpose and intentional design 

5  By public acceptability we do not mean public in the sense of 
Rawlsian public reason (Binns 2018; Rawls 1996), which involves 
standards of justification which can be shared by individuals with dif-
ferent conceptions of the good sharing a commitment to core liberal 
and democratic values and principles. We assume that different stand-
ards of justification will be employed in different contexts and by dif-
ferent publics.
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(Dennett 1987). Design explanations are teleological and 
focus on the final cause of a system (Aristotle 2016, 2018).6 
Design explanation is applicable to algorithms as the lat-
ter are goal-directed, human artifacts produced in a specific 
sociotechnical context (Baker 2004). In the design explana-
tion of a common object such as a chair, we provide the rea-
sons for which the chair was designed as such: being stable 
and comfortable; these goals directed the design of the chair 
and explain why respectively the chair has four or three legs 
and has an ergonomic or flat surface in the spot in which we 
sit down. The design explanation of an algorithm comprises 
“the understanding of what the algorithm was designed to 
do, how it was designed to do that, and why it was designed 
in that particular way instead of some other way” (Kroll 
2018). In other words, explaining the purpose of an algo-
rithm requires giving information on various elements: the 
goal that the algorithm pursues, the mathematical constructs 
into which the goal is translated in order to be implemented 
in the algorithm, and the tests and the data with which the 
performance of the algorithm was verified.

We define the design transparency of an algorithmic 
system to be the adequate communication of the essential 
information necessary to provide a satisfactory design expla-
nation of such a system.7 As design explanation is made 
of different elements, so design transparency can be split 
into various components: value transparency, translation 
transparency, and performance transparency, as we will 
now show.

The goal of an algorithm is something valuable that is 
achieved. Since it is something that is desired by a person or 
group, we can also call it a good or value for that person or 
group. Value transparency should also indicate why and for 
whom the goal is valuable, when this is not obvious from the 
context. The design goal (e.g. identifying the most profitable 
clients, minimizing hospital readmissions) is typically also 
the goal of the person who decides to employ the artifact in 
practice. Thus, it also figures in the intentional explanation 
of the action to develop, or purchase, and employ the AI, by 
the persons accountable for such decisions. Thus, the design 
explanation should indicate which is the goal—the reasons 
or motivations—of the computer scientists and engineers 
who designed the algorithm and of the persons account-
able for its employment in real-world settings. These goals 
should be one and the same; when this is not the case, the 

artifact does not respond to the reasons of the person who 
are supposed to have meaningful human control (Santoni 
de Sio & Van den Hoven 2018) over it. This is problem-
atic for accountability. The goal of an algorithm is usually 
a practical objective, such as profit or efficient allocation 
of scarce resources, but can include moral values such as 
equity, beneficence, trustworthiness, and the rules that are 
socially accepted as pertinent for the domain in which the 
model is employed. In both cases, the goal introduces nor-
mativity in the model, as it represents something that there 
are good reasons to pursue. Hence, normative choices are 
made both when normative standards are explicitly invoked 
in the design of a model and when they are ignored. As 
Binns points out:

[W]hen attempting to modify a model to remove algorith-
mic discrimination on the basis of race, gender, religion or 
other protected attributes, the data scientist will inevitably 
have to embed, in a mathematically explicit way, a set of 
moral and political constraints [6].

The goals or values that guide the design of algorithmic 
models should therefore be included in an explanation of 
such models. Value transparency is the result of an expla-
nation that makes the standards, norms, and goal that were 
implemented in the system accessible. These normative ele-
ments should also correspond to the reasons for which it 
was deployed.

The goal of an algorithmic system needs to be translated 
into something that is measured: a set of rules with which 
the algorithm elaborates inputs and produce outputs. A 
machine learning algorithm requires the quantification of 
the goal because, in particular, the algorithm that generates 
the model needs to quantify the departure from the model 
objectives of several potential candidate models. There is 
no straightforward and unique way to translate a goal into a 
mathematic construct. For this reason, making such transla-
tion a publicly verifiable criteria provides the public and 
scientific community with the information to assess how a 
given goal is operationalized in machine-language. Mak-
ing this piece of information public constitutes transla-
tion transparency, which is part of design transparency. In 
applications, it is possible to have alternative translations 
in machine language of the same goal. For example, let 
us consider the problem of designing a predictive model 
of customer churn8 for an airline company. The goal is to 
design and implement a predictive model of customer churn 
in order to assess future profitability of a given portfolio 
of customers. However, in the case of an airline company, 6  The final cause described by Aristotle can be used to explain the 

behavior of entities with no psychological states (desires, beliefs, 
conscious purposes, etc.) such as algorithmic systems, as Aristotle 
applies the teleological model of explanation to natural processes, 
which have no psychological states ((Broadie 1987), (Gotthelf 1976)).
7  What counts as a satisfactory in a given context may vary from 
context to context, also depending on the stakes of public justifica-
tion, discussed in Sect. 4.

8  To churn or to lapse is the activity of moving out a given group. In 
business, it refers to the activity of customers to move out of portfo-
lios. Predictive models of customer churns are important to organiza-
tions to predict the volumes of portfolios in (future) timeframes and 
to assess their (future) profitability.
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the business concept of “churn” could be translated into a 
different set of computer-understandable rules. In one case, 
one could simply define a customer as churned if no revenue 
is generated by the customer in a given year of interest. On 
the other hand, one could introduce churn as the absence 
of revenue in a given year of interest and the lack of flying 
activities (i.e. avoiding the case of zero-revenue generated 
by customers flying using promotions). Both choices lead 
to alternative implementations of the same business goal. 
Design transparency recommends to explain the definition 
of churn and its motivations to the public. Another example 
is the goal of fairness or avoiding discrimination. Different 
definitions of fairness for predictive models exist and it is 
often impossible to satisfy all of them simultaneously (Berk 
et al. 2018). Design transparency requires declaring which 
fairness definition has been adopted, and, if possible, to pro-
vide a justification of such choice.

Once the criteria to measure the degree of goal achieve-
ment are specified, a design explanation of an algorithm 
should provide information on the effective achievement of 
such objectives in the environment for which the system was 
built. In fact, for instance, the mere implementation of the 
most advanced norms of equal treatment in a credit-granting 
system does not guarantee that the system will be effectively 
impartial. The impact of the algorithms and its outcomes 
needs to be considered. Performance transparency consists 
in indicating the logic with which the algorithm has been 
tested in order to verify how much it departed from achiev-
ing the goal and in indicating the results of such logic, start-
ing with the choice of performance measures used in both 
training phase and during the assessment of the model on 
test data.9 These latter are data that have not been used dur-
ing training and whose scope is to assess the adaptability of 
the model to unseen inputs. The test data are part of perfor-
mance transparency as the choice and the quality of them, 
which can be subject to biases, influences the performance 
measure and thus the assessment of the algorithm. If perfor-
mance assessment is not robust in contexts with a different 
causal regime (e.g. hospital data from Brasil vs. from Japan), 
transparency about the test data may reveal limitations of 
performance claims.

In summary, an algorithmic system has the property of 
design transparency if and only if it provides the public with 
the goal of the algorithm (value transparency), how this 
goal was translated into programming language (translation 

transparency), how the algorithm rule achieves that goal and 
how the goal achievement has been assessed (performance 
transparency). The division of design transparency into three 
components (value, translation, performance) enables the 
analysis of the algorithm at three different levels of explana-
tions, which, as we will see, constitute also three levels that 
a design explanation has to address.10

We illustrate  with  an example what the approach of 
design transparency requires in practice. We shall argue only 
in the next section that such design transparency is essen-
tial for design publicity, i.e. for debating the justifiability of 
the algorithmic practice in question. The owners of a sta-
dium have to decide whether to adopt a face recognition 
(FR) system at the entrance of the stadium to prevent ter-
roristic attacks.

For value transparency, the FR decision to block an indi-
vidual is explained by pointing out the design goals of the 
system. The primary goal is to prevent a terrorist attack in 
a place in which many people gather. Moreover, it is likely 
that the goal of the system includes the properties that the 
system is reliable, fair, and avoids excessive disruptions to 
the use of the stadium.

For translation transparency, the owner of the stadium, 
as well as independent auditors and legal authorities, should 
have easy access to a lower-level (i.e. more detailed) descrip-
tion of the implementation of the goal and constraints in 
the FR system. Thus, the vendors of the FR systems should 
make public that the system detects faces in real time and 
compares the faces of people at the stadium entrance with 
others stored in a database containing the pictures of ter-
rorists, by extracting facial features. The vendor should 

9  Training and test data are often the result of a random split of an 
original set of data used for modelling purposes. This implies that 
the object resulting from training and the outcomes of which are the 
object of the explainability analysis is in reality a pair consisting of 
the model and a random seed, which is the integer value chosen by 
the analyst that governs the randomness in the routines leading to the 
training of the model itself.

10  This three-level approach has a similar structure to that of the 
incremental model designed by Castelluccia and Le Mètayer Inria 
(2020). This model provides a methodology for assessing the impact 
of face recognition (FR) systems and is constituted by four levels of 
analysis: the goal of the system, the means to achieve it, the suita-
bility of the use of FR systems to achieve the means, and the suit-
ability of a specific technology to achieve the means. However, the 
objective and scope of our approach are different: while Castelluccia 
and Le Mètayer Inria propose a model for evaluating all the poten-
tial impacts of FR systems (and more in general AI) on society, we 
provide a theoretical tool for evaluating the transparency of ML mod-
els and whether their use is justified within a society. Furthermore, 
a comparable three-level distinction was employed in safety testing 
by DeepMind (Ortega et al., 2018). The DeepMind approach distin-
guishes three concepts of specification, corresponding to what we 
call “value”, “translation”, and “performance”, which are respec-
tively the ideal specification (the general description of an ideal AI 
system that is fully aligned to the desires of the human operator), the 
design specification (the specification that is actually used to build the 
AI system), and the revealed specification (the specification that best 
describes the system’s behavior). However, unlike our model, Deep-
Mind applies these three levels specifically to the security tests that 
an AI company should conduct as an internal practice, and it does not 
intend these levels to be used to describe the system for the sake of 
transparency.
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also explain the mathematical balance between the goals of 
security and non-disruption of business, e.g. that the social 
disutility of allowing an actual terrorist in (a false negative) 
is regarded as equivalent to that of preventing an actual non-
terrorist from seeing the match (a false positive). Thus—the 
vendor could explain—the algorithm is trained to maximize 
classification accuracy (i.e. the percentage of correct predic-
tions), ignoring the distinction between type-I and type-II 
errors.11 Furthermore, let us assume that the fairness of the 
system is translated with the mathematical notion of equal-
ity in the false-positive and false-negative rate across all the 
legally defined race and gender groups.

For performance transparency the vendor should provide 
actual measures of the relevant performance metrics, that 
should be coherent with the translation assumptions above 
(i.e., classification accuracy and a meaningful comparison 
of group-related false-positive and false-negative rates). To 
make sense of the robustness of performance measures, the 
vendor should also provide information about the type of 
data with which the system was trained, whether the data 
were tested for possible biases (e.g. if there were only few 
faces of a given ethnicity), the confidence level of the human 
coders classifying the pictures with which the system was 
trained, and the contexts in which the system works bet-
ter (e.g. with pictures of man instead of woman, with good 
lighting and high resolution only). Additionally, to achieve 
performance transparency, one would require information on 
how the system performance was assessed (e.g. disclosing 
information on the partition of data into training and test 
subsets), including the specification of whether the perfor-
mance was assessed in the same context used for training or 
in a totally different environment. Notice that in this exam-
ple, every level of design transparency consists of objection-
able claims, exposing accountable parties to criticism by the 
experts and the broader public. E.g. security experts may 
object that false negatives are far more important than false 
positives, ethics experts may object to translating fairness, 
in this context, as equality in the false positive and false 
negative rate, and NGOs may point to racial biases in the 
way databases of terrorist faces are built.

An important step in addition to design transparency 
concerns the explanation of the singular decisions by the 
artifact, which should be distinguished logically from the 
nature of the artifact itself. The algorithm’s performance 
connects the explanation of the artifact (i.e. an algorithm, 
or rule) with the application of the rule to particular cases. 
The simple solution is to view each individual decision as a 
means through which the artifact achieves the overall goal 

for which it has been designed. This explanation is however 
problematic in the light of the fact that, when algorithmic 
decisions are based on statistical predictions, they will often 
fail to decide in a way that directly promotes the goal the 
model is designed to achieve. E.g. a loan is refused to some-
one willing and able to repay it, an inmate who will not 
reoffend is denied parole, a patient is prematurely released 
from the hospital, causing readmission. This is because deci-
sions based on imperfect predictions about stochastic events 
will typically be often wrong, but sufficiently often right to 
justify the use of the model in practice. In the next section 
we are going to show why even the statistical imperfection 
of a model can be justified by appealing to its design goals 
and the trade-offs between all values pertaining to the jus-
tification of its use.

There is a further type of transparency—consistency 
transparency—that contributes to explain individual deci-
sions by algorithms, given the assumption that the employ-
ment of such systems should be minimally fair. Consistency 
transparency is showing proof that consistency is achieved, 
i.e. that the algorithm always generates predictions by the 
same rules even when we cannot observe those rules in oper-
ation. Consistency is not a feature of the model but of its 
deployment. It does not contribute to explain why the model 
works in a certain way, but why certain decisions are made 
(namely, they result from applying the model consistently). 
Consistency can even be a property of the deployment of an 
algorithm that applies a discriminatory rule such as filter-
ing job candidates by their residence address. Nonetheless, 
as consistency transparency shows that identical cases are 
treated identically, it represents the first step towards fair-
ness; it is a sort of basic requirement of fairness that, as we 
shall show, is necessary but not sufficient to justify each 
decision as fair.

In some cases, models are unidentifiable, by which we 
mean that in most AI powered solutions the underlying 
machine learning models are updated (i.e. retrained) with 
frequencies that depend on the domain of applicability of the 
solution itself. This implies that an AI potentially generates 
different outcomes for the same end user, depending on the 
moment at which the outcome is generated: any explana-
tion of this outcome (for the purpose of contesting or audit-
ing it, for example) depends on time, as well. Consistency 
transparency requires that changes in a model be declared 
because, as we shall maintain, this is relevant for their justi-
fication. Consistency is a normative goal and showing that 
it is achieved by the model contributes to explaining why 
an individual decision is made–namely, by showing that it 
is explained by a normative consideration. Conversely, the 
failure to satisfy consistency implies that the decisions of 
the model can be challenged on a specific normative ground.

In conclusion, the design explanation of the model shows 
that an algorithmic model gives a decisional outcome 

11  The alternative being a performance measure assigning a differ-
ent weight to the avoidance of type-I and type-II errors (Kraemer et al 
2011; Corbett-Davies et al 2017).



260	 M. Loi et al.

1 3

because the model pursues a certain goal (value transpar-
ency), which is translated into mathematical constructs 
implemented in the algorithm (translation transparency), 
which in turn enables one to verify whether the model 
achieves the goal (performance transparency). When, as 
in most cases, consistency is among the reasonable goals 
of model deployment, the explanation of the decisions by 
the model includes consistency transparency. We hypoth-
esize that in achieving design transparency, one can take 
into account domain-specific features of algorithms, as well 
as the level of expertise, knowledge and interests of their 
end-users. These factors are currently considered important 
in the scientific debate around explainable AI, model trans-
parency and interpretability.12 This, together with the use of 
results from psychology and cognitive science to improve 
the understanding of the processes behind model interpreta-
tion by end-users (Miller 2019), represents a viable strategy 
to avoid what Miller et. al. refer to as “inmates running the 
asylum” (Miller et al. 2017).

Design publicity and justification

We define design publicity as adequate communication of 
the essential elements needed for determining if a deci-
sion driven or made by an algorithmic system is justified. 
(The judgments in question are meant to be impartial and to 
enable an informed public discussion about the use of such 
systems.)

In what follows, we argue that both design transparency 
and consistency transparency, as defined in “Design expla-
nation of algorithms,” are necessary for design publicity, 
because they are necessary to assess if and how the decision 
taken by (or with the help of) an algorithmic system is justi-
fied (when it is).

Design publicity provides information about (a) the goal 
the algorithm is designed to pursue and the moral constraints 
it is designed to respect (value transparency); (b) the way 
this goal is translated into a problem that can be solved by 
machine learning (translation transparency); (c) the perfor-
mance of the algorithm in addressing problem (performance 
transparency); and (d) a proof of the fact that decisions are 
taken by consistently applying the same algorithm (consist-
ency transparency). Let us now consider how each of these 
elements contributes to the justification of using an algo-
rithm and of the decisions that follow from its use.

Let us begin with the goal or goals the algorithm is 
designed to pursue. All algorithms are designed to pursue 

a primary goal (e.g. a business objective); some more 
advanced algorithms are also designed to take into consid-
eration a plurality of different values, such as fairness or 
privacy that often can be conceptualized as moral or legal 
constraints. Constraints are typically in trade-off with the 
primary goal and affect the way and the extent to which the 
primary goal can be achieved. For the sake of simplicity, we 
will refer to both goals and constraints (as goals), in what 
follows.

The first step of the justification of decisions taken by an 
algorithm, thus, requires evaluating the goals and constraints 
that the algorithm, respectively, achieves and respects. In a 
justified algorithm, they reflect those values and constraints 
a reasonable person may want to see promoted/respected in 
the context of a service.

The primary goal of the algorithm is essential to show 
that decisions are not morally arbitrary. Publicly recognized 
forms of social utility, such as security (in the FR example) 
or profit may fill this purpose. Primary goals matter to jus-
tification when they are valuable goals, e.g. there are good 
reasons to pursue such goals, which can be explained by 
reference to values commonly accepted in society, including 
moral, political or legal values, as well as the profit gener-
ated by free market exchanges, in capitalist societies that 
rely on profit as the motive stimulating socially efficient eco-
nomic activity, resource allocation, and risk taking. Other 
goals (the “constraining” goals) typically reflect value con-
siderations, e.g. privacy or fairness. Different types of jus-
tification are possible, for example in terms of common or 
philosophical morality, of the law, of by virtue of political 
principles and values that may be universal or characteristic 
of the society in which the model operates. Take, for exam-
ple, anti-discrimination as the general name of a value that 
society expects from a FR service, and that contributes to 
define the goal of the algorithms (in this case, by constrain-
ing the distribution of errors in the population affected by 
algorithmic driven decisions). Value transparency requires 
that these normative goals and the reasons for considering 
them are clearly specified—i.e. the choice of such normative 
goal is not a mere arbitrary decision by the data scientists. 
It contributes to the ability of the public to understand and 
assess the validity of a potential justification for accepting 
decisions taken by a model pursuing such goal. If the goals 
and constraints pursued by a model do not reflect values 
worth pursuing, the decisions following from the model are 
not justified.

An algorithm pursuing such goals will achieve them to 
a determined degree, which is expressed by “performance 
transparency.” The performance can only be assessed by 
translating the goals in question into measurable quantities. 
This exercise of translation is not trivial. With reference to 
the FR example above, the translation of a moral constraint 
(e.g. anti-discrimination) into a quantifiable performance 

12  The multi-faceted nature of transparency of algorithms is dis-
cussed in (Pégny & Ibnouhsein, 2018), where the authors describe the 
distinction between its epistemic (e.g. intelligibility and explicability) 
and normative (e.g. loyalty and fairness) desiderata.
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measure (e.g. equality in the false positive and false nega-
tive rate across racial and sex groups) should be given a nor-
mative grounding, and not simply be assumed. If the value 
translation is not declared and no reason to accept it is given, 
the decisions of the model are not even prima facie justified.

Performance transparency is especially important when 
there are trade-offs between different values simultaneously 
pursued by a model. Performance metrics provide an impor-
tant indication of the extent to which every value has been 
achieved, which is especially important for the overall justi-
fication of the system when a value can only be achieved at 
the expense of another value. For example, fairness can only 
be pursued at the expense of efficiency (Corbett-Davies et al. 
2017; Wong 2019). Performance transparency provides an 
indication of the degree to which both values, of efficiency 
and (quantified) fairness have been sacrificed.

Notice that design publicity does not require that indi-
viduals that are accountable for algorithmic decisions pro-
vide fully persuasive and non-corrigible justifications. It is 
sufficient that they declare what they take to be the relevant 
elements, exposing themselves to public scrutiny, as the 
above-mentioned FR case exemplifies. As Pak-Hang Wong 
observes “the idea of […] algorithmic fairness is […] con-
testable […] there is a great number of definitions of what 
[…] algorithmic fairness amounts to, and it seems unlikely 
for researchers […] to settle on the definition of fairness 
any time soon” (Wong 2019). Design publicity is intended 
to empower the public to debate also such choices, so as to 
enable their revision. This is compatible with the idea of 
the perfectibility of the public justification of algorithms 
over time, which is what we intend to enable through design 
publicity.

There is still a gap in the justification of individual deci-
sions. As anticipated, the fact that prediction-based decisions 
will often be wrong can be justified. In the case of machine 
learning-driven algorithms, individual mistreatment hap-
pens because the information necessary to always make 
perfect predictions does not exist. And even the information 
required to make a model more accurate may be too costly to 
collect, or cannot be collected in morally permissible ways. 
It is known that value-driven design that considers privacy 
and non-discrimination pays a price in terms of predictive 
accuracy (Hajian et al. 2015) and efficiency (Corbett-Davies 
et al. 2017). A further reason why errors are unavoidable is 
that some outcomes result from human free will, for exam-
ple, success during parole. The same considerations (of cost, 
privacy, or fairness) justify statistical decisions that rely on 
incomplete information, even when it is theoretically possi-
ble to collect and analyze all the information that matters, in 
principle, if one is to treat each individual case “as a distinct 
individual” (Lippert-Rasmussen 2010).

An individual subjected to an unfavorable decision may 
accept, in principle, that the algorithm is justified as a whole, 

yet challenge the necessity of implementing the model when 
taking a decision about him. The particular individual may 
argue: “I understand that the algorithm achieves these goals 
and that it does so in a reasonable way. But why can’t you 
make an exception for me?”. This would violate consist-
ency. For example, suppose that a software is used to rand-
omize access to scarce life-saving resources in a hospital of 
a dystopian country. This software translates fairness into 
a basic mathematical condition, which is equal chances of 
getting the resource in question. This goal can be achieved 
by an algorithm whose outcome is completely random. Yet 
consistency would be violated if, when the case of the head 
physician’s son is submitted to it, the randomized model is 
no longer used by the person in charge, who recognizes the 
head physician’s son, and assigns the resource to him. In this 
case, the software does not satisfy consistency.

The violation of consistency for an arbitrary reason (e.g. 
the case of the head physician’s son) is incompatible with 
equal respect; on the other hand, if the same exception were 
made for everyone who had an interest to demand it, the 
algorithm wouldn’t achieve its design goals, which justify 
its use. The violation of consistency is incompatible with 
formal justice, i.e., “the impartial and consistent administra-
tion of laws and institutions” [29], applied to the algorithm, 
considered as a law, or as an institution. This is why—we 
maintain—algorithms that change their identity as they are 
used are normatively problematic in high-stake decisions. 
In such cases, any change due to retraining should be at 
least publicized, and justified, by pointing out a considerable 
improvement in performance, which overrides consistency 
concerns.

When the design of an algorithm is justified, then, if 
the algorithm is also used consistently, we obtain a proce-
dural justification of all the decisions that follow from it. 
To explain this kind of justification, we draw from Rawls’s 
idea of the justification of individual shares of the goods pro-
duced by cooperation (Rawls 1999). Rawls rejects the idea 
of allocative justice, namely, he rejects describing justice as 
a property of the end-state of process of the distribution of 
goods, a property independent from how that distribution 
came about. For example, an end-state distribution is just, 
according to a resource egalitarian account, if and only if 
resources are equally distributed, according to a meritocratic 
account, if and only if resources are proportional to each 
person’s contribution to society, and according to a utilitar-
ian one, if and only if the distribution maximizes utility. 
As Nozick (1974) observes, these allocative end-states are 
undermined by processes, like markets, that are not fully 
deterministic, because they are perturbed by human free 
decisions. In Nozick’s slogan, liberty upsets patterns. Impor-
tantly, this applies to many cases of algorithmic decision-
making, where the outcomes that justify the decision are 
future events that depend on the free will of an individual. 



262	 M. Loi et al.

1 3

According to non-compatibilist libertarianism, for example, 
believing that an inmate success on parole could be pre-
dicted with perfect precision is tantamount to denying that 
the inmate has free will.

This gives us a moral reason to consider Rawls’s pro-
cedural alternative to end-state conceptions. In this case, 
distributive shares are just if they result from just institu-
tions. But unlike Nozick, Rawls relates the justification of 
institutions to the outcomes they tend to bring about, their 
general statistical tendencies, considered from a suitably 
general perspective. As in Hume it is the “general scheme 
or system of action, which is advantageous” (Hume et al. 
2000), not every single decision is considered individually. 
The outcomes which justify the institutions are characterized 
by Rawlsian principles of justice. Rawls (Rawls 1999), for 
examples, requires economic institutions as a whole (includ-
ing taxation) to maximize the expectations of the worst off 
groups in society. If institutions are justified, and if they are 
consistently and impartially applied, then the outcomes of 
free human decisions constrained by institutions are just, 
whatever they are.

For algorithmic decision-making, the principles of justice 
correspond to its design goals. The design goals of the algo-
rithm are that which justifies an algorithm which amounts 
to specific rules (including inscrutably complex ones). To 
assess if inscrutable algorithms satisfy their “principles 
of justice” we consider their performance. If they do, the 
consistent and impartial application of the algorithm to 
individual cases corresponds to the consistent and impar-
tial administration of just institutions. Summing up in one 
word: we are bound by procedural justice to accept as just 
only consistent decisions that result from the application of 
an algorithm that is justified by design.

Notice that, in the institutional case, the fact that institu-
tions are administered consistently and impartially is a pub-
lic fact. This publicity is achieved thanks to special proce-
dures. E.g. the consistent fulfillment of the legal obligations 
emerging from civil law can be tested by going to court. In 
the algorithmic case, the consistent application of inscruta-
bly complex rules appears to lack transparency. The solution 
to this is to provide a technical solution that delivers a proof 
that the rules are followed—that is, consistency—even when 
the rules themselves are not transparent to anyone because 
the algorithm is a black box; it appears that this is indeed 
technically feasible (Kroll et al. 2017).

Conclusion

In this paper, we discuss what it means to achieve transpar-
ency for machine learning algorithms, i.e. the provision of 
explanations to see through, analyze, and assess artifacts 
trained on data via machine learning methods and generating 

predictions to assist or automate decision-making. We pro-
pose a form of transparency that consists in publicizing the 
design of an artifact (including value, translation and per-
formance) as well as its consistent application. We maintain 
that this kind of transparency provides (1) an explanation 
of the artifact, namely, an explanation “by design”; (2) an 
intentional explanation of its deployment; (3) a justification 
of its use; (4) when used consistently, a procedural justifica-
tion of the individual decisions it takes.

The proposed approach to algorithmic transparency devi-
ates from the existing body of literature on explainable arti-
ficial intelligence (xAI), where the concept of transparency 
focuses on the explanation of the inner workings of algo-
rithms or the interpretability of their individual outcomes 
(Lipton 2018; Ribeiro et al. 2016). We do not claim here 
that transparency as design publicity achieves the goals that 
these approaches are said to achieve. Rather, we stress that 
transparency as design publicity achieves a distinct goal, 
namely, providing the public with the essential elements that 
are needed in order to assess the justification (and, when 
consistency is satisfied, procedural justice) of the decisions 
that follow from its deployment.
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